

# **Catalog Guide**

#### Reference

Warranty/General Warnings Maintenance Traveler Mainsheet Genoa Lead Cars Boom Vangs **Outhaul Systems** Cunninghams Mastbase & Cabintop Blocks Spinnaker Spinnaker Pole Handling & Halyards Backstay Adjuster Mainsail Reefing Self-Tacking Jibs & Staysail Metric Conversions/Drilling Guide Ball Bearing Replacement Chart **Rigging Breaking Loads** Loading Formulas

#### Small Boat Blocks

Carbo AirBlocks® 29 mm Carbo 40 mm Carbo 57 mm & 75 mm Carbo Carbo Batchets Carbo Ratchamatic® Small Boat Flip-Flop Blocks 16 mm Micro **Classic Blocks** Bullet Dinghy 2.25 in & 3.00 in Hexaratchets® Fiddle Dinghy Vang Two-Speed Mainsheet Systems Ordering Midrange Blocks Midrange Midrange Hexaratchet® Line/Wire High-Strength **Big Boat Blocks** Ordering Big Boat Blocks Black Magic® AirBlocks® 57 mm 75 mm 100 mm 125 mm & 150 mm Stainless Steel Blocks Teardrop Mastbase Halvard Lead Over-the-Top/Flip-Flop Crossover/Footblocks Air Runners® Stainless Steel Runners Snatch Blocks High-Load Snatch Blocks Cruising ESP Megavacht

Grand Prix

**Complementary Hardware** 

Ball Bearing Cam Cleats/Cam Kits Cam Cleat Accessories Cam Bases Trigger Cleat/Stay Tensioners Stand-Up Bases Accessories Self-Contained Sheaves **Big Boat Sheaves** High-Load Sheaves Narrow Halvard & Steering Sheaves Small Boat & Midrange Deck Organizers Cruising ESP Deck Organizers Big Boat Deck Organizers Spinnaker Pole Cars/End Fittings Stainless Steel Shackles LOUPS<sup>™</sup>: Soft Attachment Rigging Evestraps/Padeves Grand Prix Padeyes, Fairleads & Jib Leads Custom Removable Padeyes RigTune Pro NEW: Tiller Extensions **Travelers and Genoa Leads** Ordering Mainsail Travelers/ Ordering Genoa Lead Cars Curved Track **CB** Captive Ball Bearing Travelers Micro CB Small Boat CB Midrange CB Big Boat CB Windward Sheeting CB Mini-Maxi/Maxi **CRX Roller Traveler** Custom Yacht Mainsail Traveler Grand Prix Mainsail Traveler Pro-Trim Control Systems Ball Bearing Adjustable Genoa Lead Cars Pinstop Jib Leads Slider Genoa Lead Cars T-Track Genoa Lead Cars Tri-Roller Genoa Lead Cars & Slides Aluminum & Stainless Steel T-Track Custom Yacht Genoa Lead Cars Grand Prix Athwartship Systems Mainsail Handling Systems Ordering Battcar Systems Battcar Systems NEW: 18 mm T-Track Switch Battcar Systems 26, 32, 50 mm T-Track Switch Battcar Systems Furling Mainsail Cars ESP Clew Block

Lazy Jacks/Single Line Reefing

#### **Headsail Handling Systems** Carbo Racing Foil Small Boat Furling SMALL BOAT BLOCKS NEW: Small Boat Furling (Underdeck & Hoistable Swivels) Spinnaker Staysail & Gennaker® Code Zero Furling **Ordering Furling BIG BOAT BLOCKS** Unit 00AL MKIV MKIV Underdeck Cruising NEW: Electric Furling MKIV & Cruising Toggle Options MKIII Carbon Hydraulic Accessories Winches NEW: Radial Winches **Ordering Winches** NEW: Aluminum Radial NEW: Aluminum Radial Quattro Aluminum Combinations NEW: Chrome Radial Stainless Steel & All-Chrome Bronze NEW: Carbon Fiber Pedestals Pedestal Drive Components Powered Radial Winches NEW: Electric Radial NEW: UniPower Radial **NEW:** Electric Components NEW: Hydraulic Radial Captive Reel Winches Winch Handles Service Kits Harken Sport NEW: Jackets NEW: Shorts/Sunglasses **Hvdraulics NEW:** Cylinders NEW: Valves & Manifolds NEW: Power Units NEW: Reservoirs NEW: Grand Prix Cylinders NEW: Pumps NEW: Custom Yacht Hydraulics **NEW:** HydroTrim NEW: Hvdraulic Accessories McLube<sup>™</sup>/Harken<sup>®</sup> Hoister **New Products**





COMPLEMENTARY HARDWARE





MAINSAIL HANDLING SYSTEMS

HEADSAIL HANDLING SYSTEMS

WINCHES

HARKEN SPORT

HYDRAULICS

**NEW PRODUCTS** 



© Harken® Yacht Equipment Division of Harken®, Inc. 2009. All rights reserved. No portion of this catalog may be reproduced without the express written permission of Harken<sup>®</sup>, Inc. Printed in U.S.A. French version translated by: Harken France • German version translated by: Heiner Seidel • Italian version translated by: Harken Italy • Spanish version translated by: Joaquin Sangenis & Luis Martino







Olaf Harken Chairman



Giampaolo Spera Global CEO



Bill Goggins Harken USA CEO



Arthur Mitchel Director of Operations

## **STRENGTH OF INNOVATION**

In difficult times, Harken has proven that we are a company of caring people, dedicated to innovation. Today is no different. Despite the down economy and the fears that might exist in our industry, NEVER has Harken introduced such a strong line of new products and we plan to back it up with the best customer service in the industry.

Why?

Because that is the Harken Way—it is what we do to serve you.

#### Harken's Radial Winch Range

We proudly introduce Harken's new Radial Winch line. In close to two decades, nothing this big has happened in the winch world! Our new full range of winches represents years of invested time and a completely new manufacturing approach for us. Harken Italy's new purpose-built facility embraces the most modern concepts in lean manufacturing, with a goal of creating innovative products that meet the needs of the modern sailor. Everything about the Radial winch is new and fresh—from the way it mounts to the deck to the innovative grip that holds your line. Take a close look you'll be impressed.

#### **Harken Hydraulics**

How many companies introduce a new division when the economy is pulling back? In our minds, not enough. We learned about hydraulics in the Custom Yacht and Grand Prix worlds and are pleased to announce the rollout of a full range of hydraulic products for all keelboat sailors. Our goal is to supply you with <u>total</u> hydraulic solutions delivered with the same high levels of quality and service we've maintained while building our hardware and winch business. Take a close look and you'll see the attention to technical detail we're putting into this new division and its products—designed with a blank sheet, best-of-all-worlds approach.

Beyond winches and hydraulics, we have many other new products to share: Harken Sport's latest and greatest shorts, jackets, and sunglasses; electric furling, and small boat underdeck furling.

Enjoy paging through our new products, and as always, good sailing! Peter, Olaf, Giampaolo, Bill, Art, Patrick, Andy, Erich, Carl, Mitja, Garry & Magdalena



Patrick Rieupeyrout Managing Director France



Andy Ash-Vie Managing Director United Kingdom



Erich Hagen Managing Director Sweden



Carl Watson Managing Director Australia



Mitja Margon Managing Director Slovenia



Garry Lock Managing Director New Zealand



Magdalena Rakowicz Managing Director Poland

# Worldwide Limited Warranty

**COVERAGE.** HARKEN<sup>®</sup> warrants that each HARKEN product, when properly used and maintained, will be free from defects in material and workmanship from the date of receipt of the product by the final customer. HARKEN products are covered by two different kinds of warranties, on the basis of the purchaser and use made of them.

- 1. The Private Customer Warranty
- 2. The Professional Customer Warranty

THE LIMITED PRIVATE CUSTOMER WARRANTY. This limited

warranty applies to all Harken products purchased for final use by private individuals only and installed on boats used exclusively for recreational purposes. Harken products installed on boats used for any other purpose or by any other entity are covered by the limited PROFESSIONAL CUSTOMER WARRANTY.

The Owner's sole and exclusive remedy under this limited PRIVATE CUSTOMER WARRANTY for original defects in materials or workmanship of a HARKEN product shall be the repair or replacement, in HARKEN's sole discretion, of the defective part or component, at no charge to the owner of the product.

THE LIMITED PROFESSIONAL CUSTOMER WARRANTY. This limited warranty applies to all Harken products purchased for final use by or on behalf of any entity other than a private individual (such as by corporations, partnerships, competitive race groups, etc.) or installed on boats used for any purpose other than recreational use, such as for hire, charter or other professional or commercial events or activities. Such Professional Customers may include, but are not limited to, America's Cup Syndicates, international competitive syndicates, racers in transoceanic and globe-circling events, one-design racers with boats 40 feet and up racing in major competitive and international competition.

The Owner's sole and exclusive remedy under this limited PROFESSIONAL CUSTOMER WARRANTY for original defects in materials or workmanship of a HARKEN product shall be the repair or replacement, in HARKEN's sole discretion, of the defective part or component, in accordance with the terms of this warranty.

**WARRANTOR.** For products originally sold in the Unites States, the limited warranty for the products is supplied by HARKEN, INC.. For products originally sold in the European Union, the limited warranty for the products is supplied by the dealer who sold the product through the Harken Distributors in that country. For products originally sold in the rest of the World, the limited warranty for the products is supplied directly by the Harken Distributors in that country. When "HARKEN" is mentioned throughout this Limited Warranty, it refers to the entity as defined in this paragraph.

**OWNER – NON-TRANSFERABLE WARRANTY.** This warranty is made by HARKEN with only the original purchaser of the product and does not extend to any third parties. The rights of the original purchaser under this warranty may not be assigned or otherwise transferred to any third party.

#### WARRANTY TERM. The limited PRIVATE CUSTOMER WARRANTY covers any original defects in material or workmanship manifested within five (5) years of the date of receipt of the product by the final customer.

However, the warranty terms under the limited PRIVATE CUSTOMER WARRANTY for the following products are as indicated below by the date of receipt of the product by the final customer:

- Jib Reefing and Furling systems are warranted for seven (7) years. Hydraulic and Electric Furling systems are warranted for five (5) years. Electric furling motor, switches, control boxes and breakers are warranted for two (2) years.
- 2. Code Zero furlers, and associated fairleads, 2:1 sheave adapters, snap shackles and thimbles are warranted for three (3) years.
- 3. Carbo Racing Foils are warranted for three (3) years.
- 4. Winches and handles, hydraulic power units are warranted for three (3) years. Electric/hydraulic winch motors, switches, control boxes and breakers are warranted for two (2) years.
- Custom products, pedestals, gearboxes, push buttons, drive shafts, carbon fiber products and/or high performance applications of standard catalog products for extraordinary use applications are warranted for two (2) years.
- Harken Sailing Gear clothing, shoes, gloves, sunglasses, and related accessories are warranted for the period of time and under the conditions noted on their hang tags.

The limited **PROFESSIONAL CUSTOMER WARRANTY** covers any original defects in material or workmanship manifested **within 12 months of the** date of receipt of the product by the final customer.

**NOT COVERED.** Neither the limited PRIVATE CUSTOMER WARRANTY nor the limited PROFESSIONAL CUSTOMER WARRANTY applies to, nor shall HARKEN have any liability or responsibility for, damages or expenses relating to defects caused by misuse, abuse, failure to install, use, maintain or store the HARKEN product as specified in the warranty booklet, service booklet, manuals, catalogue or other literature available from HARKEN.

Neither the limited PRIVATE CUSTOMER WARRANTY nor the limited PROFESSIONAL CUSTOMER WARRANTY applies to, and neither HARKEN shall have any liability or responsibility in respect of, damages or expenses relating to:

- defects in material or workmanship that did not exist when the product was first delivered;
- defects in material or workmanship that are manifested outside the warranty period;
- defects which are not reported to HARKEN within sixty (60) days of discovery;
- a product that has been altered or modified from factory specifications;
  damage or deterioration of cosmetic surface finishes, including cracking,
- acriage of iscoloration or fading;
   acriated single abuse abuse aburrant use improper use lack of reasonable
- accidents, misuse, abuse, abnormal use, improper use, lack of reasonable or proper maintenance or storage;
- installation, wiring, service or repairs improperly performed or replacement parts or accessories not conforming to HARKEN's specifications;
- use exceeding the recommended and permitted limits or loads of the product and/or the vessel on which the product is installed;
- normal wear or deterioration occasioned by the use of the product or its expo sure to the elements;
- besides HARKEN's Hoister products used to store watercraft and bicycles, any use outside, other than or besides normal sailing or sailboat applications;
- ropes, lines, LOUPS<sup>™</sup>, buckles and webbing;
- clear coat finishes on carbon fiber;
- loss of time, loss of use, inconvenience, travel expense, costs related to
  procuring any substitute boat, transportation costs, towing costs, any
  incidental or consequential damages arising out of the non-use of the boat,
  or compensation for inconvenience or loss of use while the boat is being
  repaired or otherwise not available, or other matters not specifically
  covered hereunder;
- the costs to remove, disassemble or re-install the product;
- hauling out, storage and re-launching of the boat on which the product has been installed, even where this is necessary to carry out the warranty service.
   The limited PROFESSIONAL CUSTOMER WARRANTY does not cover, nor shall HARKEN have any liability or responsibility in respect of, damages or expenses
- relating to, the following products and/or components:
- pawls and pawl springs in winches;
- · components and gears in titanium;
- washers and spacers;
- winch drum grip;
- ball bearings, roller bearings, thrust bearings;
- winch handles.

**PROCEDURE.** In the event of a defect covered by this limited warranty, the Owner shall contact one of HARKEN's worldwide Distributors (there is a list of them on the www.harken.com site). If the product was originally sold in European Union the Owner shall contact the dealer that sold the product. To obtain warranty service for or replacement of your HARKEN product, your specific and detailed claim must be reported to and received by HARKEN, in writing, in accordance with the terms of this warranty and within the applicable warranty period. Also provide your name, address, phone number, original sales receipt, a description of the application of the product was used. The Owner is responsible for all expenses associated with transporting the product to and from HARKEN or a HARKEN dealer. If the examination of the warranty, you will be contacted and advised of the cost of repair of your product. If you accept this estimate, the product will be repaired outside of this warranty.

DAMAGES OR OTHER COSTS. Except as expressly provided by this warranty, HARKEN SHALL NOT BE RESPONSIBLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES OR OTHER COSTS, WHETHER THE CLAIM IS BASED IN CONTRACT, TORT OR OTHERWISE, including but not limited to any costs, taxes, fees, levies or other expenses imposed by any location in which the product was originally sold. The foregoing statements of warranty are exclusive and in lieu of all other remedies. Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, so this limitation or exclusion may not apply to you.

# **Worldwide Limited Warranty**

DISCLAIMER. ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE AND ALL IMPLIED WARRANTIES ARISING FROM A COURSE OF DEALING, USAGE OF TRADE, BY STATUTE OR OTHERWISE, IS HEREBY STRICTLY LIMITED TO THE TERM OF THIS WRITTEN LIMITED WARRANTY. This Agreement shall be the sole and exclusive remedy available to the Owner with respect to this product. In the event of any alleged breach of any warranty or any legal action brought by the purchaser based on alleged negligence or other tortious conduct by HARKEN, the Owner's sole and exclusive remedy will be repair or replacement of defective materials as stated above. No dealer and no other agent of HARKEN is authorized to modify, extend or enlarge this warranty.

**APPLICABLE LAW.** This warranty is governed by the laws of the State of Wisconsin for all products originally sold outside European Union. This warranty is governed by the laws of the Member State of the European Union where the product was originally sold. The exclusive jurisdiction and venue for any court action commenced by you under or relating to this limited warranty or any implied warranty(ies) shall be decided in the Courts of Waukesha County, Wisconsin or in the competent European Union. In the

event HARKEN prevails in any court action, the claimant shall reimburse HARKEN for the expenses, including attorney fees and expenses of litigation, reasonably incurred by HARKEN in defending against such claim.

OTHER RIGHTS. Claimant's acceptance of delivery of the warranted HARKEN product constitutes acceptance of the terms of this limited warranty. This warranty gives specific legal rights, and claimant may also have other rights under the laws of the jurisdiction involved.

**ENTIRE AGREEMENT.** This document contains the entire warranty given by HARKEN in respect of your product and supersedes any and all oral or express warranties, statements or undertakings that may previously have been made. Any and all warranties not contained in this warranty are specifically excluded. There are no terms, promises, conditions or warranties regarding your product other than those contained herein. HARKEN specifically does not authorize any person to extend the time or scope of this warranty or to create or assume for HARKEN any other obligation or liability with respect to HARKEN products.

June 2008/112616.1

# **General Warnings and Instructions**

Sailing is an exciting sport that can provide hours of enjoyment for you, your family, and friends. However, there are risks inherent in the sport, as well as with the equipment involved, that must be respected in order to avoid an accident, damage to your vessel, personal injury or death.

**WARNINGS AND INSTRUCTIONS.** You must carefully read, understand, and follow all of the warnings and instructions provided by Harken in order to avoid an accident. These warnings and instructions can be found on the equipment, in its packaging, in our brochures, on our website, or through our customer service department.

**TRAINING AND EXPERIENCE.** Even though Harken equipment appears simple and easy to operate (as intended by our design), our equipment should never be used unless you have a sufficient level of training and experience in sailing in general and with the equipment in particular. The amount of training and experience depends on a number of factors, including the size and type of your vessel, the weather conditions, and the task you are trying to complete. If you have any doubt whatsoever about your training or experience, please do not use the equipment. Please contact Harken or seek additional training.

AVOID ACCIDENT & INJURY. Regardless of your skill level, in order to avoid an accident, damage to your vessel, personal injury, or death:

1. Loads on hardware can be significant, and shock loading from heavy winds or seas can quickly multiply that load to extremely high levels. Maximum line diameter is a guide to sheave groove size and not intended to provide the maximum working load of the block. All persons selecting, installing, or maintaining Harken gear must be aware and cautious of such loads.

Select appropriate Harken hardware by using the loading formulas and charts provided in the Harken catalog or online at www.harken.com. You can also use Compu-Spec, Harken's online software that can help you select hardware for your boat. Always confirm your selection with a rigging professional or contact Harken directly.

2. Never, under any circumstances, exceed the capacity or Maximum Working Load (MWL) of any piece of equipment. The maximum working load may be found in our catalog, on our website, or through our technical service department. Loads above the MWL can cause the equipment to fail suddenly and unexpectedly.

The Breaking Load (BL) is the load at which a product is likely to fail. It

is much higher than the highest load a product should ever experience, and should not, under any circumstances, ever be considered in selecting equipment. It is published for informational purposes only.

3. Harken hardware and winches are used exclusively on sailing boats for normal sailboat rigging applications. It is mandatory that customers/users of any human suspension system involving Harken components undertake the necessary compliance with regulations of their country applicable to human suspension systems. For example, inside European Union, any system involving Harken components used for human suspension must be certified under European Union regulations.

4. Keep fingers, hands, hair, loose clothing, gloves, and tools away from moving parts.

5. If you are securing any equipment to the vessel with screws or other fasteners, be sure you are installing the screw into solid structure, or that you use anchor bolts, and that the attachment is sufficient to hold the anticipated load. Otherwise, the screw could become loose over time, or otherwise fail unexpectedly, resulting in an accident.

6. NYLOCK<sup>®</sup> nuts must not be used after being removed three times. When you replace shackles and fasteners, use the correct Harken parts to maintain the proper strength.

7. Always have all components of your vessel, down to the smallest pulleys, inspected for wear, corrosion or deterioration at least yearly, and replace as necessary.

8. Before manipulating any piece of equipment, be sure that all persons and objects are clear of the path of movement of all reacting components.

9. As part of your maintenance procedures, and to keep your equipment in optimum working order, frequently flush it with fresh water.

10. Always wear a personal flotation device and/or harness while on board any vessel, and especially while manipulating equipment.

11. Always be sure all safety equipment and electronics are in good working order before you set out on your journey.

12. For general boating safety information, visit the maritime organization in your sailing destination country (such as the United States Coast Guard at www.uscgboating.org).

## Maintenance

Harken<sup>®</sup> equipment is designed for minimal maintenance. However, some upkeep is required to give the best service and comply with the Harken<sup>®</sup> limited warranty. Harken installation manuals are available at no charge online at www.harken.com, or by contacting a Harken<sup>®</sup> dealer.

#### Always flush frequently with fresh water and periodically inspect all products for damage. Do not let deck hardware come in contact with teak cleaner or other caustic solutions as this causes discoloration and damage to the finish.

| Proc                     | luct General Information                                                                                                                                                                                                                                                                                                                                                                              | Inspection                                  | Cleaning                                                                                | Lubrication                                             | Fasteners                                                                                                           |  |  |  |  |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Small Boat<br>Midrange E | and<br>Flock Tape cotter rings to prevent snagging. Do not leave heavy loads on blocks when not<br>in use as this may slightly deform the bearings. Normally bearings will return to their<br>proper shape after rotation, but an initial resistance to rolling may be felt.                                                                                                                          | 1                                           | 4<br>5                                                                                  |                                                         | 11                                                                                                                  |  |  |  |  |  |  |  |
| Big Boat<br>Blocks       | Big Boat bearings are resistant to deformation, but we recommend releasing heavy loads on any hardware when not in use.                                                                                                                                                                                                                                                                               | 1                                           | 4 Black Magic <sup>®</sup> Airblocks <sup>®</sup> disassembled,<br>solution on rollers  |                                                         | 12                                                                                                                  |  |  |  |  |  |  |  |
| Cams                     |                                                                                                                                                                                                                                                                                                                                                                                                       |                                             | 4 Apply to bearings                                                                     |                                                         | 11 On cam screws                                                                                                    |  |  |  |  |  |  |  |
| Travelers<br>and Battca  | rs                                                                                                                                                                                                                                                                                                                                                                                                    | 1                                           | 4 Apply to bearings                                                                     | <ul><li>7 On balls</li><li>8 Slider cars only</li></ul> | 11 On bolts<br>13                                                                                                   |  |  |  |  |  |  |  |
| Furling                  | Refer to the owner's manual for detailed maintenance instructions.                                                                                                                                                                                                                                                                                                                                    | 2                                           | 4 Apply to bearings                                                                     |                                                         | <ol> <li>On Cruising foil<br/>clamp screws</li> <li>On foil screws Cruising</li> <li>On foil screws MKIV</li> </ol> |  |  |  |  |  |  |  |
| Winches                  | Refer to the owner's manual for detailed maintenance instructions.<br>Overapplication of grease can cause salt and water deposits to become trapped in<br>the winch. Clear drain ports of sealants or grease. Lubricate pawls with Harken Pawl<br>Oil. Do not grease pawls.                                                                                                                           | 3                                           | <ul><li>4 Plastic parts</li><li>4 Winch top</li><li>6 Metal parts</li></ul>             | 9 On gears<br>10 On pawl                                | 12 On socket bolt<br>13                                                                                             |  |  |  |  |  |  |  |
| 1<br>2<br>3              | Inspect frequently: shackles and shackle posts for signs of corrosion, cracks, or elongation.<br>Inspect: lashings and loops for UV damage, wear, or chafe. When replacing loops, lashings, or shack<br>Inspect frequently: wire terminals, turnbuckle components, toggles, shackles, clevis and cotter pins<br>Check for wear and corrosion: Check pawls and springs, bearings, gears, and spindles. | kles use Harken part<br>below and inside dr | s to maintain the proper strength.<br>um assembly for signs of loosening, corrosion, or | cracks.                                                 |                                                                                                                     |  |  |  |  |  |  |  |
| 4                        | <b>Clean:</b> Keep your equipment clean and free-running by frequently flushing with fresh water. Periodic Spin sheaves, rotate cams, and roll cars back and forth to distribute soap solution evenly.                                                                                                                                                                                                | ally clean with mild                        | detergent and water solution.                                                           |                                                         |                                                                                                                     |  |  |  |  |  |  |  |
| - 5                      | Clean: with Scotch Brite" pad on Classic block sideplate and stainless steel strap.                                                                                                                                                                                                                                                                                                                   |                                             |                                                                                         |                                                         |                                                                                                                     |  |  |  |  |  |  |  |
|                          | Degrease: Remove grease with de-greaser. Harken recommends environmentally friendly citrus deg                                                                                                                                                                                                                                                                                                        | reasers.                                    |                                                                                         |                                                         |                                                                                                                     |  |  |  |  |  |  |  |
| - 1                      | Lubricate: Dry lubricante cuch as Mel ubaTM Sailkote, dry Taflon <sup>®</sup> and dry silicon sprays which will n                                                                                                                                                                                                                                                                                     | ot attract dirt may b                       | a usad on slider care                                                                   |                                                         |                                                                                                                     |  |  |  |  |  |  |  |
|                          | Grease linhtly with Harken winch grease                                                                                                                                                                                                                                                                                                                                                               | iot attract unt may b                       |                                                                                         |                                                         |                                                                                                                     |  |  |  |  |  |  |  |
| 10                       | Lubricate: winch nawls with a drop of Harken Pawl Oil. Do not grease winch nawls                                                                                                                                                                                                                                                                                                                      |                                             |                                                                                         |                                                         |                                                                                                                     |  |  |  |  |  |  |  |
| 11                       | Adhesive: Blue Loctite <sup>®</sup> . Temporary adhesive. Can be removed without heating.                                                                                                                                                                                                                                                                                                             |                                             |                                                                                         |                                                         |                                                                                                                     |  |  |  |  |  |  |  |
| 12                       | 2 Anti-seize: Coat stainless fasteners that pass through aluminum blocks with an anti-seize compound such as Tef-Gel®.                                                                                                                                                                                                                                                                                |                                             |                                                                                         |                                                         |                                                                                                                     |  |  |  |  |  |  |  |
| 13                       | Replace: nylock nuts after the third removal.                                                                                                                                                                                                                                                                                                                                                         |                                             |                                                                                         |                                                         |                                                                                                                     |  |  |  |  |  |  |  |
| 14                       | Adhesive: Red Loctite <sup>®</sup> . Semi-permanent adhesive can be removed with heat. Electric heat gun will n                                                                                                                                                                                                                                                                                       | not raise temperature                       | e enough to break adhesive seal.                                                        |                                                         |                                                                                                                     |  |  |  |  |  |  |  |
| 15                       | Adhesive: 5200. Semi permanent adhesive.<br>Electric heat gun will not raise temperature enough to break adhesive seal.                                                                                                                                                                                                                                                                               |                                             |                                                                                         |                                                         |                                                                                                                     |  |  |  |  |  |  |  |

## Traveler



2:1 Cam on Car: This system features cleats on adjustable arms that can be angled. On flush deck boats face cleats down the length of the track. On boats with seat backs angle the cleats forward or aft.





Windward Sheeting: The windward sheeting traveler lets crew pull the car above the centerline without releasing the leeward control line. Tack and the car stays in the same position, ready to be pulled to the new windward side.



**2:1 Remote Cleat:** Use this 2:1 system on flush deck boats like the J/24 where crew sit outboard of the traveler and loads are nearly vertical.



Standard 3:1: This system, with cleats on the track, is used on boats under 35 ft (10.7 m).



Standard 4:1: This 4:1 system is used on moderately-sized cruising and racing boats. Control blocks and cleats mount on track ends.



2:1 with Dedicated Winch: Install this system on big boats when winches are used to adjust the traveler.



4:1 Remote Cleat: If the traveler is mounted ahead of the companionway, place the cleats at the aft-edge of the cabin house.



3:1 Remote Cleat: When the crew sits above the traveler, lead control lines up the cockpit sides to a convenient cleat on the coaming.



**Under Deck Traveler Control:** Racing boats often keep decks clean by running the traveler tackle below deck. This system has a 6:1 purchase that exits at a central control pod forward of the wheel or tiller, which allows the mainsheet trimmer to easily adjust the traveler. Popular on boats like the Farr<sup>®</sup> 40.



**6:1 Dodger Block:** This system works well with a dodger. Triple control blocks give the traveler a 6:1 purchase.

## Mainsheet



**4:1 Fiddle:** This 4:1 tackle is the most common system on boats under 28 ft (8.5 m).



**6:1 Reeved Right Angle:** Boats with mainsails to  $375 \text{ ft}^2 (35 \text{ m}^2)$  often use a 6:1 system.



8:1 Beachcat: This 8:1 purchase handles high mainsheet loads on Beachcats up to 20 ft (6 m).



7:1/28:1Gross/Fine: This gross trim/fine tune system is found on racing multihulls where it is desirable to split the gross trim from the fine tune. Placing the fine tune in the boom provides a very clean system that the trimmer can get a hold of and put his weight into it. The powerful cascading fine tune portion is used to haul the boom in that last little bit.



**4:1 with Dedicated Winch:** This system moves the traveler over the companionway to clean up the cockpit. A favorite on cruising boats.



**4:1 Swivel Base:** Position the swivel base block off the traveler car to allow mainsail adjustment without dragging the car to windward in light air. To avoid tightening the leech, curve the track ends up.



**6:1/24:1 Gross/Fine:** This 6:1/24:1 cascading system is used on boats with end-boom sheeting and mains as large as 275  $ft^2$  (25.5 m<sup>2</sup>) and end-boom sheeting.



5:1 with Dedicated Winch: This system is popular on cruising boats with cabintop travelers. The sheet leads forward to the gooseneck and then down and back to a winch on the aft edge of the cabintop.



**2:1 with Dedicated Winches:** This simple double-ended system lets the mainsheet run freely through the blocks which allows the traveler car to move easily. The trimmer makes sail adjustments from the high side.



**4:1/16:1 Gross/Fine:** This powerful gross-trim/fine-tune cascading system allows crew to use the 4:1 gross-trim for most trimming and the 16:1 fine-tune for precise adjustments.



4:1/16:1 Double-ended Fine Tune: This 4:1/16:1 system uses a dinghy-like double-ended tackle that locates the sheet ends on the cockpit sides.



Admiral's Cup 2:1 with Dedicated Winches: In this system, the traveler is independent of the mainsheet so it rolls freely. The sheet leads forward along the boom before it turns down and aft to winches. Used on race boats like the Farr<sup>6</sup> 40.



3:1 with Dedicated Winch: Many large boats use this simple 3:1 system. A block on deck turns the sheet to a winch.

## **Mainsheet Two-Speed Mainsheets**

# 2:1/4:1



2:1/4:1 Swivel Base: This system is often found on boats like J/24s where a center-mounted swivel base is desired.

3:1/6:1: This 3:1/6:1 two-speed system is used on boats end-boom sheeting and mainsails up to 240 ft<sup>2</sup> (22.3 m<sup>2</sup>) and end-boom sheeting.



3:1/6:1 Swivel Base: This 3:1/6:1 system allows the mainsheet trimmer to be positioned anywhere on the boat. A great setup for sportboats.

## **Genoa Lead Cars**



2:1 Slider: Some prefer the simplicity of T-Track lead cars. Use the 1997 as a pinstop car. Use the 1998 T-track car with a 2:1 adjuster system.



Pinstop Slider: A pinstop slider car on ball bearing track is recommended for cruising boats that might upgrade to adjustable ball bearing cars.



4:1 Tandem: Two cars placed on a long track allow the new sheet to be set and the car correctly positioned before sail changes. A cable or line joins the cars.



Multi-track: Use an adjustable car for the #1 and #2 genoas. Use a pinstop car for the #3 and #4 jibs. Adjust the forward car with a pinstop slider or T-Track car.



Barbarhauler: Use this low-profile system on racing boats with non overlapping jibs like the Farr® 40 and One Design 35. An inhaul is used to control slot size.



Beachcat Jib Controls: This jib traveler is used to haul the jib sheet block outboard for slot adjustment on Multihulls up to 21 ft (6.4 m).



4:1/8:1 Swivel Base: Similar to the 3:1/6:1 swivel base system, but uses a 4:1/8:1 tackle for more power.



6:1/24:1 Cascaded: This 6:1/24:1 system is used on boats with mains as large as 275 ft<sup>2</sup> (25.5 m<sup>2</sup>) and end-boom sheeting.

## **Boom Vangs**

# **Outhaul Systems**



**4:1 V-jam:** This simple 4:1 self-cleating vang is used on small dinghies.



**15:1 Cascaded Vang:** The 15:1 Dinghy vang uses a 3:1 cascade inside a 5:1 purchase to create a powerful system. Suited for dinghies and light daysailers with mains to 125 ft<sup>2</sup> (11.6m<sup>2</sup>).

8:1



**2:1 Internal:** Suitable for dinghies or small keelboats. A flexible cable shackles to the sail and enters the boom through a wire block. Placing a block aft of the cleat allows the crew to pull from a variety of positions.



**4:1 External Cascade:** A simple external outhaul system. A cascade of two 2:1 tackles produces a 4:1 advantage.



5:1 Internal: This 5:1 internal outhaul is popular on small offshore boats.



**4:1 Fiddle:** The basic 4:1 fiddle block vang is commonly used on dinghies and small keelboats.



4:1 Cascaded Kicker: This rigid rod vang utilizes a simple 4:1 tackle. The rod also serves as a topping lift for the boom. Used on cruising and racing boats.



8:1 Cascaded Fiddle: A doubling

safely on larger boats.

block increases the purchase of the vang to 8:1. The load on the fiddle

blocks is halved so they can be used

**6:1 Double-ended Cascaded Kicker:** Many racers rig the vang with a double-ended control line led down each side of the boat.



**6:1 Internal:** A 6:1 internal outhaul system is popular on small-to medium-sized offshore boats using a traveler car to carry the clew of the mainsail.



**2:1 Furling Main:** Mainsails that furl into the mast are loose-footed and usually have a ball bearing outhaul car that rides the length of the boom. The outhaul starts at the car, leads through the clew block on the sail, back to the sheave on the car, and into the boom where it leads to a winch.

# Cunninghams





8:1 Cascaded: The most basic

cunningham is a self-cleating 4:1

**4:1 Cascaded:** This simple 4:1 system leads aft to the cockpit. A favorite on small keelboats and daysailers.



4:1 Double-ended Cascaded: This system is easy to adjust from the trapeze. It's easy to rig and unrig. Popular on smaller beach cats.



**12:1 Cascaded:** This simple 2:1 purchase is attached to a 6:1 cascade for a 12:1 system. Used on larger racing and cruising boats.



**6:1 Double-ended Jib Downhaul:** Small boats like J/24s use a double-ended genoa cunningham system to adjust draft from the weather rail.

## Mastbase & Cabintop Blocks



**1 Halyard:** This simple system leads principle halyards aft. Used by boats under 30 ft (9 m).







**3 Halyards:** Larger boats use special mastbase halyard lead blocks. Lines are routed out to deck organizers then aft to stoppers and winches. Stand-up blocks on a base are sometimes preferred for their complete articulation, but they hold halyards higher off the deck than specialized mastbase blocks.





6 Halyards: Modern race boats lead halyards and control lines straight aft through deck organizers so they can be used on either cabintop winch.



**Over the Top:** Special "over-the-top" blocks are required to route lines over an outside corner like the front of a doghouse or coaming.



## Spinnaker



Standard Sheets: Masthead rigs to 28 ft (8.5 m) and fractional rigs to 32 ft (9.7 m) use one pair of lines which lead to turning blocks at the transom. Tweakers bring the guy to the deck near the point of maximum beam to provide additional control over the spinnaker pole. One foreguy line is appropriate for these boats.





Standard Sheets & Guys: Offshore boats over 30 ft (9 m) use separate sheets and guys. The sheets lead to turning blocks at the transom, while the guys lead to blocks at the point of maximum beam and then to a winch. A double-ended foreguy adjusts from either side of the boat.



Asymetrical on Sprit: Boats with asymmetrical spinnakers and retractable (or removable) bowsprits are rigged with a tack line leading through a block on the end of the sprit, and aft to a cleat or stopper. Two sheets attach to the clew of the sail, with the lazy sheet leading aft ahead of the headstay, over the sprit, and outside the shrouds and sheets.



**Continuous Line:** Beachcats install two carbo auto ratchets on each side of the boat to manage high spinnaker sheet loads. Use 57 mm ratchets on catamarans up to 20 ft (6 m). Use 75 mm ratchets on multihulls to 30 ft (9 m).

## Spinnaker Pole Handling & Halyards



2:1 Spinnaker Pole: This system allows the inboard end of the pole to be moved under load. It features a continuous adjuster line and 2:1 controls.



**3:1 Spinnaker Pole:** This adjustable system features 3:1 controls for more power.



Spinnaker Halyard through Spar: Smaller offshore boats often mount a cam cleat below the spinnaker halyard exit so crew can jump the halyard and cleat it to the mast when setting the spinnaker. The cam also holds the line should the sail fill prematurely.



**Pole Launcher:** Many racing boats have asymmetrical spinnakers and retractable bowsprits. This system features a launcher line on top of the pole, with strong shock chord on the bottom to automatically retract the pole when the launcher line is uncleated.

## **Backstay Adjuster**



**6:1 Right Angle:** This simple 6:1 system is used on small cruising boats with a single line or wire backstay.



**12:1 Cascaded:** This cascading 2:1/6:1 system provides a 12:1 purchase and is used on small racer/cruisers and daysailers.



6:1 Double-ended Split: This double-ended split backstay system leads lines forward to cam cleats mounted just ahead of the helmsman so adjustments can be made from either side of the boat.



**Backstay Adjuster:** This adjuster is ideal for small racer/cruisers and daysailers. The handles fold down when not in use.



4:1 Split Backstay: This 4:1 system is used on small keelboats with split backstay systems. Pinching the wires together tightens the backstay and increases headstay tension to flatten the genoa, decrease weather helm, and stabilize the rig in heavy air.



8:1 Split Backstay: A more powerful version of the split backstay adjuster uses a doubling wire running through a wire block for a purchase of 8:1.



Backstay Adjuster with Winch Handle: This powerful backstay system operates without hydraulics. It is an excellent choice for larger racer/cruisers. The stay tensioner adjusts using a standard winch handle.



2:1 Backstay Adjuster with Winch Handle: This 2:1 backstay adjuster is for boats with a split backstay. To rig, replace the two lower wires with a single wire and add a runner block at the top of the split. Size the block to match the breaking strength of the wire.

## **Mainsail Reefing**



**Single Line:** The single line reefing kit is easy to install and use. To reef, simply ease the halyard to a predetermined mark and pull the single reef line taut. Ideal for boats from 22 ft to 27 ft (6.7 m to 8.2 m) with a maximum sail area of 150 ft<sup>2</sup> (14 m<sup>2</sup>).



**Dual Line:** This dual-line system is common on boats 30 ft (9 m) and larger. Position blocks so line pulls down and out to keep the sail flat and prevent lateral loads on the luff rope or luff sliders.



Lazy Jacks: Lazy Jacks contain mainsails during reefing and dousing. They work exceptionally well with full-battened mains, but are also used with conventional sails.

## Self-Tacking Jibs & Staysails



Standard Self-tacker: This system is often used on course racing keelboats like Solings. The traveler track is bent in a radius equal to the distance from the headstay to the sheeting point along the LP of the sail.



2:1 Self-tacker: Self-tacking jibs are popular because they keep the foredeck clean.



Self-tacker on Jib Boom: Self-tacking jibs and staysails work well with furling systems and jib booms. This system features two "sheets"—one controls the in and out movement of the sail much like an outhaul. The other controls the boom.

# **Metric Conversions**

This catalog shows both imperial and metric. In most cases, the metric dimension shown is calculated from the imperial measurement and rounded to a whole number. For example,  $5/16^{"}$  is generally shown as 8 mm, while an exact conversion would be 7.9375 mm. When referring to a line diameter, it is sufficient to approximate the conversion. In cases where a dimension is critical, exact metric dimensions are shown. For example, a clevis pin for a furling unit with a diameter of  $1/2^{"}$  is shown as 12.7 mm.

| Length        |             |             | Area               |             |                    |
|---------------|-------------|-------------|--------------------|-------------|--------------------|
| When you know | Multiply by | To find     | When you know      | Multiply by | To find            |
| Inches        | 25.40       | Millimeters | Square inches      | 645.2       | Square millimeters |
| Inches        | 2.540       | Centimeters | Square inches      | 6.452       | Square centimeters |
| Feet          | 304.80      | Millimeters | Square feet        | 929.0       | Square centimeters |
| Feet          | 30.48       | Centimeters | Square feet        | 0.0929      | Square meters      |
| Feet          | 0.3048      | Meters      | Square yards       | 0.8361      | Square meters      |
| When you know | Divide by   | To find     | When you know      | Divide by   | To find            |
| Millimeters   | 25.40       | Inches      | Square millimeters | 645.2       | Square inches      |
| Centimeters   | 2.540       | Inches      | Square centimeters | 6.452       | Square inches      |
| Millimeters   | 304.8       | Feet        | Square centimeters | 929.0       | Square feet        |
| Centimeters   | 30.48       | Feet        | Square meters      | 0.0929      | Square feet        |
| Meters        | 0.3048      | Feet        | Square meters      | 0.8361      | Square yards       |
| Weight        |             |             |                    |             |                    |
| When you know | Multiply by | To find     | When you know      | Divide by   | To find            |
| Ounces        | 28.35       | Grams       | Grams              | 28.35       | Ounces             |
| Pounds        | 0.4535      | Kilograms   | Kilograms          | 0.4535      | Pounds             |

To use the online calculator for finding length, area and weight go to www.harken.com









F

C

## **Drilling Guide**

| Fastener | Drill for<br>clearance hole | Drill for<br>tapping |                                  | Drill for<br>clearance hole   | Drill for                      |
|----------|-----------------------------|----------------------|----------------------------------|-------------------------------|--------------------------------|
| mm       | mm                          | mm                   | Fastener                         | in                            | tapping                        |
| 2        | 2.25                        | 1.6                  | 6-32                             | 9/64                          | #36                            |
| 2.5      | 2.75                        | 2.05                 | 8-32                             | 11/64                         | #29                            |
| 3        | 3.25                        | 2.5                  | 10-24                            | <sup>13</sup> / <sub>64</sub> | #25                            |
| 4        | 4.25                        | 3.25                 | 10-32                            | <sup>13</sup> / <sub>64</sub> | #21                            |
| 5        | 5.25                        | 4.25                 | 1/4-20                           | 17/64                         | #7                             |
| 6        | 6.25                        | 5                    | <sup>5</sup> /16-18              | <sup>21</sup> / <sub>64</sub> | #F                             |
| 8        | 8.25                        | 6.75                 | <sup>3</sup> /8-16               | <sup>25</sup> / <sub>64</sub> | <sup>5</sup> / <sub>16</sub> " |
| 10       | 10.25                       | 8.5                  | <sup>7</sup> / <sub>16</sub> -14 | <sup>29</sup> / <sub>64</sub> | #T                             |
| 12       | 12.25                       | 10.25                | 1/2-13                           | <sup>33</sup> / <sub>64</sub> | 27/64"                         |
| 16       | 16.26                       | 14                   | 5/8-11                           | 41/64                         | 17/32"                         |

## **Ball Bearing Replacement Chart**

|            |                               |                                              | Orderii                               | ng Ini     | iormati       | on                                         |                   |               |                              |     |
|------------|-------------------------------|----------------------------------------------|---------------------------------------|------------|---------------|--------------------------------------------|-------------------|---------------|------------------------------|-----|
|            | Part<br>No.                   | Description                                  | Leı<br>in                             | ngth<br>mm | Balls/<br>Car | Ball<br>Material                           | Order<br>Part No. | Balls/<br>Set | Ball<br>in                   | Ømm |
|            | 2700/2701/2702/2703           | Micro CB                                     | 2 <sup>3</sup> /16                    | 56         | 40            | Torlon®                                    | 2708              | 20            | 3/16                         | 5   |
|            | 156/157/171/211               | Small Boat                                   | 27/8                                  | 73         | 42            | Delrin®                                    | 176               | 21            | 1/4                          | 6   |
|            | 158/159/172/210/212           | Small Boat high-load                         | 27/8                                  | 73         | 42            | Torlon®                                    | 177               | 21            | 1/4                          | 6   |
|            | 214/215/247/440/441           | Small Boat 1250 Series                       | 4 <sup>3</sup> /8                     | 111        | 64            | Torlon®                                    | 177               | 21            | 1/4                          | 6   |
|            | 2726/2728/2730/2732/2744      | Small Boat CB                                | 27/8                                  | 73         | 40            | Delrin®                                    | 176               | 21            | 1/4                          | 6   |
|            | 2727/2729/2731/2733/2734/2745 | 5 Small Boat CB high-load                    | 27/8                                  | 73         | 40            | Torlon®                                    | 177               | 21            | 1/4                          | 6   |
|            | 2735/2736/2737/2738/2746      | Small Boat CB 1250 Series                    | 4 <sup>1</sup> /8                     | 105        | 60            | Torlon®                                    | 177               | 21            | 1/4                          | 6   |
|            | 1508/1575/1594                | Midrange                                     | <b>4</b> <sup>1</sup> / <sub>4</sub>  | 108        | 48            | Torlon®                                    | 1526              | 25            | <sup>5</sup> / <sub>16</sub> | 8   |
|            | 1509/1576/1595                | Midrange long                                | <b>5</b> <sup>1</sup> / <sub>4</sub>  | 133        | 60            | Torlon®                                    | 1526              | 25            | <sup>5</sup> / <sub>16</sub> | 8   |
|            | 1604                          | Midrange w/2 toggles                         | <b>7</b> <sup>1</sup> / <sub>4</sub>  | 184        | 86            | Torlon®                                    | 1526              | 25            | <sup>5</sup> / <sub>16</sub> | 8   |
| H.         | 1624/1626/1628/1635/1640      | Midrange CB                                  | <b>4</b> <sup>1</sup> / <sub>4</sub>  | 108        | 48            | Torlon®                                    | 1526              | 25            | <sup>5</sup> / <sub>16</sub> | 8   |
| ele        | 1625/1627/1629/1636/1641      | Midrange CB long                             | <b>5</b> <sup>3</sup> / <sub>16</sub> | 132        | 60            | Torlon®                                    | 1526              | 25            | <sup>5</sup> / <sub>16</sub> | 8   |
| VB'        | 515/608/1928/1930             | Big Boat 3000 Series                         | 5 <sup>1</sup> /4                     | 133        | 50            | Torlon®                                    | 547               | 25            | 3/8                          | 10  |
| 1          | 558/609/1929/1931             | Big Boat 4500 Series                         | <b>7</b> <sup>1</sup> / <sub>4</sub>  | 184        | 72            | Torlon®                                    | 547               | 25            | 3/8                          | 10  |
|            | 1939                          | Big Boat 5000 Series w/2 toggles/shackles    | <b>8</b> <sup>1</sup> / <sub>2</sub>  | 216        | 90            | Torlon®                                    | 547               | 25            | 3/8                          | 10  |
|            | 1941                          | Big Boat 6000 Series w/3 toggles/shackles    | 10 <sup>1</sup> /2                    | 267        | 110           | Torlon®                                    | 547               | 25            | 3/8                          | 10  |
|            | 3163/3164/3176/3177/3160      | Big Boat CB 3000 Series                      | 5 <sup>3</sup> /8                     | 136        | 50            | Torlon®                                    | 547               | 25            | 3/8                          | 10  |
|            | 3165/3166/3178/3179/3161      | Big Boat CB 4500 Series                      | 77/16                                 | 188        | 72            | Torlon®                                    | 547               | 25            | 3/8                          | 10  |
|            | 3167                          | Big Boat CB 5000 Series w/2 toggles/shackles | <b>9</b> <sup>1</sup> / <sub>8</sub>  | 231        | 90            | Torlon®                                    | 547               | 25            | 3/8                          | 10  |
|            | 3068                          | Mini-Maxi                                    | 10                                    | 254        | 72            | Torlon®                                    | HBB21             | 1             | 1/2                          | 12  |
|            | 3070                          | Maxi                                         | 137/8                                 | 353        | 104           | Torlon®                                    | HBB21             | 1             | 1/2                          | 12  |
|            | 3074                          | Big Boat                                     | 5                                     | 127        | 102           | Torlon®                                    | H-38349A          |               | Rollers                      |     |
|            | 3075                          | Big Boat                                     | <b>7</b> <sup>1</sup> / <sub>2</sub>  | 191        | 148           | Torlon®                                    | H-38349A          |               | Rollers                      |     |
|            | 3084/3085                     | Big Boat                                     | 10                                    | 254        | 204           | Torlon®                                    | H-38349A          |               | Rollers                      |     |
|            | 3188                          | Small Boat ring                              | 4 <sup>63</sup> / <sub>64</sub>       | 126        | 60            | Torlon®                                    | 177               | 21            | 1/4                          | 6   |
| er         | 3189                          | Midrange ring                                | 5 <sup>61</sup> / <sub>64</sub>       | 151        | 60            | Torlon®                                    | 1526              | 25            | <sup>5</sup> / <sub>16</sub> | 8   |
| le<br>le   | 1578                          | Midrange 120/130 bell                        | <b>5</b> <sup>1</sup> / <sub>4</sub>  | 133        | 60            | Torlon®                                    | 1526              | 25            | <sup>5</sup> / <sub>16</sub> | 8   |
| <u>7</u>   | 1579/1580                     | Midrange toggle                              | 5 <sup>1</sup> /4                     | 133        | 60            | Torlon®                                    | 1526              | 25            | <sup>5</sup> / <sub>16</sub> | 8   |
| Sp         | 782                           | Big Boat 120/130 bell                        | <b>7</b> <sup>1</sup> / <sub>4</sub>  | 184        | 72            | Torlon®                                    | 547               | 25            | 3/8                          | 10  |
|            | 783/784                       | Big Boat toggle                              | <b>7</b> <sup>1</sup> / <sub>4</sub>  | 184        | 72            | Torlon®                                    | 547               | 25            | 3/8                          | 10  |
| ad         | 249                           | Small Boat                                   | <b>4</b> <sup>3</sup> / <sub>8</sub>  | 111        | 64            | Torlon®                                    | 177               | 21            | 1/4                          | 6   |
| E.         | 1537                          | Midrange                                     | 5 <sup>1</sup> /4                     | 133        | 60            | Torlon®                                    | 1526              | 25            | <sup>5</sup> / <sub>16</sub> | 8   |
| 03         | 554                           | Big Boat                                     | 71/4                                  | 184        | 72            | Torlon®                                    | 547               | 25            | 3/8                          | 10  |
| en         | 587                           | Big Boat                                     | 5 <sup>1</sup> /4                     | 133        | 50            | Torlon®                                    | 547               | 25            | 3/8                          | 10  |
| Ъ          | 3072                          | Mini-Maxi                                    | 12                                    | 305        | 84            | Torlon®                                    | HBB21             | 1             | 1/2                          | 12  |
| aul        | 1615                          | Midrange                                     | <b>5</b> <sup>1</sup> / <sub>4</sub>  | 133        | 60            | Torlon®                                    | 1526              | 25            | <sup>5</sup> / <sub>16</sub> | 8   |
| Ť          | 595                           | Big Boat                                     | 5 <sup>1</sup> /4                     | 133        | 50            | Torlon®                                    | 547               | 25            | 3/8                          | 10  |
| ō          | 1771                          | Big Boat                                     | 7 <sup>1</sup> /4                     | 184        | 72            | Torlon®                                    | 547               | 25            | 3/8                          | 10  |
|            | 3813                          | System AA headboard                          | 5 <sup>3</sup> /16                    | 132        | 40            | Torlon®                                    | 2708              | 20            | 3/16                         | 5   |
|            | 3815                          | System AA intermediate car                   | 23/16                                 | 56         | 40            | Delrin®                                    | 2708              | 20            | 3/16                         | 5   |
|            | 3816                          | System AA battcar                            | 2 <sup>3</sup> /16                    | 56         | 40            | Torlon®                                    | 2708              | 20            | 3/16                         | 5   |
|            | 3811                          | System A headboard                           | <b>8</b> <sup>3</sup> /8              | 213        | 60            | Torlon®                                    | 177               | 21            | 1/4                          | 6   |
|            | 3812                          | System A intermediate car                    | <b>2</b> <sup>1</sup> / <sub>4</sub>  | 57         | 32            | Torlon®                                    | 177               | 21            | 1/4                          | 6   |
| Irs        | 3829/3830/3831                | System A battcar                             | 27/8                                  | 73         | 40            | Delrin <sup>®</sup> /Torlon <sup>®</sup> * | 176/177*          | 21            | 1/4                          | 6   |
| tea        | 3852                          | System B headboard                           | 101/2                                 | 267        | 60            | Torlon®                                    | 1526              | 25            | 5/16                         | 8   |
| <b>3at</b> | 3863                          | System B intermediate car                    | 29/16                                 | 68         | 28            | Delrin <sup>®</sup> /Torlon <sup>®</sup> * | 1583/1526*        | 25            | 5/16                         | 8   |
|            | 3856/3857/3859/3879           | System B battcar                             | 4 <sup>5</sup> / <sub>16</sub>        | 109        | 48            | Delrin <sup>®</sup> /Torlon <sup>®</sup> * | 1583/1526*        | 25            | 5/16                         | 8   |
|            | 3860                          | System B reef car                            | 53/16                                 | 132        | 60            | Delrin <sup>®</sup> /Torlon <sup>®</sup> * | 1583/1526*        | 25            | 5/16                         | 8   |
|            | 3867                          | System C headboard                           | 185/8                                 | 473        | 90            | Torlon <sup>®</sup>                        | 547               | 25            | 3/8                          | 10  |
|            | 3871                          | System C intermediate car                    | 33/4                                  | 96         | 34            | Torlon <sup>®</sup>                        | 547               | 25            | 3/8                          | 10  |
|            | 3868/3869/3870/3872           | System C battcar                             | 53/8                                  | 136        | 50            | Iorlon <sup>®</sup>                        | 547               | 25            | 3/8                          | 10  |
|            | 3873                          | System C reef car                            | 9 <sup>1</sup> /8                     | 231        | 90            | Torlon®                                    | 547               | 25            | 3/8                          | 10  |

\*Torlon<sup>®</sup> used on all high-load "HL" cars.

## **Typical Rigging Breaking Loads<sup>®</sup>**

| Dyfo                         | Dyform® or compacted strand high streng<br>stainless steel wire<br>Breaking Breaking |             |          | high stro<br>re | ength      | Type 316 1 x 19* Stainless Wire Rope |             |            |                              |             | Navtec/OYS Nitronic 50 Stainless Rod Rigging |      |             |            |                              |            |             | Dacron <sup>®</sup> Double Braid Rope |                 |                  |                  |                    | Vectran® Core Rope w/Dacron® Cover§ |                              |             |             |
|------------------------------|--------------------------------------------------------------------------------------|-------------|----------|-----------------|------------|--------------------------------------|-------------|------------|------------------------------|-------------|----------------------------------------------|------|-------------|------------|------------------------------|------------|-------------|---------------------------------------|-----------------|------------------|------------------|--------------------|-------------------------------------|------------------------------|-------------|-------------|
| Size                         | Brea<br>Io                                                                           | iking<br>ad | Size     | Brea<br>Io      | king<br>ad | Size                                 | Brea<br>Io: | king<br>ad | Size                         | Brea<br>Io: | king<br>ad                                   |      | Brea<br>loa | king<br>ad | Size                         | Brea<br>Io | aking<br>ad | Size                                  | Brea<br>loa     | king<br>ad       | Size             | Brea<br>Io         | iking<br>ad                         | Size                         | Brea        | iking<br>ad |
| in                           | lb                                                                                   | kg          | mm       | lb              | kg         | in                                   | lb          | kg         | in                           | lb          | kg                                           | Size | lb          | kg         | mm                           | lb         | kg          | in                                    | lb              | kg               | mm               | lb                 | kg                                  | in                           | lb          | kg          |
| <sup>3</sup> /16             | 4928                                                                                 | 2235        | 5        | 5380            | 2440       | <sup>3</sup> / <sub>16</sub>         | 3960        | 1800       | 3/8                          | 14500       | 6580                                         | -4   | 4700        | 2130       | 4                            | 4100       | 1860        | 1/4                                   | 1800            | 815              | 6                | 1800               | 815                                 | <sup>3</sup> / <sub>16</sub> | 634         | 288         |
| 1/4                          | 8844                                                                                 | 4011        | 6        | 7828            | 3550       | 7/ <sub>32</sub>                     | 5445        | 2470       | 1/2                          | 25680       | 11650                                        | -6   | 6300        | 2860       | 4.5                          | 4718       | 2140        | <sup>5</sup> / <sub>16</sub>          | 2800            | 1270             | 7                | 2800               | 1270                                | 1/4                          | 1179        | 535         |
| 9/ <sub>32</sub>             | 10802                                                                                | 4899        | 7        | 10827           | 4910       | 1/4                                  | 7090        | 3220       | _                            | _           | _                                            | -8   | 8200        | 3720       | 5                            | 6283       | 2850        | 3/8                                   | 3750            | 1700             | 9                | 3750               | 1700                                | <sup>5</sup> / <sub>16</sub> | 1677        | 761         |
| <sup>5</sup> / <sub>16</sub> | 13530                                                                                | 6136        | 8        | 13561           | 6150       | Type 302 1 X 19* Stainless Wire Rope |             |            | -10                          | 10300       | 4670                                         | 5.7  | 8157        | 3700       | <sup>7</sup> / <sub>16</sub> | 5500       | 2490        | 11                                    | 5500            | 2490             | 3/8              | 2630               | 1193                                |                              |             |             |
| 3/8                          | 19272                                                                                | 8740        | 10       | 21544           | 9770       | in                                   | lb          | kg         | in                           | lb          | kg                                           | -12  | 12500       | 5670       | 6.35                         | 10317      | 4680        | 1/2                                   | 7000            | 3175             | 12               | 7000               | 3175                                | 7/16                         | 3174        | 1439        |
| 7/ <sub>16</sub>             | 26620                                                                                | 12072       | 11       | 26620           | 12072      | 1/ <sub>16</sub>                     | 500         | 227        | 9/32                         | 10300       | 4671                                         | -15  | 14250       | 6460       | 7.1                          | 12500      | 5670        | 9/ <sub>16</sub>                      | 10000           | 4535             | 14               | 10000              | 4535                                | 1/2                          | 3809        | 1727        |
| 1/2                          | 34833                                                                                | 15797       | 14       | 42460           | 19256      | <sup>3</sup> / <sub>32</sub>         | 1200        | 544        | <sup>5</sup> / <sub>16</sub> | 12500       | 5669                                         | -17  | 17500       | 7940       | 7.5                          | 14550      | 6600        | <sup>5</sup> /8                       | 14000           | 6350             | 15               | 14000              | 6350                                |                              | V12 Vectran |             |
| 9/ <sub>16</sub>             | 42460                                                                                | 19256       | 16       | 56320           | 25541      | 1/8                                  | 2100        | 952        | 3/8                          | 17500       | 7936                                         | -22  | 22500       | 10200      | 8.5                          | 17323      | 7858        | 3/4                                   | 16000           | 7250             | 19               | 16000              | 7250                                | in                           | lb          | kg          |
| 5/8                          | 56320                                                                                | 25541       | 19       | 70400           | 31926      | <sup>5</sup> / <sub>32</sub>         | 3300        | 1497       | <sup>7</sup> / <sub>16</sub> | 23400       | 10612                                        | -30  | 30000       | 13600      | 8.35                         | 17636      | 8000        | 7/8                                   | 25000           | 11340            | 22               | 25000              | 11340                               | 1/8                          | 2000        | 907         |
| 3/4                          | 70400                                                                                | 31926       | _        | _               | —          | <sup>3</sup> / <sub>16</sub>         | 4700        | 2131       | 1/2                          | 29700       | 13469                                        | -40  | 38000       | 17200      | 9.5                          | 22530      | 10220       |                                       | 100%<br>Core R  | Spectr<br>ope w/ | a®/Dyı<br>Dacroi | neema®<br>n® Covei | r                                   | <sup>5</sup> / <sub>32</sub> | 3500        | 1587        |
| Тур                          | e 316 1                                                                              | x 19 **     | Stainles | s Wire F        | Rope       | 7/ <sub>32</sub>                     | 6300        | 2857       | <sup>9</sup> / <sub>16</sub> | 36500       | 16553                                        | -48  | 48000       | 21800      | 10.3                         | 26434      | 11991       | 5                                     | lize            |                  | Bre              | eaking<br>oad      |                                     | <sup>3</sup> / <sub>16</sub> | 4750        | 2154        |
| mm                           | lb                                                                                   | kg          | mm       | lb              | kg         | 1/4                                  | 8200        | 3719       | 5/8                          | 44000       | 19954                                        | -60  | 60000       | 27200      | 11.1                         | 29981      | 13600       |                                       | in              | lb               | )                | k                  | g                                   | 1/4                          | 7800        | 3537        |
| 2                            | 706                                                                                  | 320         | 9        | 12944           | 5870       | Ту                                   | pe 316 7    | x 19**     | Stainles                     | s Wire R    | ope                                          | -76  | 76000       | 34500      | 12.7                         | 40583      | 18409       |                                       | 1/4             | 510              | 00               | 23                 | 13                                  | <sup>5</sup> / <sub>16</sub> | 11500       | 5215        |
| 2.5                          | 1103                                                                                 | 500         | 9.53     | 14509           | 6580       | in                                   | lb          | kg         | mm                           | lb          | kg                                           | -91  | 90000       | 40800      | 13.5                         | 44244      | 20070       |                                       | 5/16            | 620              | 00               | 28                 | 12                                  | 3/8                          | 16800       | 7618        |
| 3                            | 1588                                                                                 | 720         | 10       | 15987           | 7250       | <sup>3</sup> / <sub>16</sub>         | 2830        | 1285       | 3                            | 1120        | 510                                          | -115 | 115000      | 52200      | 14.3                         | 48058      | 21800       |                                       | <sup>3</sup> /8 | 980              | 00               | 44                 | 44                                  |                              | S12 Spectra |             |
| 4                            | 2822                                                                                 | 1280        | 11       | 19338           | 8770       | 7/ <sub>32</sub>                     | 3865        | 1750       | 4                            | 2130        | 970                                          | —    | _           | _          | 15.3                         | 55207      | 25043       |                                       | 7/16            | 140              | 00               | 63                 | 49                                  | in                           | lb          | kg          |
| 4.76                         | 3969                                                                                 | 1800        | 12       | 22933           | 10400      | 1/4                                  | 5040        | 2280       | 5                            | 3130        | 1420                                         | —    | _           | _          | 16.76                        | 66135      | 30000       |                                       | 1/2             | 210              | 00               | 95                 | 24                                  | 1/8                          | 2100        | 952         |
| 5                            | 4410                                                                                 | 2000        | 12.7     | 25689           | 11650      | 3/8                                  | 11350       | 5150       | 6 (-8)                       | 4490        | 2040                                         | _    | _           | _          | 17.9                         | 76018      | 34483       |                                       |                 |                  |                  |                    |                                     | 5/32                         | _           | _           |
| 5.56                         | 5447                                                                                 | 2470        | 14       | 31268           | 14180      | 1/2                                  | 20165       | 9140       | 7 (-12)                      | 6120        | 2780                                         |      | _           | _          | 19.5                         | 91022      | 41289       |                                       |                 |                  |                  |                    |                                     | 3/16                         | 5800        | 2630        |
| 6                            | 6351                                                                                 | 2880        | 16       | 40926           | 18560      | _                                    | _           | —          | 8                            | 8000        | 3630                                         | —    | —           | —          | 22.2                         | 115026     | 52178       |                                       |                 |                  |                  |                    |                                     | 1/4                          | 9800        | 4443        |
| 6.35                         | 7100                                                                                 | 3220        | 19       | 47674           | 21620      | —                                    | _           | _          | 10                           | 12500       | 5670                                         |      |             |            |                              |            |             |                                       |                 |                  |                  |                    |                                     | <sup>5</sup> / <sub>16</sub> | 13300       | 6032        |
| 7                            | 7828                                                                                 | 3550        | 22       | 64101           | 29070      | —                                    | _           | _          | 12                           | 17990       | 8160                                         |      |             |            |                              |            |             |                                       |                 |                  |                  |                    |                                     | 3/8                          | 19000       | 8617        |
| 8                            | 10232                                                                                | 4640        | 26       | 89526           | 40600      | —                                    | _           | _          | 14                           | 24470       | 11100                                        |      |             |            |                              |            |             |                                       |                 |                  |                  |                    |                                     |                              |             |             |
|                              |                                                                                      |             |          |                 |            | _                                    | _           | _          | 16                           | 29980       | 13600                                        |      |             |            |                              |            |             |                                       |                 |                  |                  |                    |                                     |                              |             |             |

\*Typical American wire \*\*Typical European wire §Breaking load may vary widely by manufacturer

# Loading Formulas

## **Block Loading vs Angle of Deflection**

Load on a block is a combination of the load on the line passing through the block, plus a block-loading factor, which is determined by the angle by which the block turns the sheet. For example, a footblock that turns a sheet 180-degrees will see a load equal to twice the load on the sheet. A deck organizer, which turns a halyard only 30-degrees, will see just 52 percent of the load on the halyard.

## Boat Type

Most load formulas assume a medium displacement monohull, but you can easily correct for other boat types. Multihulls and boats with canting keels or water ballast have great form stability and speed and will often carry sails very high in the apparent wind speed, so calculations must be done with this wind speed in mind. ULDBs are typically tender and often change sails or reef quite early, so loading may be done at relatively low wind speeds. For example, a modern trimaran may carry its blade jib in 25 knots of wind at speeds over 15 knots for an apparent wind of nearly 40 knots, whereas a ULDB will probably remove its #1 genoa at about 15 knots of apparent wind.

## Genoa System Loading

Because wind speed is squared, it is the most important variable and can greatly influence loading. Wind speed (the apparent wind) should be calculated for the specific sail being analyzed. For example, the #1 genoa on a 25 ft (7 m) boat might only be carried in 15 knots of wind while the #3 blade on a Maxi-boat could well be carried in 40 knots.

To calculate loading on a genoa lead car, multiply sheet load by the load factor of the sheet. Most #1 genoas will deflect about 45-degrees, while a #3 genoa may deflect 75-degrees or more.

Lead car adjuster tackle load is dependent on the angle of deflection of the sheet in the lead car, but is generally assumed to be .3 of lead car load when deflection is 45-degrees and .5 of lead car load when deflection is 60-degrees.

## **Mainsheet System Loading**

The formula for mainsheet loading is not as widely accepted as that for genoa sheet loads and should only be used as a rough guide for offshore boats from 30 ft to 60 ft (9 m to 18 m).

Traveler car adjuster load is generally considered to be .2 times car load.



| 45   | 90°  |
|------|------|
| 120" | 180* |

| Angle of<br>deflection | Load<br>factor | Angle of<br>deflection | Load<br>factor | Angle of<br>deflection | Load<br>factor |
|------------------------|----------------|------------------------|----------------|------------------------|----------------|
| 30°                    | 52%            | 90°                    | 141%           | 150°                   | 193%           |
| 45°                    | 76%            | 105°                   | 159%           | 160°                   | 197%           |
| 60°                    | 100%           | 120°                   | 173%           | 180°                   | 200%           |
| 75°                    | 122%           | 135°                   | 185%           |                        |                |



| Genoa Sheet Load |                                 |                                     |                            |  |  |  |  |  |  |  |  |  |
|------------------|---------------------------------|-------------------------------------|----------------------------|--|--|--|--|--|--|--|--|--|
|                  | English                         | Metric                              |                            |  |  |  |  |  |  |  |  |  |
| SL               | = SA x V <sup>2</sup> x 0.00431 | $SL = SA \times V^2 \times 0.02104$ |                            |  |  |  |  |  |  |  |  |  |
| SL               | Sheet load in pounds            | SL                                  | Sheet load in kilograms    |  |  |  |  |  |  |  |  |  |
| SA               | Sail area in square feet        | SA                                  | Sail area in square meters |  |  |  |  |  |  |  |  |  |
| V                | Wind speed in knots             | V                                   | Wind speed in knots        |  |  |  |  |  |  |  |  |  |

|    | Mainsheet Load                                  |    |                                                 |  |  |  |  |  |  |  |  |  |  |
|----|-------------------------------------------------|----|-------------------------------------------------|--|--|--|--|--|--|--|--|--|--|
|    | English                                         |    | Metric                                          |  |  |  |  |  |  |  |  |  |  |
|    | $ML = E^2 \times P^2 \times 0.00431 \times V^2$ |    | $ML = E^2 \times P^2 \times 0.02104 \times V^2$ |  |  |  |  |  |  |  |  |  |  |
|    | $(\sqrt{P^2 + E^2}) \times (E - X)$             |    | $(\sqrt{P^2 + E^2}) \times (E - X)$             |  |  |  |  |  |  |  |  |  |  |
| ML | Mainsheet load in pounds                        | ML | Mainsheet load in kilograms                     |  |  |  |  |  |  |  |  |  |  |
| Е  | Foot length of main in feet                     | Е  | Foot length of main in meters                   |  |  |  |  |  |  |  |  |  |  |
| Р  | Luff length of main in feet                     | Р  | Luff length of main in meters                   |  |  |  |  |  |  |  |  |  |  |
| V  | Wind speed in knots                             | V  | Wind speed in knots                             |  |  |  |  |  |  |  |  |  |  |
| v  | Distance from aft end of boom to                | v  | Distance from aft end of boom to                |  |  |  |  |  |  |  |  |  |  |
| Χ  | mainsheet attachment point in feet              | Х  | mainsheet attachment point in meters            |  |  |  |  |  |  |  |  |  |  |

#### **Rig Dimensions**

The following abbreviations are often used to describe various measurements on a sailboat. Precise technical definitions exist for each abbreviation, but the following is a list of simple descriptions:

| LOA | Length Overall - overall tip-to-tip length of the boat                                                         | 2     | Height of staysail halyard above deck                                                                     |
|-----|----------------------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------|
| LWL | Length Waterline - length of waterline of the boat                                                             | J     | Base of the foretriangle measured from the front of the mast to the intersection of the forestay and deck |
| DWL | Design Waterline - theoretical waterline length of boat<br>as opposed to LWL, which is actual waterline length | $J_2$ | Base of staysail triangle                                                                                 |
| BMX | Beam Maximum - width of the boat at the widest point                                                           | Р     | Luff length of the mainsail                                                                               |
| BWL | Beam Waterline - widest beam of boat at the waterline                                                          | Е     | Foot length of the mainsail                                                                               |
| I   | Height of the foretriangle measured from the top of the highest sheave to the sheerline                        | LP    | Shortest distance from headstay to the clew of the jib                                                    |





# **SMALL BOAT BLOCKS**

HARKEN

## **Carbo AirBlocks®**

## **STRONG AND COMPACT**

Low-friction Carbo AirBlocks® are lightweight, strong, reliable and affordable. Companions to the popular Harken® Black Magic® line, these small, compact blocks have very high working loads for safe, easy trimming no matter how hard the wind blows. Sideplates of high-strength resin are UV-stabilized to provide excellent protection against long-term exposure to saltwater and sun. Carbo blocks are perfect for the small-diameter lines

favored by racers.



## 1. High-Strength Material

Lightweight nylon resin sideplates replace stainless steel straps found in Classic blocks. Densely-packed, long-glass fibers reinforce resin for strength.

#### 2. Load Carrying Curved Bearing Races

High-load ball bearings roll smoothly on curved bearing races.

Grooved races increase ball-to-race contact for greater load capacity in a lighter, smaller block.

## **DETAILS MAKE THE DIFFERENCE**

### LIGHTWEIGHT, STRONG DESIGN

Blocks are 30% lighter with a 60% higher working load than Classic blocks. Open AirBlock<sup>®</sup> design eliminates unnecessary material and weight.

### LONG-LASTING PROTECTION

Ball bearings, sheave, and sideplates are UV stabilized with carbon black for maximum protection.

### THREE-WAY CAM-LOCK

Patented switch locks shackle in front or side positions, or lets block swivel to keep line from twisting.

# 29 mm Carbo

The compact 29 mm Carbo is extremely strong. Use our miniature Carbo as a mainsheet block on small dinghies such as the Optimist, or for low-friction control blocks on any size boat.

Doubles and triples feature U-Locks to hold the swivel in front/side position, or to let it spin freely. The triple's compact cam arm supports high-load purchases of 5:1 or 6:1. The line-shedding cheek block features a small mounting footprint and drainholes. The low-profile Ti-Lite replaces the headpost, shackle, and spring with high-tech line.



Use as becket block

height of a becket

without the additional

348

| Part |                                             | Sheave<br>Ø              |    | Len                                    | Length |     | Weight<br>w/shackle |                              | Shackle pin<br>Ø |                              | cline<br>Ø | Maximum<br>working load |     | Breaking<br>load |     |
|------|---------------------------------------------|--------------------------|----|----------------------------------------|--------|-----|---------------------|------------------------------|------------------|------------------------------|------------|-------------------------|-----|------------------|-----|
| No.  | Description                                 | in                       | mm | in                                     | mm     | 0Z  | g                   | in                           | mm               | in                           | mm         | lb                      | kg  | lb               | kg  |
| 340  | Single/swivel                               | <b>1</b> <sup>1</sup> /8 | 29 | <b>2</b> <sup>5</sup> /8               | 66     | 0.9 | 26                  | <sup>5</sup> / <sub>32</sub> | 4                | <sup>5</sup> / <sub>16</sub> | 8          | 330                     | 150 | 1000             | 454 |
| 341  | Single/swivel/becket                        | <b>1</b> <sup>1</sup> /8 | 29 | 31/16                                  | 78     | 1.0 | 28                  | <sup>5</sup> / <sub>32</sub> | 4                | <sup>5</sup> / <sub>16</sub> | 8          | 330                     | 150 | 1000             | 454 |
| 342  | Double/swivel                               | <b>1</b> <sup>1</sup> /8 | 29 | 27/8                                   | 73     | 1.8 | 51                  | <sup>3</sup> / <sub>16</sub> | 5                | <sup>5</sup> / <sub>16</sub> | 8          | 660                     | 299 | 1625             | 737 |
| 343  | Double/swivel/becket                        | <b>1</b> 1/8             | 29 | 33/8                                   | 85     | 1.9 | 54                  | <sup>3</sup> / <sub>16</sub> | 5                | <sup>5</sup> /16             | 8          | 660                     | 299 | 1625             | 737 |
| 344  | Triple/swivel                               | <b>1</b> 1/8             | 29 | 27/8                                   | 73     | 2.6 | 74                  | <sup>3</sup> / <sub>16</sub> | 5                | <sup>5</sup> / <sub>16</sub> | 8          | 990                     | 449 | 2000             | 907 |
| 345  | Triple/swivel/becket                        | <b>1</b> 1/8             | 29 | 33/8                                   | 85     | 2.7 | 77                  | <sup>3</sup> / <sub>16</sub> | 5                | <sup>5</sup> / <sub>16</sub> | 8          | 990                     | 449 | 2000             | 907 |
| 346  | Triple/423 Carbo-Cam <sup>®</sup> **        | <b>1</b> 1/8             | 29 | 27/8                                   | 73     | 4.6 | 130                 | <sup>3</sup> / <sub>16</sub> | 5                | 1/4                          | 6          | 750                     | 340 | 1500             | 680 |
| 347  | Triple/423 Carbo-Cam <sup>®</sup> /becket** | <b>1</b> <sup>1</sup> /8 | 29 | 33/8                                   | 85     | 4.7 | 133                 | <sup>3</sup> / <sub>16</sub> | 5                | 1/4                          | 6          | 900                     | 408 | 1800             | 816 |
| 348  | Single/fixed*                               | <b>1</b> <sup>1</sup> /8 | 29 | <b>1</b> <sup>15</sup> / <sub>16</sub> | 49     | 0.8 | 23                  | —                            | _                | <sup>5</sup> / <sub>16</sub> | 8          | 330                     | 150 | 1000             | 454 |
| 349  | Stand-up/fixed*                             | <b>1</b> <sup>1</sup> /8 | 29 | 2 <sup>3</sup> /16                     | 56     | 1.1 | 31                  | _                            | _                | <sup>5</sup> / <sub>16</sub> | 8          | 330                     | 150 | 1000             | 454 |
| 350  | Cheek                                       | <b>1</b> <sup>1</sup> /8 | 29 | 21/8                                   | 53     | 0.6 | 17                  | —                            | _                | <sup>5</sup> / <sub>16</sub> | 8          | 330                     | 150 | 1000             | 454 |
| 351  | Ti-Lite*                                    | <b>1</b> <sup>1</sup> /8 | 29 | <b>1</b> <sup>3</sup> /4               | 44     | 0.5 | 15                  | _                            | _                | <sup>5</sup> / <sub>16</sub> | 8          | 330                     | 150 | 1000             | 454 |
| 352  | 90° Fixed head*                             | <b>1</b> 1/8             | 29 | <b>2</b> <sup>1</sup> / <sub>16</sub>  | 52     | 0.9 | 26                  | _                            | _                | <sup>5</sup> / <sub>16</sub> | 8          | 330                     | 150 | 1000             | 454 |
| 353  | Traveler                                    | <b>1</b> 1/8             | 29 | 35/8                                   | 92     | 1.2 | 34                  | —                            | _                | <sup>5</sup> / <sub>16</sub> | 8          | 330                     | 150 | 1000             | 454 |
| 371  | Clew block assembly                         | <b>1</b> <sup>1</sup> /8 | 29 | 47/8                                   | 124    | 1.8 | 51                  | _                            | _                | <sup>5</sup> / <sub>16</sub> | 8          | 330                     | 150 | 1000             | 454 |
| 381  | Double/fixed                                | <b>1</b> <sup>1</sup> /8 | 29 | 21/8                                   | 54     | 1.2 | 34                  | _                            | _                | <sup>5</sup> /16             | 8          | 660                     | 299 | 1625             | 737 |

\*Can be used as becket block \*\*Maximum working loads and breaking loads for blocks based on cam strengths

# 40 mm Carbo

Carbo AirBlocks<sup>®</sup> are 60% stronger and 30% lighter than our Classic blocks. Use the 40 mm Carbo for jib and mainsheet systems on high-performance dinghies and for loaded control lines on small keelboats.

The nylon-resin sideplates are densely packed with long-glass fibers for a compact block with a high strength-to-weight ratio. Sheaves spin on high-load ball bearings with fitted races for low-friction operation. Ball bearings, sheave, and sideplates are UV-stabilized with carbon black for maximum protection.

#### Use for:

Main/jib sheets Mainsheet fine-tune **Control lines** Vangs Cunninghams Outhauls

3/8 in (10 mm) for easy sheet control Reversible cam arms

Accepts line up to

High-load ball bearings for lighter, smaller,

stronger blocks

2646

RS400 — Paul Wyeth photo/LDC Racing Sailboats



| Part |                                                    | Sheave<br>Ø                           |    | Length                               |     | Wei<br>w/sha | Weight<br>w/shackle |                  | Shackle pin<br>Ø |                  | x line<br>Ø | Maximum<br>working load |     | Breaking<br>load |     |
|------|----------------------------------------------------|---------------------------------------|----|--------------------------------------|-----|--------------|---------------------|------------------|------------------|------------------|-------------|-------------------------|-----|------------------|-----|
| No.  | Description                                        | in                                    | mm | in                                   | mm  | 0Z           | g                   | in               | mm               | in               | mm          | lb                      | kg  | lb               | kg  |
| 2636 | Single/swivel                                      | <b>1</b> 9/16                         | 40 | 33/8                                 | 86  | 1.6          | 44                  | <sup>5</sup> /32 | 4                | <sup>3</sup> /8  | 10          | 485                     | 220 | 1620             | 735 |
| 2637 | Single/swivel/becket                               | <b>1</b> 9/16                         | 40 | 4                                    | 102 | 1.7          | 48                  | <sup>5</sup> /32 | 4                | <sup>3</sup> /8  | 10          | 485                     | 220 | 1620             | 735 |
| 2644 | Cheek                                              | <b>1</b> 9/16                         | 40 | <b>2</b> <sup>3</sup> / <sub>4</sub> | 70  | 1.2          | 34                  | —                | —                | <sup>3</sup> /8  | 10          | 485                     | 220 | 1620             | 735 |
| 2645 | Single/swivel/423 Carbo-Cam <sup>®</sup> **        | <b>1</b> 9/16                         | 40 | <b>3</b> <sup>3</sup> /8             | 86  | 4.2          | 119                 | <sup>5</sup> /32 | 4                | 1/4              | 6           | 150                     | 68  | 300              | 136 |
| 2646 | Single/swivel/423 Carbo-Cam <sup>®</sup> /becket** | <b>1</b> 9/16                         | 40 | 4                                    | 102 | 4.3          | 122                 | <sup>5</sup> /32 | 4                | 1/4              | 6           | 300                     | 136 | 600              | 272 |
| 2649 | Traveler                                           | <b>1</b> <sup>9</sup> / <sub>16</sub> | 40 | <b>4</b> <sup>1</sup> / <sub>4</sub> | 108 | 1.8          | 52                  | —                | _                | <sup>5</sup> /16 | 8           | 330                     | 150 | 1000             | 454 |
| 2650 | Single/fixed*                                      | <b>1</b> 9/16                         | 40 | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64  | 1.4          | 40                  | _                | _                | 3/8              | 10          | 485                     | 220 | 1620             | 735 |
| 2651 | Ti-Lite*                                           | <b>1</b> 9/16                         | 40 | 21/4                                 | 57  | 1.0          | 28                  | _                | —                | 3/8              | 10          | 485                     | 220 | 1200             | 544 |
| 2652 | Stand-up/fixed*                                    | <b>1</b> 9/16                         | 40 | <b>2</b> <sup>3</sup> / <sub>4</sub> | 70  | 1.7          | 48                  | _                | —                | 3/8              | 10          | 485                     | 220 | 1620             | 735 |
| 2659 | 90° Fixed head*                                    | 19/16                                 | 40 | 2 <sup>15</sup> /16                  | 75  | 1.6          | 44                  | _                | _                | 3/8              | 10          | 485                     | 220 | 1620             | 735 |

\*Can be used as becket block \*\*Maximum working loads and breaking loads for blocks based on cam strengths



Actual Size

| Part |                                                    | She<br>(                              | ave<br>J | Ler                                   | igth | Wei<br>w/sha | ght<br>ackle | Shack<br>(                   | de pin<br>Ø | Ма              | x line<br>Ø | Maxi<br>workin | mum<br>g load | Brea<br>Io | ıking<br>ad |
|------|----------------------------------------------------|---------------------------------------|----------|---------------------------------------|------|--------------|--------------|------------------------------|-------------|-----------------|-------------|----------------|---------------|------------|-------------|
| No.  | Description                                        | in                                    | mm       | in                                    | mm   | 0Z           | g            | in                           | mm          | in              | mm          | lb             | kg            | lb         | kg          |
| 2638 | Double/swivel                                      | <b>1</b> 9/16                         | 40       | 311/16                                | 94   | 3.2          | 86           | <sup>3</sup> /16             | 5           | <sup>3</sup> /8 | 10          | 970            | 440           | 2380       | 1080        |
| 2639 | Double/swivel/becket                               | <b>1</b> 9/16                         | 40       | <b>4</b> <sup>5</sup> / <sub>16</sub> | 110  | 3.4          | 90           | <sup>3</sup> /16             | 5           | <sup>3</sup> /8 | 10          | 970            | 440           | 2380       | 1080        |
| 2640 | Triple/swivel                                      | <b>1</b> 9/16                         | 40       | 311/16                                | 94   | 4.6          | 118          | <sup>3</sup> /16             | 5           | <sup>3</sup> /8 | 10          | 1455           | 660           | 3050       | 1383        |
| 2641 | Triple/swivel/becket                               | <b>1</b> 9/16                         | 40       | <b>4</b> <sup>5</sup> / <sub>16</sub> | 110  | 4.7          | 122          | <sup>3</sup> /16             | 5           | 3/8             | 10          | 1455           | 660           | 3050       | 1383        |
| 2642 | Double/fixed                                       | <b>1</b> 9/16                         | 40       | <b>3</b> <sup>1</sup> / <sub>2</sub>  | 89   | 2.8          | 80           | <sup>3</sup> /16             | 5           | 3/8             | 10          | 970            | 440           | 2380       | 1080        |
| 2643 | Double/fixed/becket                                | <b>1</b> 9/16                         | 40       | <b>4</b> <sup>3</sup> / <sub>16</sub> | 106  | 2.9          | 84           | <sup>3</sup> /16             | 5           | 3/8             | 10          | 970            | 440           | 2380       | 1080        |
| 2647 | Triple/swivel/423 Carbo-Cam®**                     | <b>1</b> 9/16                         | 40       | 311/16                                | 94   | 8.2          | 232          | <sup>3</sup> /16             | 5           | 1/4             | 6           | 750            | 340           | 1500       | 680         |
| 2648 | Triple/swivel/423 Carbo-Cam <sup>®</sup> /becket** | <b>1</b> 9/16                         | 40       | <b>4</b> <sup>5</sup> / <sub>16</sub> | 110  | 8.3          | 235          | <sup>3</sup> /16             | 5           | 1/4             | 6           | 900            | 408           | 1800       | 816         |
| 2654 | Quad/swivel                                        | <b>1</b> 9/16                         | 40       | 311/16                                | 94   | 6            | 170          | <sup>3</sup> /16             | 5           | <sup>3</sup> /8 | 10          | 1455           | 660           | 3050       | 1383        |
| 2655 | Fiddle                                             | <b>1</b> 9/16                         | 40       | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115  | 1.8          | 51           | <sup>5</sup> / <sub>32</sub> | 4           | <sup>3</sup> /8 | 10          | 485            | 220           | 1620       | 735         |
| 2656 | Fiddle/becket                                      | <b>1</b> 9/16                         | 40       | 5 <sup>1</sup> /8                     | 131  | 1.9          | 54           | <sup>5</sup> / <sub>32</sub> | 4           | <sup>3</sup> /8 | 10          | 485            | 220           | 1620       | 735         |
| 2657 | Fiddle/423 Carbo-Cam®                              | <b>1</b> <sup>9</sup> / <sub>16</sub> | 40       | 4 <sup>1</sup> / <sub>2</sub>         | 115  | 4.4          | 125          | <sup>5</sup> / <sub>32</sub> | 4           | 1/4             | 6           | 485            | 220           | 1620       | 735         |
| 2658 | Fiddle/423 Carbo-Cam <sup>®</sup> /becket          | <b>1</b> 9/16                         | 40       | 51/8                                  | 131  | 4.5          | 128          | <sup>5</sup> / <sub>32</sub> | 4           | 1/4             | 6           | 485            | 220           | 1620       | 735         |

 $^{\star\star}\mbox{Maximum}$  working loads and breaking loads for blocks based on cam strengths

## 57 mm & 75 mm Carbo

Carbo AirBlocks® are 60% stronger and 30% lighter than our Classic blocks.

The nylon resin sideplates are densely packed with long-glass fibers for a compact block with a high strength-to-weight ratio. Ball bearings, sheave, and sideplates are UV-stabilized with carbon black for maximum protection.

Blocks feature Cam-Lock or U-Lock locking systems to lock the shackle in front or side positions, or swivel to keep line from twisting.

#### 57 mm

The high-load 57 mm Carbo has a broad working range. Use for main and jib sheets on centerboard and keelboats like Lightnings, Dragons, Solings, and J/24s, and for mainsheet systems on catamarans.

#### 75 mm

The 75 mm Carbo has a safe working load of 1200 lbs (500 kg). It releases easily under load and is perfect for mainsheet systems on sport boats like the Melges 24. J/105, and Henderson 30.

#### Use for:

Main/jib sheets Mainsheet fine-tune **Control lines** Vangs Cunninghams Outhauls

> 2616 2667

ball-to-race contact. Disperses load for higher strength, smaller block AirBlock<sup>®</sup> design with high-tech, long-glass fibers and nylon material for high strength-to-weight ratio Eliminates heavy stainless sideplates 2600 2601 2660 2661 75 mm Actual Size 57 mm 2607 Actual Size 2615 2666 2606 2622 2623 2624

Curved bearing race fits ball for more

| Part  |                                                    | Shea<br>Ø                            | ive | Len                                   | gth | Wei<br>w/sha | ght<br>ackle | Shack<br>(                   | de pin<br>Ø | Max                          | line<br>Ø | Maxi<br>workin | mum<br>g load | Brea<br>Io | king<br>ad |
|-------|----------------------------------------------------|--------------------------------------|-----|---------------------------------------|-----|--------------|--------------|------------------------------|-------------|------------------------------|-----------|----------------|---------------|------------|------------|
| No.   | Description                                        | in                                   | mm  | in                                    | mm  | 0Z           | g            | in                           | mm          | in                           | mm        | lb             | kg            | lb         | kg         |
| 57 mm | 1                                                  |                                      |     |                                       |     |              |              |                              |             |                              |           |                |               |            |            |
| 2600  | Single/swivel                                      | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | <b>4</b> <sup>5</sup> / <sub>16</sub> | 110 | 3.1          | 87           | <sup>3</sup> / <sub>16</sub> | 5           | <sup>7</sup> /16             | 10        | 792            | 360           | 2380       | 1080       |
| 2601  | Single/swivel/becket                               | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 5 <sup>3</sup> / <sub>16</sub>        | 132 | 3.4          | 96           | <sup>3</sup> / <sub>16</sub> | 5           | <sup>7</sup> /16             | 10        | 792            | 360           | 2380       | 1080       |
| 2606  | Cheek                                              | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 35/8                                  | 92  | 2.4          | 68           | —                            | —           | <sup>7</sup> / <sub>16</sub> | 10        | 792            | 360           | 2380       | 1080       |
| 2607  | Ti-Lite*                                           | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | <b>3</b> <sup>1</sup> / <sub>16</sub> | 78  | 2.4          | 68           | _                            | —           | <sup>7</sup> /16             | 10        | 792            | 360           | 2380       | 1080       |
| 2615  | Single/swivel/150 Cam-Matic®**                     | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | <b>4</b> <sup>5</sup> / <sub>16</sub> | 110 | 9.5          | 269          | <sup>3</sup> / <sub>16</sub> | 5           | <sup>7</sup> /16             | 10        | 300            | 136           | 750        | 340        |
| 2616  | Single/swivel/150 Cam-Matic <sup>®</sup> /becket** | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 5 <sup>3</sup> / <sub>16</sub>        | 132 | 15.6         | 442          | <sup>3</sup> / <sub>16</sub> | 5           | <sup>7</sup> /16             | 10        | 600            | 272           | 1500       | 680        |
| 2621  | Fiddle                                             | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 6                                     | 153 | 3.7          | 105          | <sup>3</sup> / <sub>16</sub> | 5           | <sup>7</sup> /16             | 10        | 792            | 359           | 2380       | 1079       |
| 2622  | Fiddle/becket                                      | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 67/8                                  | 175 | 4.0          | 113          | <sup>3</sup> / <sub>16</sub> | 5           | <sup>7</sup> /16             | 10        | 792            | 359           | 2380       | 1079       |
| 2623  | Fiddle/150 Cam-Matic®                              | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 6                                     | 153 | 10.1         | 286          | <sup>3</sup> / <sub>16</sub> | 5           | <sup>7</sup> /16             | 10        | 792            | 359           | 2380       | 1079       |
| 2624  | Fiddle/150 Cam-Matic®/becket                       | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 67/8                                  | 175 | 10.4         | 295          | <sup>3</sup> / <sub>16</sub> | 5           | <sup>7</sup> /16             | 10        | 792            | 359           | 2380       | 1079       |
| 75 mm | 1                                                  |                                      |     |                                       |     |              |              |                              |             |                              |           |                |               |            |            |
| 2660  | Single/swivel                                      | 2 <sup>15</sup> / <sub>16</sub>      | 75  | 5 <sup>3</sup> /8                     | 137 | 6.9          | 195          | _                            | 6           | <sup>9</sup> / <sub>16</sub> | 14        | 1213           | 550           | 3638       | 1650       |
| 2661  | Single/swivel/becket                               | 2 <sup>15</sup> / <sub>16</sub>      | 75  | <b>6</b> <sup>1</sup> / <sub>2</sub>  | 165 | 7.5          | 214          | _                            | 6           | <sup>9</sup> / <sub>16</sub> | 14        | 1213           | 550           | 3638       | 1650       |
| 2666  | Single/swivel/150 Cam-Matic®**                     | 2 <sup>15</sup> / <sub>16</sub>      | 75  | 5 <sup>3</sup> /8                     | 137 | 13.4         | 381          | _                            | 6           | 1/2                          | 12        | 300            | 136           | 750        | 340        |
| 2667  | Single/swivel/150 Cam-Matic <sup>®</sup> /becket** | 215/16                               | 75  | <b>6</b> <sup>1</sup> / <sub>2</sub>  | 165 | 14           | 397          | _                            | 6           | 1/2                          | 12        | 600            | 272           | 1500       | 680        |

\*Can be used as becket block \*\*Maximum working loads and breaking loads for blocks based on cam strengths

2621

## 57 mm & 75 mm Carbo



|                                                    | She<br>Ø                                                                                                                                                                                                                                                                                                                                                                   | ave<br>I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | igth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wei<br>w/sha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ight<br>ackle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Shack<br>(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | de pin<br>Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | i line<br>Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Maxi<br>workin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mum<br>g load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Brea<br>loa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | king<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                                        | in                                                                                                                                                                                                                                                                                                                                                                         | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Double/swivel                                      | <b>2</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                       | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>4</b> <sup>3</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7/ <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Double/swivel/becket                               | <b>2</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                       | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7/ <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1584                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Triple/swivel                                      | <b>2</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                       | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>4</b> <sup>3</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 255                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7/ <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Triple/swivel/becket                               | <b>2</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                       | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7/ <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Triple/swivel/150 Cam-Matic <sup>®</sup> **        | <b>2</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                       | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>4</b> <sup>3</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>7</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Triple/swivel/150 Cam-Matic <sup>®</sup> /becket** | <b>2</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                       | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 55/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 442                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7/ <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Quadruple/swivel                                   | <b>2</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                       | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>4</b> <sup>3</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 7/ <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Double/swivel                                      | 215/16                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 402                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>5</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>9</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Double/swivel/becket                               | 215/16                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 14.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 419                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>5</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>9</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2426                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Triple/swivel                                      | 215/16                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 20.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 580                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>5</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>9</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Triple/swivel/becket                               | 215/16                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 599                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>5</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>9</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Triple/swivel150 Cam-Matic <sup>®**</sup>          | 215/16                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 152                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 788                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>5</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Triple/swivel150 Cam-Matic <sup>®</sup> /becket**  | 215/16                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 178                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 805                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>5</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 816                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2040                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Quadruple/swivel                                   | 215/16                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6 <sup>1</sup> /4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 27.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 772                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>5</sup> /16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <sup>9</sup> /16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3639                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1650                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                    | Description  Double/swivel Double/swivel/becket Triple/swivel/becket Triple/swivel/150 Cam-Matic®** Triple/swivel/150 Cam-Matic®/becket** Quadruple/swivel Double/swivel Double/swivel Triple/swivel/becket Triple/swivel/becket Triple/swivel/150 Cam-Matic®** Triple/swivel150 Cam-Matic®** Triple/swivel150 Cam-Matic®** Triple/swivel150 Cam-Matic®** Cuadruple/swivel | Snee         Description       in         Double/swivel       21/4         Double/swivel/becket       21/4         Triple/swivel       21/4         Triple/swivel/becket       21/4         Triple/swivel/becket       21/4         Triple/swivel/150 Cam-Matic®**       21/4         Quadruple/swivel       21/4         Double/swivel       21/4         Triple/swivel       21/4         Triple/swivel       21/4         Double/swivel       21/4         Double/swivel       21/4         Triple/swivel/becket       21/4         Triple/swivel/becket       21/4         Double/swivel/becket       21/4         Display       21/4         Triple/swivel/bocket | Sneave<br>Ø           Description         in         mm           Double/swivel         2!/4         57           Double/swivel/becket         2!/4         57           Triple/swivel         2!/4         57           Triple/swivel/becket         2'/4         57           Triple/swivel/becket         2'/4         57           Triple/swivel/bocket         2'/4         57           Triple/swivel/bocket         2'/4         57           Quadruple/swivel         2'/4         57           Double/swivel/bocket         2'/4         57           Double/swivel         2'/4         57           Double/swivel         2'/4         57           Double/swivel         2'/4         57           Triple/swivel         2'/4         57           Double/swivel         2'/4         57           Triple/swivel         2'/4         57           Triple/swivel         2'/4         57           Triple/swivel         2'/4         57           Triple/swivel         2'/4         57           Triple/swivel/bocket         2'/4         57           Triple/swivel/bocket         2'/4         57 | Sneave<br>Ø         Ler           Ø         Ler           Description         in         mm         in           Double/swivel         21/4         57         43/4           Double/swivel/becket         21/4         57         43/4           Triple/swivel/becket         21/4         57         43/4           Triple/swivel/becket         21/4         57         43/4           Triple/swivel/becket         21/4         57         43/4           Triple/swivel/bocket         21/4         57         43/4           Triple/swivel/150 Cam-Matic®/becket**         21/4         57         43/4           Ouadruple/swivel         21/4         57         55/8           Quadruple/swivel         21/4         57         6           Double/swivel         21/4         57         6           Double/swivel         215/16         75         6           Double/swivel         215/16         75         7           Triple/swivel/becket         215/16         75         7           Triple/swivel150 Cam-Matic®**         215/16         75         6           Triple/swivel150 Cam-Matic®/becket**         215/16         75         7 | Sneave<br>Ø         Length<br>Im           Description         in         mm         in         mm           Double/swivel         21/4         57         43/4         121           Double/swivel/becket         21/4         57         43/4         121           Double/swivel/becket         21/4         57         43/4         121           Triple/swivel/becket         21/4         57         43/4         121           Triple/swivel/becket         21/4         57         43/4         121           Triple/swivel/becket         21/4         57         43/4         121           Triple/swivel/bocket         21/4         57         43/4         121           Double/swivel/bocket         21/4         57         6         152           Double/swivel         215/16         75         6         152           Double/swivel/bocket         215/16         75         6         152 | Sheavewe<br>ØWe<br>LengthWe<br>gDescriptioninmminmmozDouble/swivel $2^{1/4}$ $57$ $4^{3/4}$ $121$ $6.3$ Double/swivel/becket $2^{1/4}$ $57$ $4^{3/4}$ $121$ $6.3$ Double/swivel/becket $2^{1/4}$ $57$ $4^{3/4}$ $121$ $9$ Triple/swivel/becket $2^{1/4}$ $57$ $4^{3/4}$ $121$ $9$ Triple/swivel/becket $2^{1/4}$ $57$ $4^{3/4}$ $121$ $15.2$ Triple/swivel/150 Cam-Matic®/becket** $2^{1/4}$ $57$ $5^{5/8}$ $142$ $15.6$ Quadruple/swivel $2^{1/4}$ $57$ $4^{3/4}$ $121$ $12$ Double/swivel $2^{15/16}$ $75$ $6$ $152$ $14.2$ Double/swivel $2^{15/16}$ $75$ $6$ $152$ $20.5$ Triple/swivel/becket $2^{15/16}$ $75$ $7$ $178$ $21.1$ Triple/swivel/becket $2^{15/16}$ $75$ $6$ $152$ $27.8$ Triple/swivel/bocket $2^{15/16}$ $75$ $7$ $178$ $28.4$ Quadruple/swivel $2^{15/16}$ $75$ $6^{1/4}$ $159$ $27.2$ | Sheave<br>ØWeight<br>weight<br>wyshackleDescriptioninmminmmozgDouble/swivel $2^{1/4}$ $57$ $4^{4/4}$ $121$ $6.3$ $178$ Double/swivel/becket $2^{1/4}$ $57$ $5^{5/6}$ $142$ $6.6$ $187$ Triple/swivel/becket $2^{1/4}$ $57$ $5^{4/4}$ $121$ $9$ $255$ Triple/swivel/becket $2^{1/4}$ $57$ $5^{4/4}$ $121$ $9$ $255$ Triple/swivel/becket $2^{1/4}$ $57$ $4^{4/4}$ $121$ $15.2$ $431$ Triple/swivel/150 Cam-Matic®/becket** $2^{1/4}$ $57$ $4^{4/4}$ $121$ $15.6$ $442$ Quadruple/swivel $2^{15/16}$ $75$ $6$ $152$ $14.2$ $402$ Double/swivel $2^{15/16}$ $75$ $6$ $152$ $20.5$ $580$ Triple/swivel $2^{15/16}$ $75$ $6$ $152$ $20.5$ $580$ Triple/swivel/becket $2^{15/16}$ $75$ $6$ $152$ $20.5$ $580$ Triple/swivel/becket $2^{15/16}$ $75$ $7$ $178$ $21.1$ $599$ Triple/swivel/becket $2^{15/16}$ $75$ $6$ $152$ $27.8$ $788$ Triple/swivel150 Cam-Matic®/becket** $2^{15/16}$ $75$ $6^{1/4}$ $159$ $27.2$ $772$ | SneaveWeight<br>$g$ Sneave $g$ Lengthwy/shackleSneave $g$ inmminmmoz $g$ Descriptioninmminmmoz $g$ Double/swivel $2^{1/4}$ $57$ $4^{3/4}$ $121$ $6.3$ $178$ Double/swivel/becket $2^{1/4}$ $57$ $5^{5/6}$ $142$ $6.6$ $187$ Triple/swivel/becket $2^{1/4}$ $57$ $4^{3/4}$ $121$ $9$ $255$ Triple/swivel/becket $2^{1/4}$ $57$ $4^{3/4}$ $121$ $9$ $255$ Triple/swivel/becket $2^{1/4}$ $57$ $4^{3/4}$ $121$ $9$ $255$ Triple/swivel/becket $2^{1/4}$ $57$ $5^{5/6}$ $142$ $9.3$ $264$ Triple/swivel/bocket $2^{1/4}$ $57$ $5^{5/6}$ $142$ $9.3$ $264$ Quadruple/swivel $2^{1/4}$ $57$ $5^{5/6}$ $142$ $15.6$ $442$ Quadruple/swivel $2^{1/4}$ $57$ $6^{5}$ $152$ $14.2$ $402$ $5^{1/6}$ Double/swivel $2^{15/16}$ $75$ $7$ $178$ $14.8$ $419$ $5^{1/6}$ Double/swivel $2^{15/16}$ $75$ $7$ $178$ $21.1$ $599$ $5^{1/6}$ Triple/swivel/becket $2^{15/16}$ $75$ $7$ $178$ $28.4$ $805$ $5^{1/6}$ Triple/swivel | SneaveWeight<br>ØSnackle pin<br>ØØLengthw/shackleØDescriptioninmminmmozgDouble/swivel $2^{1}/_4$ $57$ $4^{3}/_4$ $121$ $6.3$ $178$ $6$ Double/swivel/becket $2^{1}/_4$ $57$ $5^{5}/_6$ $142$ $6.6$ $187$ $6$ Triple/swivel/becket $2^{1}/_4$ $57$ $4^{3}/_4$ $121$ $9$ $255$ $6$ Triple/swivel/becket $2^{1}/_4$ $57$ $5^{5}/_6$ $142$ $9.3$ $264$ $6$ Triple/swivel/bocket $2^{1}/_4$ $57$ $4^{3}/_4$ $121$ $15.2$ $431$ $6$ Triple/swivel/150 Cam-Matic®/becket** $2^{1}/_4$ $57$ $5^{5}/_6$ $142$ $15.6$ $442$ $6$ Quadruple/swivel $2^{15}/_{16}$ $75$ $6$ $152$ $14.2$ $402$ $5^{1}/_6$ $8$ Double/swivel/becket $2^{15}/_{16}$ $75$ $6$ $152$ $20.5$ $580$ $5^{1}/_6$ $8$ Triple/swivel $2^{15}/_{16}$ $75$ $7$ $178$ $14.8$ $419$ $5^{1}/_6$ $8$ Triple/swivel/becket $2^{15}/_{16}$ $75$ $7$ $178$ $21.1$ $599$ $5^{1}/_6$ $8$ Triple/swivel/bocket $2^{15}/_{16}$ $75$ $7$ $178$ $28.4$ $805$ $5^{1}/_6$ $8$ Triple/swivel150 Cam-Matic®/becket** <t< td=""><td>Weight<br/>ØShackle pin<br/>Weight<br/>Weight<br/>Weight<br/>Shackle pin<br/>ØShackle pin<br/>ØMax<br/>ØDescriptioninmminmmozginmminDouble/swivel<math>21/4</math><math>57</math><math>4^4/4</math><math>121</math><math>6.3</math><math>178</math><math>6</math><math>7/16</math>Double/swivel/becket<math>21/4</math><math>57</math><math>5^5/6</math><math>142</math><math>6.6</math><math>187</math><math>6</math><math>7/16</math>Triple/swivel/becket<math>21/4</math><math>57</math><math>5^5/6</math><math>142</math><math>9.3</math><math>264</math><math>6</math><math>7/16</math>Triple/swivel/becket<math>21/4</math><math>57</math><math>5^5/6</math><math>142</math><math>9.3</math><math>264</math><math>6</math><math>7/16</math>Triple/swivel/becket<math>21/4</math><math>57</math><math>5^5/6</math><math>142</math><math>9.3</math><math>264</math><math>6</math><math>7/16</math>Triple/swivel/150 Cam-Matic®/becket**<math>21/4</math><math>57</math><math>5^5/6</math><math>142</math><math>15.6</math><math>442</math><math>6</math><math>7/16</math>Quadruple/swivel<math>21/4</math><math>57</math><math>5^5/6</math><math>142</math><math>15.6</math><math>442</math><math>6</math><math>7/16</math>Double/swivel<math>21^5/16</math><math>75</math><math>6</math><math>152</math><math>14.2</math><math>402</math><math>5/16</math><math>8</math><math>9/16</math>Double/swivel<math>21^5/16</math><math>75</math><math>7</math><math>178</math><math>14.8</math><math>419</math><math>5/16</math><math>8</math><math>9/16</math>Triple/swivel<math>21^5/16</math><math>75</math><math>7</math><math>178</math><math>21.1</math><math>599</math><math>5/16</math><math>8</math><math>9/16</math>Triple/swivel/becket<math>21^5/16</math><math>75</math><math>7</math><math>178</math></td><td>Sneave<br/>ØWeight<br/>LengthSnackle pin<br/>ØMax line<br/>ØDescriptioninmminmmozginmminmmDouble/swivel<math>2^{1}/_{4}</math><math>57</math><math>4^{3}/_{4}</math><math>121</math><math>6.3</math><math>178</math><math>6</math><math>7/_{16}</math><math>10</math>Double/swivel/becket<math>2^{1}/_{4}</math><math>57</math><math>5^{5}/_{8}</math><math>142</math><math>6.6</math><math>187</math><math>6</math><math>7/_{16}</math><math>10</math>Triple/swivel/becket<math>2^{1}/_{4}</math><math>57</math><math>5^{5}/_{8}</math><math>142</math><math>9.3</math><math>264</math><math>6</math><math>7/_{16}</math><math>10</math>Triple/swivel/becket<math>2^{1}/_{4}</math><math>57</math><math>5^{5}/_{8}</math><math>142</math><math>9.3</math><math>264</math><math>6</math><math>7/_{16}</math><math>10</math>Triple/swivel/150 Cam-Matic®/becket**<math>2^{1}/_{4}</math><math>57</math><math>5^{5}/_{8}</math><math>142</math><math>15.6</math><math>442</math><math>6</math><math>7/_{16}</math><math>10</math>Quadruple/swivel<math>2^{1}/_{4}</math><math>57</math><math>5^{5}/_{8}</math><math>142</math><math>15.6</math><math>442</math><math>6</math><math>7/_{16}</math><math>10</math>Duble/swivel/becket<math>2^{1}/_{4}</math><math>57</math><math>5^{5}/_{8}</math><math>142</math><math>15.6</math><math>442</math><math>6</math><math>7/_{16}</math><math>10</math>Uadruple/swivel<math>2^{1}/_{4}</math><math>57</math><math>5^{5}/_{8}</math><math>142</math><math>15.6</math><math>442</math><math>6</math><math>7/_{16}</math><math>10</math>Duble/swivel<math>2^{1}/_{4}</math><math>57</math><math>5^{1}/_{8}</math><math>142</math><math>12.6</math><math>442</math><math>6</math><math>7/_{16}</math><math>10</math>Duble/swivel<math>2^{1}/_{1</math></td><td>Sneave<br/>ØLength<br/>LengthWeight<br/>w/shackleSnackle pin<br/>ØMax ine<br/>ØMax<br/>workin<br/>workinDescriptioninmminmmozginmminmminmmworkinDouble/swivel<math>2^{1/4}</math>57<math>4^{4}/4</math>1216.3<math>178</math>6<math>7/16</math>101584Double/swivel/becket<math>2^{1/4}</math>57<math>5^{5}/8</math>1426.61876<math>7/16</math>102380Triple/swivel/becket<math>2^{1/4}</math>57<math>5^{5}/8</math>1429.3<math>264</math>6<math>7/16</math>102380Triple/swivel/becket<math>2^{1/4}</math>57<math>5^{5}/8</math>1429.3<math>264</math>6<math>7/16</math>102380Triple/swivel/bocket<math>2^{1/4}</math>57<math>5^{5}/8</math>14215.6<math>442</math>6<math>7/16</math>101500Triple/swivel/150 Cam-Matic®/becket**<math>2^{1/4}</math>57<math>5^{5}/8</math>14215.6<math>442</math>6<math>7/16</math>102380Quadruple/swivel<math>2^{1/4}</math>57<math>5^{4}/8</math>14215.6<math>442</math>6<math>7/16</math>102380Duble/swivel/becket<math>2^{1/4}</math>57<math>5^{4}/8</math>14215.6<math>442</math>6<math>7/16</math>102380Quadruple/swivel<math>2^{1/4}</math>57<math>6^{1}/8</math>14214.8419<math>5/16</math>8<math>9/16</math>142426Double/swivel/becket<math>2^{1</math></td><td>Weight<br/>ØShakie pin<br/>Weight<br/>Wax line<br/>ØMaximum<br/>Max line<br/>ØMaximum<br/>Max line<br/>ØMaximum<br/>Wax line<br/>Working loadDescriptioninmmmmmmmmmmmmmmmminmmline<br/>working loadDouble/swivel/becket21/45743/41216.317867/16101584720Triple/swivel/becket21/45743/412115.243167/161023801080Triple/swivel/150 Cam-Matic®/becket**21/45753/514215.644267/16101800816Quadruple/swivel/150 Cam-Matic®/becket**21/45753/514215.644267/16101800816Double/swivel/becket21/5/1675615214.24025/1689/161424261100Double/swivel/becket21/5/16756152<t< td=""><td>Weight<br/>UenghtSheave<br/><math>g</math>Waximum<br/><math>g</math>Maximum<br/><math>g</math>BreaDescriptioninmminmmozginmminmmbkglbDouble/swivel<math>2!/4</math><math>57</math><math>4!/4</math><math>121</math><math>6.3</math><math>178</math><math>6</math><math>7/16</math><math>10</math><math>1584</math><math>720</math><math>3300</math>Double/swivel/becket<math>2!/4</math><math>57</math><math>5!/6</math><math>142</math><math>6.6</math><math>187</math><math>6</math><math>7/16</math><math>10</math><math>1584</math><math>720</math><math>3300</math>Triple/swivel/becket<math>2!/4</math><math>57</math><math>5!/6</math><math>142</math><math>9.3</math><math>264</math><math>6</math><math>7/16</math><math>10</math><math>2380</math><math>1080</math><math>5000</math>Triple/swivel/becket<math>2!/4</math><math>57</math><math>5!/6</math><math>142</math><math>9.3</math><math>264</math><math>6</math><math>7/16</math><math>10</math><math>2380</math><math>1080</math><math>5000</math>Triple/swivel/150 Cam-Matic®**<math>2!/4</math><math>57</math><math>5!/6</math><math>142</math><math>15.6</math><math>442</math><math>6</math><math>7/16</math><math>10</math><math>1800</math><math>816</math><math>4500</math>Quadruple/swivel<math>2!/4</math><math>57</math><math>5!/6</math><math>142</math><math>15.6</math><math>442</math><math>6</math><math>7/16</math><math>10</math><math>2380</math><math>1080</math><math>5000</math>Triple/swivel/150 Cam-Matic®/becket**<math>2!/4</math><math>57</math><math>5!/6</math><math>142</math><math>15.6</math><math>442</math><math>6</math><math>7/16</math><math>10</math><math>1800</math><math>816</math><math>4500</math>Double/swivel/becket<math>2!/6</math><math>75</math><math>6</math><math>152</math><math>14.2</math><math>402</math><math>5!/6</math><math>8</math><!--</td--></td></t<></td></t<> | Weight<br>ØShackle pin<br>Weight<br>Weight<br>Weight<br>Shackle pin<br>ØShackle pin<br>ØMax<br>ØDescriptioninmminmmozginmminDouble/swivel $21/4$ $57$ $4^4/4$ $121$ $6.3$ $178$ $6$ $7/16$ Double/swivel/becket $21/4$ $57$ $5^5/6$ $142$ $6.6$ $187$ $6$ $7/16$ Triple/swivel/becket $21/4$ $57$ $5^5/6$ $142$ $9.3$ $264$ $6$ $7/16$ Triple/swivel/becket $21/4$ $57$ $5^5/6$ $142$ $9.3$ $264$ $6$ $7/16$ Triple/swivel/becket $21/4$ $57$ $5^5/6$ $142$ $9.3$ $264$ $6$ $7/16$ Triple/swivel/150 Cam-Matic®/becket** $21/4$ $57$ $5^5/6$ $142$ $15.6$ $442$ $6$ $7/16$ Quadruple/swivel $21/4$ $57$ $5^5/6$ $142$ $15.6$ $442$ $6$ $7/16$ Double/swivel $21^5/16$ $75$ $6$ $152$ $14.2$ $402$ $5/16$ $8$ $9/16$ Double/swivel $21^5/16$ $75$ $7$ $178$ $14.8$ $419$ $5/16$ $8$ $9/16$ Triple/swivel $21^5/16$ $75$ $7$ $178$ $21.1$ $599$ $5/16$ $8$ $9/16$ Triple/swivel/becket $21^5/16$ $75$ $7$ $178$ | Sneave<br>ØWeight<br>LengthSnackle pin<br>ØMax line<br>ØDescriptioninmminmmozginmminmmDouble/swivel $2^{1}/_{4}$ $57$ $4^{3}/_{4}$ $121$ $6.3$ $178$ $6$ $7/_{16}$ $10$ Double/swivel/becket $2^{1}/_{4}$ $57$ $5^{5}/_{8}$ $142$ $6.6$ $187$ $6$ $7/_{16}$ $10$ Triple/swivel/becket $2^{1}/_{4}$ $57$ $5^{5}/_{8}$ $142$ $9.3$ $264$ $6$ $7/_{16}$ $10$ Triple/swivel/becket $2^{1}/_{4}$ $57$ $5^{5}/_{8}$ $142$ $9.3$ $264$ $6$ $7/_{16}$ $10$ Triple/swivel/150 Cam-Matic®/becket** $2^{1}/_{4}$ $57$ $5^{5}/_{8}$ $142$ $15.6$ $442$ $6$ $7/_{16}$ $10$ Quadruple/swivel $2^{1}/_{4}$ $57$ $5^{5}/_{8}$ $142$ $15.6$ $442$ $6$ $7/_{16}$ $10$ Duble/swivel/becket $2^{1}/_{4}$ $57$ $5^{5}/_{8}$ $142$ $15.6$ $442$ $6$ $7/_{16}$ $10$ Uadruple/swivel $2^{1}/_{4}$ $57$ $5^{5}/_{8}$ $142$ $15.6$ $442$ $6$ $7/_{16}$ $10$ Duble/swivel $2^{1}/_{4}$ $57$ $5^{1}/_{8}$ $142$ $12.6$ $442$ $6$ $7/_{16}$ $10$ Duble/swivel $2^{1}/_{1$ | Sneave<br>ØLength<br>LengthWeight<br>w/shackleSnackle pin<br>ØMax ine<br>ØMax<br>workin<br>workinDescriptioninmminmmozginmminmminmmworkinDouble/swivel $2^{1/4}$ 57 $4^{4}/4$ 1216.3 $178$ 6 $7/16$ 101584Double/swivel/becket $2^{1/4}$ 57 $5^{5}/8$ 1426.61876 $7/16$ 102380Triple/swivel/becket $2^{1/4}$ 57 $5^{5}/8$ 1429.3 $264$ 6 $7/16$ 102380Triple/swivel/becket $2^{1/4}$ 57 $5^{5}/8$ 1429.3 $264$ 6 $7/16$ 102380Triple/swivel/bocket $2^{1/4}$ 57 $5^{5}/8$ 14215.6 $442$ 6 $7/16$ 101500Triple/swivel/150 Cam-Matic®/becket** $2^{1/4}$ 57 $5^{5}/8$ 14215.6 $442$ 6 $7/16$ 102380Quadruple/swivel $2^{1/4}$ 57 $5^{4}/8$ 14215.6 $442$ 6 $7/16$ 102380Duble/swivel/becket $2^{1/4}$ 57 $5^{4}/8$ 14215.6 $442$ 6 $7/16$ 102380Quadruple/swivel $2^{1/4}$ 57 $6^{1}/8$ 14214.8419 $5/16$ 8 $9/16$ 142426Double/swivel/becket $2^{1$ | Weight<br>ØShakie pin<br>Weight<br>Wax line<br>ØMaximum<br>Max line<br>ØMaximum<br>Max line<br>ØMaximum<br>Wax line<br>Working loadDescriptioninmmmmmmmmmmmmmmmminmmline<br>working loadDouble/swivel/becket21/45743/41216.317867/16101584720Triple/swivel/becket21/45743/412115.243167/161023801080Triple/swivel/150 Cam-Matic®/becket**21/45753/514215.644267/16101800816Quadruple/swivel/150 Cam-Matic®/becket**21/45753/514215.644267/16101800816Double/swivel/becket21/5/1675615214.24025/1689/161424261100Double/swivel/becket21/5/16756152 <t< td=""><td>Weight<br/>UenghtSheave<br/><math>g</math>Waximum<br/><math>g</math>Maximum<br/><math>g</math>BreaDescriptioninmminmmozginmminmmbkglbDouble/swivel<math>2!/4</math><math>57</math><math>4!/4</math><math>121</math><math>6.3</math><math>178</math><math>6</math><math>7/16</math><math>10</math><math>1584</math><math>720</math><math>3300</math>Double/swivel/becket<math>2!/4</math><math>57</math><math>5!/6</math><math>142</math><math>6.6</math><math>187</math><math>6</math><math>7/16</math><math>10</math><math>1584</math><math>720</math><math>3300</math>Triple/swivel/becket<math>2!/4</math><math>57</math><math>5!/6</math><math>142</math><math>9.3</math><math>264</math><math>6</math><math>7/16</math><math>10</math><math>2380</math><math>1080</math><math>5000</math>Triple/swivel/becket<math>2!/4</math><math>57</math><math>5!/6</math><math>142</math><math>9.3</math><math>264</math><math>6</math><math>7/16</math><math>10</math><math>2380</math><math>1080</math><math>5000</math>Triple/swivel/150 Cam-Matic®**<math>2!/4</math><math>57</math><math>5!/6</math><math>142</math><math>15.6</math><math>442</math><math>6</math><math>7/16</math><math>10</math><math>1800</math><math>816</math><math>4500</math>Quadruple/swivel<math>2!/4</math><math>57</math><math>5!/6</math><math>142</math><math>15.6</math><math>442</math><math>6</math><math>7/16</math><math>10</math><math>2380</math><math>1080</math><math>5000</math>Triple/swivel/150 Cam-Matic®/becket**<math>2!/4</math><math>57</math><math>5!/6</math><math>142</math><math>15.6</math><math>442</math><math>6</math><math>7/16</math><math>10</math><math>1800</math><math>816</math><math>4500</math>Double/swivel/becket<math>2!/6</math><math>75</math><math>6</math><math>152</math><math>14.2</math><math>402</math><math>5!/6</math><math>8</math><!--</td--></td></t<> | Weight<br>UenghtSheave<br>$g$ Waximum<br>$g$ Maximum<br>$g$ BreaDescriptioninmminmmozginmminmmbkglbDouble/swivel $2!/4$ $57$ $4!/4$ $121$ $6.3$ $178$ $6$ $7/16$ $10$ $1584$ $720$ $3300$ Double/swivel/becket $2!/4$ $57$ $5!/6$ $142$ $6.6$ $187$ $6$ $7/16$ $10$ $1584$ $720$ $3300$ Triple/swivel/becket $2!/4$ $57$ $5!/6$ $142$ $9.3$ $264$ $6$ $7/16$ $10$ $2380$ $1080$ $5000$ Triple/swivel/becket $2!/4$ $57$ $5!/6$ $142$ $9.3$ $264$ $6$ $7/16$ $10$ $2380$ $1080$ $5000$ Triple/swivel/150 Cam-Matic®** $2!/4$ $57$ $5!/6$ $142$ $15.6$ $442$ $6$ $7/16$ $10$ $1800$ $816$ $4500$ Quadruple/swivel $2!/4$ $57$ $5!/6$ $142$ $15.6$ $442$ $6$ $7/16$ $10$ $2380$ $1080$ $5000$ Triple/swivel/150 Cam-Matic®/becket** $2!/4$ $57$ $5!/6$ $142$ $15.6$ $442$ $6$ $7/16$ $10$ $1800$ $816$ $4500$ Double/swivel/becket $2!/6$ $75$ $6$ $152$ $14.2$ $402$ $5!/6$ $8$ </td |

\*Maximum working loads and breaking loads for blocks based on cam strengths

# **Carbo Ratchets**

Carbo Ratchets allow sailors to hand-hold loaded lines and offer balance between holding power and controlled easing.

Nylon resin sideplates are densely packed with long-glass fibers for a compact block with a high strength-to-weight ratio. Machined aluminum sheaves are Hardkote anodized for strength and corrosion resistance. Eight facets hold line securely. Ball bearings, sheave, and sideplates are UV-stabilized with carbon black for maximum protection.

#### 40 mm

The 40 mm ratchets are ideal for jib sheets and spinnakers where size and weight are critical. The 2608, 2609, and 2614 have on/off switches; other 40 mm ratchets are always in ratchet mode.

#### 57 mm and 75 mm

The 57 mm and 75 mm switchable ratchets provide precise on/off control with accessible, easy-to-operate on/off switches on both sides of the block.

For the ultimate system, mount a switchable ratchet in the cockpit and a boom-mounted Ratchamatic<sup>®</sup> directly above for double holding power in heavy air and a free-running mainsheet when it's light. The 75 mm provides up to 15:1 holding power; the 57mm 10:1.

Use for: Main/iib

Main/jib/spinnaker sheets Mainsheet fine-tune Traveler controls Genoa leads Foreguys









2610

40 mm Actual Size

2611

| Devit        |                                                    | She                                  | ave   | اما                                   | ath   | Wei<br>w/sh | ight<br>ackle | Shack                        | de pin | Max                          | (line<br>Ø | Maxi   | mum<br>a load | Brea | king<br>ad |
|--------------|----------------------------------------------------|--------------------------------------|-------|---------------------------------------|-------|-------------|---------------|------------------------------|--------|------------------------------|------------|--------|---------------|------|------------|
| Part         | Description                                        | in                                   |       | LCI                                   | mm    | w/311       | aukic<br>a    | in                           |        | in                           |            | WUIKII | y iuau<br>ka  | 10   | au<br>ka   |
| NU.          | Description                                        | 111                                  | 11111 | 111                                   | 11111 | UZ          | y             | 111                          | 11111  | 111                          | 11111      | ID     | ку            | IN   | ку         |
| <u>40 mm</u> |                                                    |                                      |       |                                       |       |             |               |                              |        |                              |            |        |               |      |            |
| 2608         | Single/swivel                                      | <b>1</b> 9/16                        | 40    | <b>3</b> <sup>3</sup> /8              | 86    | 1.7         | 49            | 5/32                         | 4      | 3/8                          | 10         | 300    | 136           | 1000 | 454        |
| 2609         | Single/swivel/becket                               | <b>1</b> 9/16                        | 40    | 4                                     | 102   | 1.8         | 52            | <sup>5</sup> / <sub>32</sub> | 4      | <sup>3</sup> /8              | 10         | 300    | 136           | 1000 | 454        |
| 2610         | Single/swivel/423 Carbo-Cam®**                     | <b>1</b> 9/16                        | 40    | 33/8                                  | 86    | 4.6         | 129           | <sup>5</sup> / <sub>32</sub> | 4      | 1/4                          | 6          | 150    | 68            | 300  | 136        |
| 2611         | Single/swivel/423 Carbo-Cam <sup>®</sup> /becket** | <b>1</b> %/16                        | 40    | 4                                     | 102   | 4.7         | 132           | <sup>5</sup> / <sub>32</sub> | 4      | 1/4                          | 6          | 300    | 136           | 600  | 272        |
| 2614         | Cheek*                                             | <b>1</b> %/16                        | 40    | <b>2</b> <sup>3</sup> / <sub>4</sub>  | 70    | 1.6         | 44            | _                            | _      | 3/8                          | 10         | 300    | 136           | 1000 | 454        |
| 57 mm        |                                                    |                                      |       |                                       |       |             |               |                              |        |                              |            |        |               |      |            |
| 2135         | Single/swivel                                      | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57    | <b>4</b> <sup>1</sup> / <sub>16</sub> | 103   | 3.0         | 85            | <sup>3</sup> / <sub>16</sub> | 5      | <sup>3</sup> /8              | 10         | 500    | 227           | 2000 | 907        |
| 2136         | Single/swivel/becket                               | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57    | 415/16                                | 125   | 3.3         | 94            | <sup>3</sup> / <sub>16</sub> | 5      | <sup>3</sup> /8              | 10         | 500    | 227           | 2000 | 907        |
| 2137         | Cheek*                                             | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57    | <b>3</b> <sup>1</sup> / <sub>4</sub>  | 83    | 2.5         | 71            | _                            | _      | <sup>3</sup> /8              | 10         | 500    | 227           | 2000 | 907        |
| 2138         | Single/swivel/150 Cam-Matic <sup>®**</sup>         | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57    | <b>4</b> <sup>1</sup> / <sub>16</sub> | 103   | 8.7         | 247           | <sup>3</sup> / <sub>16</sub> | 5      | <sup>3</sup> /8              | 10         | 300    | 136           | 750  | 340        |
| 2139         | Single/swivel/150 Cam-Matic <sup>®</sup> /becket** | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57    | 415/16                                | 125   | 9.0         | 255           | <sup>3</sup> / <sub>16</sub> | 5      | <sup>3</sup> /8              | 10         | 600    | 272           | 1500 | 680        |
| 75 mm        | l                                                  |                                      |       |                                       |       |             |               |                              |        |                              |            |        |               |      |            |
| 2670         | Single/swivel                                      | 215/16                               | 75    | 5 <sup>3</sup> /8                     | 137   | 8.0         | 227           | 1/4                          | 6      | <sup>7</sup> /16             | 12         | 750    | 341           | 3000 | 1361       |
| 2671         | Single/swivel/becket                               | 215/16                               | 75    | <b>6</b> <sup>1</sup> / <sub>2</sub>  | 165   | 8.75        | 248           | 1/4                          | 6      | <sup>7</sup> / <sub>16</sub> | 12         | 750    | 341           | 3000 | 1361       |
| 2672         | Cheek*                                             | 215/16                               | 75    | 41/16                                 | 103   | 6.3         | 179           | _                            | _      | 7/16                         | 12         | 750    | 341           | 3000 | 1361       |

\*Includes RH fasteners and mounting pad. \*\*Maximum working loads and breaking loads for blocks based on cam strengths

## **Carbo Ratchets**



Nacra F18 — Performance Catamarans, Inc. photo

| Part  |                                                        | She<br>Ø                             | ave<br>ð | Ler                                  | ngth | We<br>w/sh | ight<br>ackle | Max<br>Ø                     | line<br>) | Shac | kle pin<br>Ø | Maxi<br>workin | mum<br>1g load | Brea<br>Io | iking<br>ad |
|-------|--------------------------------------------------------|--------------------------------------|----------|--------------------------------------|------|------------|---------------|------------------------------|-----------|------|--------------|----------------|----------------|------------|-------------|
| No.   | Description                                            | in                                   | mm       | in                                   | mm   | 0Z         | g             | in                           | mm        | in   | mm           | lb             | kg             | lb         | kg          |
| 40 mm |                                                        |                                      |          |                                      |      |            |               |                              |           |      |              |                |                |            |             |
| 2612  | Triple/swivel/423 Carbo-Cam®*                          | <b>1</b> 9/16                        | 40       | 311/16                               | 94   | 8.5        | 242           | <sup>3</sup> / <sub>16</sub> | 5         | 1/4  | 6            | 750            | 340            | 1500       | 680         |
| 2613  | Triple/swivel/423 Carbo-Cam <sup>®</sup> /becket*      | <b>1</b> 9/16                        | 40       | 45/16                                | 110  | 8.6        | 245           | <sup>3</sup> / <sub>16</sub> | 5         | 1/4  | 6            | 900            | 408            | 1800       | 816         |
| 2619  | Triple/423 Carbo-Cam <sup>®</sup> /29 mm block/becket* | <b>1</b> 9/16                        | 40       | <b>4</b> <sup>3</sup> / <sub>4</sub> | 121  | 9.5        | 269           | <sup>3</sup> / <sub>16</sub> | 5         | 1/4  | 6            | 900            | 408            | 1800       | 816         |
| 57 mm |                                                        |                                      |          |                                      |      |            |               |                              |           |      |              |                |                |            |             |
| 2140  | Triple/swivel/150 Cam-Matic®*                          | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 41/16                                | 103  | 15.4       | 435           | 3/8                          | 10        | 1/4  | 6            | 1500           | 680            | 3750       | 1700        |
| 2141  | Triple/swivel/150 Cam-Matic®/becket*                   | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 4 <sup>15</sup> / <sub>16</sub>      | 125  | 15.7       | 445           | 3/8                          | 10        | 1/4  | 6            | 1800           | 816            | 4500       | 2041        |
|       |                                                        |                                      |          |                                      |      |            |               |                              |           |      |              |                |                |            |             |

\*Maximum working loads and breaking loads for blocks based on cam strengths

# Carbo Ratchamatic®

The Carbo Ratchamatic<sup>®</sup> is a load-sensing ratchet block that rolls freely in both directions under low loads and automatically engages the ratchet as loads increase. Shifting between ratchet and light-air modes is seamless. Unloaded main and jib sheets run out freely during mark roundings and asymmetrical spinnakers free instantly during jibes.

Ratchet engagement may be adjusted to a higher or lower load according to strength and sailing style. The Ratchamatic<sup>®</sup> cheek block mounts on either port or starboard. The holding power of the 57 mm is as high as 10:1. The 75 mm is up to 15:1.

For the ultimate system, mount a Ratchamatic<sup>®</sup> on the boom above a cockpit-mounted switchable ratchet to allow the mainsheet to run freely in light air and to double holding power in heavy air.

Use the 2634 with a 402 or 403 swivel arm for a versatile two-speed mainsheet system.

**Use for:** Main/Jib Sheets Asymmetric spinnakers



2626

2681

2627

2683



Laser® — Chris Haliburton photo

| Part  |                                            | Shea<br>Ø                            | ave | Len                                   | igth | We   | ight | Max                          | c line<br>Ø | Shac                         | kle pin<br>Ø | Maxi<br>workir | mum<br>1g load | Brea<br>loa | king<br>ad | Holding power<br>w/180° wrap |
|-------|--------------------------------------------|--------------------------------------|-----|---------------------------------------|------|------|------|------------------------------|-------------|------------------------------|--------------|----------------|----------------|-------------|------------|------------------------------|
| No.   | Description                                | in                                   | mm  | in                                    | mm   | OZ   | g    | in                           | mm          | in                           | mm           | lb             | kg             | lb          | kg         | 50 lb (23 kg)                |
| 57 mm | l                                          |                                      |     |                                       |      |      |      |                              |             |                              |              |                |                |             |            |                              |
| 2625  | Single                                     | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | <b>4</b> <sup>1</sup> / <sub>16</sub> | 103  | 3.7  | 104  | <sup>3</sup> /8              | 10          | <sup>3</sup> / <sub>16</sub> | 5            | 500            | 227            | 2000        | 907        | 10:1                         |
| 2626  | Single/becket                              | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 415/16                                | 125  | 4.0  | 113  | <sup>3</sup> /8              | 10          | <sup>3</sup> / <sub>16</sub> | 5            | 500            | 227            | 2000        | 907        | 10:1                         |
| 2627  | Single/150 Cam-Matic <sup>®</sup> ‡        | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | <b>4</b> <sup>1</sup> / <sub>16</sub> | 103  | 9.4  | 266  | <sup>3</sup> /8              | 10          | <sup>3</sup> / <sub>16</sub> | 5            | 300            | 136            | 750         | 340        | 10:1                         |
| 2628  | Single/150 Cam-Matic <sup>®</sup> /becket‡ | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 4 <sup>15</sup> / <sub>16</sub>       | 125  | 9.7  | 275  | <sup>3</sup> /8              | 10          | <sup>3</sup> / <sub>16</sub> | 5            | 600            | 272            | 1500        | 680        | 10:1                         |
| 2633  | Cheek**                                    | 21/4                                 | 57  | 31/4                                  | 83   | 3.1  | 89   | <sup>3</sup> /8              | 10          | _                            | —            | 500            | 227            | 2000        | 907        | 10:1                         |
| 75 mm | 1                                          |                                      |     |                                       |      |      |      |                              |             |                              |              |                |                |             |            |                              |
| 2680  | Single                                     | 2 <sup>15</sup> /16                  | 75  | 5 <sup>3</sup> /8                     | 137  | 8.4  | 238  | <sup>7</sup> / <sub>16</sub> | 12          | 1/4                          | 6            | 750            | 341            | 3000        | 1361       | 15:1                         |
| 2681  | Single/becket                              | 2 <sup>15</sup> /16                  | 75  | 6 <sup>1</sup> / <sub>2</sub>         | 165  | 9.0  | 255  | <sup>7</sup> / <sub>16</sub> | 12          | 1/4                          | 6            | 750            | 341            | 3000        | 1361       | 15:1                         |
| 2682  | Cheek**                                    | 2 <sup>15</sup> /16                  | 75  | <b>4</b> <sup>1</sup> / <sub>16</sub> | 103  | 6.5  | 184  | <sup>7</sup> / <sub>16</sub> | 12          | _                            | _            | 750            | 341            | 3000        | 1361       | 15:1                         |
| 2683  | Single/150 Cam-Matic <sup>®</sup> ‡        | 2 <sup>15</sup> /16                  | 75  | 5 <sup>7</sup> /16                    | 138  | 15.5 | 440  | <sup>7</sup> / <sub>16</sub> | 12          | 1/4                          | 6            | 300            | 136            | 750         | 340        | 15:1                         |
| 2684  | Single/150 Cam-Matic <sup>®</sup> /becket‡ | 2 <sup>15</sup> /16                  | 75  | 6 <sup>1</sup> /2                     | 165  | 15.5 | 440  | <sup>7</sup> / <sub>16</sub> | 12          | 1/4                          | 6            | 600            | 272            | 1500        | 680        | 15:1                         |

\*\*Includes RH fasteners and mounting pad. #Maximum working loads and breaking loads for blocks based on cam strengths

## **Carbo Ratchamatic**®



"Twelve" One Design, Studio Lostuzzi, SeaTechnology Srl — Max Ranchi photo



|                                                        | She:<br>Ø                                                                                                                                                                                                                             | ave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Len                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | gth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | c line<br>Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Shac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | kle pin<br>Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Maxi<br>workin                                          | mum<br>g load                                           | Brea<br>Io                                              | iking<br>ad                                             | Holding power<br>w/180° wrap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                                            | in                                                                                                                                                                                                                                    | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | lb                                                      | kg                                                      | lb                                                      | kg                                                      | 50 lb (23 kg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1                                                      |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                         |                                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Triple/150 Cam-Matic <sup>®</sup> ‡                    | <b>2</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                  | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>4</b> <sup>1</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 421                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>3</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1500                                                    | 680                                                     | 3750                                                    | 1700                                                    | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Triple/150 Cam-Matic <sup>®</sup> /becket‡             | <b>2</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                  | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 415/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 15.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 431                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>3</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1800                                                    | 816                                                     | 4500                                                    | 2041                                                    | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Triple/150 Cam-Matic <sup>®</sup> /40 mm block/becket‡ | <b>2</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                  | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>6</b> <sup>1</sup> / <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 156                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 520                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>3</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1800                                                    | 816                                                     | 4500                                                    | 2041                                                    | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Double                                                 | <b>2</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                  | 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>4</b> <sup>9</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 204                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>3</sup> /16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 750                                                     | 340                                                     | 1875                                                    | 851                                                     | 10:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                        |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                         |                                                         |                                                         |                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Triple/150 Cam-Matic <sup>®</sup> ‡                    | 2 <sup>15</sup> /16                                                                                                                                                                                                                   | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>6</b> <sup>3</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 137                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>7</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>5</sup> /16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1500                                                    | 680                                                     | 3750                                                    | 1700                                                    | 15:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Triple/150 Cam-Matic <sup>®</sup> /becket‡             | 2 <sup>15</sup> /16                                                                                                                                                                                                                   | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>6</b> <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 31.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 896                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>7</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>5</sup> /16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1800                                                    | 816                                                     | 4500                                                    | 2041                                                    | 15:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Triple/150 Cam-Matic <sup>®</sup> /57 mm block/becket‡ | 2 <sup>15</sup> /16                                                                                                                                                                                                                   | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>6</b> <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 34.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <sup>7</sup> /16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <sup>5</sup> /16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1800                                                    | 816                                                     | 4500                                                    | 2041                                                    | 15:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                        | Description<br>Triple/150 Cam-Matic®‡<br>Triple/150 Cam-Matic®/becket‡<br>Triple/150 Cam-Matic®/40 mm block/becket‡<br>Double<br>Triple/150 Cam-Matic®‡<br>Triple/150 Cam-Matic®/becket‡<br>Triple/150 Cam-Matic®/57 mm block/becket‡ | Shea         g           Description         in           I         I           Triple/150 Cam-Matic®/±         2½/4           Triple/150 Cam-Matic®/becket‡         2½/4           Triple/150 Cam-Matic®/40 mm block/becket‡         2½/4           Double         2½/4           Triple/150 Cam-Matic®/40 mm block/becket‡         2½/4           Double         2½/4           Triple/150 Cam-Matic®/±         2 <sup>15</sup> /16           Triple/150 Cam-Matic®/becket‡         2 <sup>15</sup> /16           Triple/150 Cam-Matic®/becket‡         2 <sup>15</sup> /16           Triple/150 Cam-Matic®/57 mm block/becket‡         2 <sup>15</sup> /16 | Sheave<br>g           Description         in         mm           I         I         ST           Triple/150 Cam-Matic®/tbecket‡         2½/4         57           Triple/150 Cam-Matic®/becket‡         2¼/4         57           Triple/150 Cam-Matic®/d0 mm block/becket‡         2¼/4         57           Double         2¼/4         57           Triple/150 Cam-Matic®/d0 mm block/becket‡         2¼/4         57           Double         2¼/4         57           Triple/150 Cam-Matic®/tbecket‡         2½/4         57           Triple/150 Cam-Matic®/becket‡         2 <sup>15</sup> / <sub>16</sub> 75           Triple/150 Cam-Matic®/becket‡         2 <sup>15</sup> / <sub>16</sub> 75           Triple/150 Cam-Matic®/57 mm block/becket‡         2 <sup>15</sup> / <sub>16</sub> 75 | Sheave<br>Ø         Len           Description         in         mm         in           Image: | Sheave<br>Ø         Length           Description         in         mm         in         mm           Image: Image | Sheave<br>Ø         Length         We           Description         in         mm         in         mm         oz           I         Triple/150 Cam-Matic®‡         2½         57         4½         103         14.9           Triple/150 Cam-Matic®becket‡         2¼         57         4½         155         15.2           Triple/150 Cam-Matic®/becket‡         2¼         57         6⅓         156         18.3           Double         2¼         57         6⅓         116         7.2           I         Triple/150 Cam-Matic®\becket‡         2¼         57         6⅓         116         7.2           I         Triple/150 Cam-Matic®±         2¹%         75         6¾         136         31.0           Triple/150 Cam-Matic®±         2¹%         75         6¾         135         31.0           Triple/150 Cam-Matic®±         2¹%√16         75         6½         165         31.6           Triple/150 Cam-Matic®±         2¹%√16         75         6½         165         34.7 | Sheave<br>Ø         Length         Weijht           Description         in         mm         in         mm         oz         g           Image: Image | Sheave<br>Ø         Length         Weight         Max<br>Weight           Description         in         mm         in         mm         oz         g         in           Imple/150 Cam-Matic®t         2½/4         57         4½/16         103         14.9         421         3/8           Triple/150 Cam-Matic®/becket‡         2¼         57         4½/16         125         15.2         431         3/8           Triple/150 Cam-Matic®/becket‡         2¼         57         6⅛         166         18.3         520         3/8           Double         2¼         57         4№         116         7.2         204         3/8           Triple/150 Cam-Matic®/becket‡         2½/4         57         6%         116         7.2         204         3/8           Double         2½/4         57         6%         136         13.0         879         7/16           Triple/150 Cam-Matic®/±         2 <sup>15</sup> /16         75         6%         137         31.0         879         7/16           Triple/150 Cam-Matic®/becket‡         2 <sup>15</sup> /16         75         6½         165         31.6         896         7/16           Triple/150 Cam-Matic®/57 mm block/becket‡         2 <sup>1</sup> | Sheave<br>g         Length         Weight         Max Line<br>g           Description         in         mm         in         mm         oz         g         in         mm           Imple/150 Cam-Matic®t         21/4         57         41/16         103         14.9         421         3/8         10           Triple/150 Cam-Matic®/beckett         21/4         57         41/16         125         15.2         431         3/8         10           Triple/150 Cam-Matic®/beckett         21/4         57         61/8         156         18.3         520         3/8         10           Double         21/4         57         41/16         116         7.2         204         3/8         10           Double         21/4         57         61/8         156         18.3         520         3/8         10           Double         21/4         57         41/16         116         7.2         204         3/8         10           Double         21/4         57         61/8         137         31.0         879         7/16         12           Triple/150 Cam-Matic®/beckett         215/16         75         61/2         165         31.6 | Sheave<br>Ø         Length         Weight         Max Line<br>Ø         Shact<br>Ø           Description         in         mm         in         mm         oz         g         in         mm         in           Triple/150 Cam-Matic®t         21/4         57         41/16         103         14.9         421         3/8         10         1/4           Triple/150 Cam-Matic®/becket‡         21/4         57         41'5/16         125         15.2         431         3/8         10         1/4           Triple/150 Cam-Matic®/becket‡         21/4         57         61/8         156         18.3         520         3/8         10         1/4           Double         21/4         57         41'6/16         116         7.2         204         3/8         10         3/16           Double         21/4         57         61/8         116         7.2         204         3/8         10         3/16           Double         21/4         57         63/16         1137         31.0         879         7/16         12         5/16           Triple/150 Cam-Matic®thecket‡         215/16         75         61/2         165         31.6         896         7/ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | $ \begin{array}{c c c c c c c c c c c c c c c c c c c $ | Sheave<br>ØLengthMexipt<br>WeightMax imp<br>ØShack ip<br>working to<br>ØMaximut<br>working to<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br>Not<br> |

\$Maximum working loads and breaking loads for blocks based on cam strengths

## Small Boat 57 & 75 mm Flip-Flop Blocks

### NEW: 2142, 2143

Small Boat Flip-Flop blocks pivot around the line axis to keep line close to the deck. Hinged construction allows for various lead angles.

Lightweight, machined 6061-T6 aluminum cheeks pivot on fiber-reinforced plastic chocks. Sheave runs exclusively on a ball bearing system for fast trim and release under any load. Ball bearings, sheave, and sideplates are UV stabilized with carbon black for maximum protection.

Ratchamatic<sup>®</sup> versions roll freely in both directions under low loads and automatically engage a ratchet mechanism as loads increase, giving sailors a holding power of up to 15:1. The ratchet engagement can be adjusted to a higher or lower load depending on the sailor's strength, sailing style and system usage.

Reversible cam arms adjust and lock in a wide range of positions for crew accessibility and to accommodation of changing lead angles.

Open 5.70, Finot-Conq Architects, Phileas Boats - Pierrick Contin photo

Cam arms lock in a wide range of positions

Hardkote-anodized aluminum sideplates for lightweight strength

Available with plain sheaves or Ratchamatic<sup>®</sup>

> Block pivots around the line axis to keep line entry height low

2145

2689



| Part |                                                              | She               | eave<br>Ø | Wi                                   | idth | Ler                            | ngth | He                                   | ight | Мах                          | ine<br>Ø | We  | ight | Maxi<br>workin | mum<br>g load | Brea | king<br>ad |
|------|--------------------------------------------------------------|-------------------|-----------|--------------------------------------|------|--------------------------------|------|--------------------------------------|------|------------------------------|----------|-----|------|----------------|---------------|------|------------|
| No.  | Description                                                  | in                | mm        | in                                   | mm   | in                             | mm   | in                                   | mm   | in                           | mm       | 0Z  | g    | lb             | kg            | lb   | kg         |
| 2142 | 57 mm                                                        | 2 <sup>1</sup> /4 | 57        | 2                                    | 50   | 4 <sup>5</sup> / <sub>16</sub> | 110  | 2 <sup>1</sup> /8                    | 54   | <sup>3</sup> /8              | 10       | 5   | 141  | 792            | 360           | 1584 | 718        |
| 2143 | 57 mm/150 Cam                                                | 21/4              | 57        | 25/8                                 | 66   | 4 <sup>5</sup> / <sub>16</sub> | 110  | 4 <sup>5</sup> / <sub>16</sub>       | 110  | 3/8                          | 10       | 11  | 304  | 300            | 136           | 600  | 272        |
| 2144 | 57 mm Ratchamatic®                                           | 2 <sup>1</sup> /4 | 57        | 2                                    | 50   | 4 <sup>5</sup> / <sub>16</sub> | 110  | 2 <sup>5</sup> /8                    | 67   | 3/8                          | 10       | 5.5 | 156  | 500            | 227           | 1000 | 554        |
| 2145 | 57 mm Ratchamatic <sup>®</sup> /150 Cam-Matic <sup>®</sup> * | 2 <sup>1</sup> /4 | 57        | 25/8                                 | 66   | 4 <sup>5</sup> / <sub>16</sub> | 110  | 4 <sup>3</sup> / <sub>16</sub>       | 106  | <sup>3</sup> /8              | 10       | 12  | 329  | 300            | 136           | 600  | 272        |
| 2678 | 75 mm                                                        | 3                 | 75        | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64   | 5 <sup>5</sup> /8              | 143  | <b>3</b> <sup>3</sup> / <sub>4</sub> | 95   | <sup>9</sup> /16             | 14       | 9.7 | 275  | 1213           | 550           | 2426 | 1100       |
| 2679 | 75 mm/150 Cam-Matic®*                                        | 3                 | 75        | 25/8                                 | 67   | 5 <sup>5</sup> /8              | 143  | 5 <sup>9</sup> /16                   | 141  | <sup>9</sup> /16             | 14       | 17  | 485  | 300            | 136           | 600  | 272        |
| 2688 | 75 mm Ratchamatic®                                           | 3                 | 75        | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64   | 5 <sup>5</sup> /8              | 143  | <b>3</b> <sup>1</sup> / <sub>2</sub> | 89   | <sup>7</sup> /16             | 12       | 11  | 304  | 750            | 340           | 1500 | 680        |
| 2689 | 75 mm Ratchamatic <sup>®</sup> /150 Cam-Matic <sup>®</sup> * | 3                 | 75        | 2 <sup>5</sup> /8                    | 67   | 55/8                           | 143  | 5 <sup>3</sup> /8                    | 137  | <sup>7</sup> / <sub>16</sub> | 12       | 18  | 514  | 300            | 136           | 600  | 272        |

\*Maximum working loads and breaking loads for blocks based on cam strengths



Optimist, McLaughlin Boat Works — Bob Nagy photo

|      |                          | She             | ave |                                        |     |      |     | Max                          | line | Max   | imum    | Brea | iking |
|------|--------------------------|-----------------|-----|----------------------------------------|-----|------|-----|------------------------------|------|-------|---------|------|-------|
| Part |                          | e               | j – | Len                                    | gth | Wei  | ght | ļ                            | Ø    | worki | ng load | lo   | ad    |
| No.  | Description              | in              | mm  | in                                     | mm  | 0Z   | g   | in                           | mm   | lb    | kg      | lb   | kg    |
| 368  | In-line exit*            | <sup>5</sup> /8 | 16  | 3                                      | 76  | .94  | 27  | 7/32                         | 5    | 250   | 113     | 1200 | 544   |
| 376  | Forkhead                 | <sup>5</sup> /8 | 16  | <b>1</b> <sup>1</sup> /8               | 29  | .38  | 11  | 7/32                         | 5    | 250   | 113     | 1200 | 544   |
| 391  | Hook-in halyard          | <sup>5</sup> /8 | 16  | <b>1</b> <sup>5</sup> /8               | 41  | .5   | 13  | 7/32                         | 5    | 250   | 113     | 400  | 181   |
| 404  | Single***                | <sup>5</sup> /8 | 16  | <b>1</b> <sup>1</sup> /8               | 29  | .33  | 10  | <sup>7</sup> / <sub>32</sub> | 5    | 250   | 113     | 1200 | 544   |
| 405  | Single/becket            | <sup>5</sup> /8 | 16  | <b>1</b> <sup>1</sup> / <sub>2</sub>   | 38  | .44  | 12  | <sup>7</sup> / <sub>32</sub> | 5    | 250   | 113     | 1200 | 544   |
| 406  | Double                   | <sup>5</sup> /8 | 16  | <b>1</b> <sup>11</sup> / <sub>16</sub> | 43  | .94  | 27  | <sup>7</sup> / <sub>32</sub> | 5    | 450   | 204     | 1200 | 544   |
| 407  | Double/becket            | 5/8             | 16  | 21/8                                   | 54  | 1    | 28  | 7/ <sub>32</sub>             | 5    | 450   | 204     | 1200 | 544   |
| 408  | Triple                   | 5/8             | 16  | <b>1</b> <sup>13</sup> / <sub>16</sub> | 46  | 1.44 | 41  | 7/ <sub>32</sub>             | 5    | 700   | 318     | 1200 | 544   |
| 409  | Triple/becket            | 5/8             | 16  | <b>2</b> <sup>1</sup> / <sub>4</sub>   | 57  | 1.5  | 43  | 7/ <sub>32</sub>             | 5    | 700   | 318     | 1200 | 544   |
| 416  | Cheek*                   | <sup>5</sup> /8 | 16  | <b>1</b> <sup>13</sup> / <sub>16</sub> | 46  | .44  | 12  | 7/32                         | 5    | 250   | 113     | 1200 | 544   |
| 417  | Single/swivel * *        | <sup>5</sup> /8 | 16  | <b>1</b> <sup>13</sup> / <sub>16</sub> | 46  | .63  | 18  | 7/32                         | 5    | 250   | 113     | 750  | 339   |
| 421  | Thru-deck*               | <sup>5</sup> /8 | 16  | <b>2</b> <sup>3</sup> /8               | 60  | .63  | 18  | 7/32                         | 5    | 250   | 113     | 1200 | 544   |
| 432  | Pivot cheek block*       | <sup>5</sup> /8 | 16  | <b>1</b> <sup>3</sup> /8               | 35  | .38  | 11  | 7/32                         | 5    | 250   | 113     | 750  | 339   |
| 437  | Flip-flop block*         | 5/8             | 16  | <b>1</b> <sup>5</sup> / <sub>16</sub>  | 34  | .75  | 21  | 7/32                         | 5    | 250   | 113     | 1200 | 544   |
| 442  | Block/eyestrap assembly* | 5/8             | 16  | 13/8                                   | 35  | .44  | 12  | 7/32                         | 5    | 250   | 113     | 1200 | 544   |
| 467  | Narrow ferrule head      | 5/8             | 16  | 1 <sup>15</sup> /32                    | 37  | .44  | 12  | 5/ <sub>32</sub>             | 4    | 250   | 113     | 750  | 339   |

\*#8 (4 mm) RH fasteners \*\*Shackle pin diameter 5/32" (4 mm) \*\*\*Contact Harken<sup>®</sup> for replacement O-rings HSB340

## Micro

Low-friction Micro blocks are compact and lightweight. They are ideal for sailboards, smaller dinghies, and lightly loaded control lines on boats of all sizes.

Micro block sheaves run exclusively on ball bearing systems for fast trim and release under any load. Delrin<sup>®</sup> ball bearings and sideplates are UV stabilized with carbon black for maximum protection. Stainless steel sideplates add strength.



Offset sheaves prevent lines from chafing each other inside block

Large-diameter Delrin<sup>®</sup> sheaves

increase

mechanical

advantage

244

| Dout |                                           | She             | ave<br>Ø | l en                                 | ath | Wei      | aht      | Max | iline<br>Ø | Shack                        | le pin<br>A | Maxi | mum<br>n load | Brea  | king<br>ad |
|------|-------------------------------------------|-----------------|----------|--------------------------------------|-----|----------|----------|-----|------------|------------------------------|-------------|------|---------------|-------|------------|
| No   | Description                               | ,<br>in         | mm       | in                                   | mm  | 07       | yn.<br>  | in  |            | in                           | ,<br>       | lh   | kn            | lh IV | ka ka      |
| 224  | Cingle                                    | 7/.             | 00       | 11/.                                 | 20  | <u> </u> | <u> </u> | 1/. | 6          |                              |             | 200  | 01            | 1000  | E 4 4      |
| 224  |                                           | -/8             | 22       | 1./2                                 | 30  | .0       | 14       | ./4 | 0          | _                            |             | 200  | 91            | 1200  | 544        |
| 225  | Single/becket                             | ·/8             | 22       | 2                                    | 51  | ./5      | 21       | 1/4 | 6          | _                            |             | 200  | 91            | 1200  | 544        |
| 226  | Double                                    | 7/ <sub>8</sub> | 22       | 2                                    | 51  | 1.5      | 43       | 1/4 | 6          | —                            | —           | 350  | 159           | 1200  | 544        |
| 227  | Double/becket                             | 7/8             | 22       | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64  | 1.5      | 43       | 1/4 | 6          | —                            | _           | 350  | 159           | 1200  | 544        |
| 228  | Triple                                    | 7/8             | 22       | 2                                    | 51  | 2        | 57       | 1/4 | 6          | _                            | _           | 500  | 227           | 1200  | 544        |
| 229  | Triple/becket                             | 7/8             | 22       | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64  | 2.25     | 64       | 1/4 | 6          | _                            | _           | 500  | 227           | 1200  | 544        |
| 230  | Triple/423 Carbo-Cam®                     | 7/8             | 22       | 2                                    | 51  | 3.5      | 99       | 1/4 | 6          | —                            | —           | 500  | 227           | 1200  | 544        |
| 231  | Triple/423 Carbo-Cam <sup>®</sup> /becket | <sup>7</sup> /8 | 22       | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64  | 3.5      | 99       | 1/4 | 6          | —                            | —           | 500  | 227           | 1200  | 544        |
| 232  | Traveler                                  | <sup>7</sup> /8 | 22       | <b>2</b> <sup>3</sup> / <sub>4</sub> | 71  | 1.25     | 35       | 1/4 | 6          | —                            | —           | 200  | 91            | 1200  | 544        |
| 233  | Cheek***                                  | <sup>7</sup> /8 | 22       | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64  | .75      | 21       | 1/4 | 6          | —                            | —           | 200  | 91            | 1200  | 544        |
| 234  | Single/shackle                            | <sup>7</sup> /8 | 22       | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | .75      | 21       | 1/4 | 6          | <sup>3</sup> / <sub>16</sub> | 5           | 200  | 91            | 1200  | 544        |
| 235  | Single/shackle/becket                     | 7/8             | 22       | <b>2</b> <sup>3</sup> / <sub>4</sub> | 71  | 1        | 28       | 1/4 | 6          | <sup>3</sup> /16             | 5           | 200  | 91            | 1200  | 544        |
| 242  | Thru-deck***                              | 7/8             | 22       | 25/8                                 | 67  | 1        | 28       | 1/4 | 6          | —                            | —           | 200  | 91            | 1200  | 544        |
| 243  | Upright***                                | 7/8             | 22       | <b>1</b> 1/2                         | 38  | 1        | 28       | 1/4 | 6          | _                            | —           | 200  | 91            | 1200  | 544        |
| 244  | Fiddle/V-jam*                             | 7/8             | 22       | <b>3</b> <sup>1</sup> / <sub>2</sub> | 89  | 2        | 57       | 1/4 | 6          | <sup>3</sup> / <sub>16</sub> | 5           | 350  | 159           | 1200  | 544        |
| 245  | Fiddle/V-jam/becket**                     | 7/8             | 22       | 4                                    | 102 | 2        | 57       | 1/4 | 6          | <sup>3</sup> /16             | 5           | 350  | 159           | 1200  | 544        |
| 292  | Single/swivel                             | 7/8             | 22       | 2 <sup>3</sup> /8                    | 60  | 1        | 28       | 1/4 | 6          | <sup>5</sup> / <sub>32</sub> | 4           | 200  | 91            | 1200  | 544        |
| 377  | Forkhead                                  | 7/8             | 22       | 1 <sup>21</sup> /32                  | 42  | .56      | 16       | 1/4 | 6          | _                            | _           | 200  | 91            | 1200  | 544        |
| 443  | Block/eyestrap assembly‡                  | 7/8             | 22       | 1 <sup>3</sup> /4                    | 45  | .56      | 16       | 1/4 | 6          | _                            | _           | 200  | 91            | 1000  | 454        |

\*Use w/225 or 235 \*\*Use w/226 \*\*\*#10 (5 mm) RH fasteners ‡#8 (4 mm) RH fasteners

## **Classic Blocks**

## STRONG, DEPENDABLE, EXCEPTIONALLY FREE RUNNING

Own an older boat you love? Systems still work great, but you'd like to replace blocks with performance hardware that will enhance its traditional look? Harken's<sup>®</sup> Classic blocks are the answer. Strong, dependable and exceptionally free running, these blocks are the foundation of the Harken<sup>®</sup> line, with a vast library of hardware choices available to complement

your boat's style. Classic blocks come in multiple sizes, dozens of configurations and are ideal for almost every trimming task.



## **DETAILS MAKE THE DIFFERENCE**

#### LONG LASTING PROTECTION

Ball bearings, sheave and sideplates are UV-stabilized with carbon-black additive for maximum protection.

#### **HIGH-STRENGTH STRAPS**

Stainless steel straps reinforce blocks and resist corrosion.

1. Three-Way Head

Set screw in three-way head locks shackle in front or side positions, or lets block swivel to keep line from twisting.

#### 2. Free-Running Ball Bearings Free-running Delrin<sup>®</sup> ball bearings

roll on flat races for fast trim and release under high or low loads.

# Bullet

Use for:

Low-friction Bullet blocks lead control lines aft. They are compact and lightweight, with fast trim and release under high or low loads. A range of styles lets these blocks adapt to almost all control line applications.

Delrin<sup>®</sup> ball bearings, sheave, and sideplates are UV stabilized with carbon black for maximum protection.

Wire Bullet blocks use roller bearings to carry higher loads and feature Hardkote-anodized Teflon<sup>®</sup> impregnated aluminum sheaves for strength and corrosion resistance. Mast exit blocks with cams used for halyard controls and under boom mainsheets.

Pivoting exit blocks with cams are often used for halyard controls and as "head knockers" for sheeting directly from the boom. The 140 has a high safe working load and is designed for spar-mounted halyards and control lines. The 141 is also ideal for control lines.



|          |                                                   |                                      |          |                                      |      |      |     |                  |          |                              |             |                | Sh             | eaves see   | page 86    |
|----------|---------------------------------------------------|--------------------------------------|----------|--------------------------------------|------|------|-----|------------------|----------|------------------------------|-------------|----------------|----------------|-------------|------------|
| Part     |                                                   | She<br>Ø                             | ave<br>) | Len                                  | igth | Wei  | ght | Мах              | ine<br>Ø | Shacl                        | de pin<br>Ø | Maxi<br>workin | mum<br>1g load | Brea<br>Io: | king<br>ad |
| No.      | Description                                       | in                                   | mm       | in                                   | mm   | 0Z   | g   | in               | mm       | in                           | mm          | lb             | kg             | lb          | kg         |
| Bullet   |                                                   |                                      |          |                                      |      |      |     |                  |          |                              |             |                |                |             |            |
| 082      | Single                                            | <b>1</b> 1/8                         | 29       | 2                                    | 51   | 1    | 28  | <sup>5</sup> /16 | 8        | _                            | _           | 300            | 136            | 2000        | 907        |
| 083      | Single/becket                                     | <b>1</b> 1/8                         | 29       | <b>2</b> <sup>3</sup> / <sub>4</sub> | 70   | 1.25 | 35  | <sup>5</sup> /16 | 8        | _                            | _           | 300            | 136            | 2000        | 907        |
| 098      | Wire single                                       | <b>1</b> 1/8                         | 29       | 2                                    | 51   | 1    | 28  | <sup>5</sup> /16 | 8        | _                            | —           | 500            | 227            | 2000        | 907        |
| 099      | Wire single/becket                                | <b>1</b> 1/8                         | 29       | <b>2</b> <sup>3</sup> / <sub>4</sub> | 70   | 1.25 | 35  | <sup>5</sup> /16 | 8        | _                            | _           | 500            | 227            | 2000        | 907        |
| 166      | Single/swivel                                     | <b>1</b> <sup>1</sup> /8             | 29       | <b>2</b> <sup>3</sup> / <sub>4</sub> | 70   | 1.5  | 43  | <sup>5</sup> /16 | 8        | <sup>3</sup> / <sub>16</sub> | 5           | 300            | 136            | 2000        | 907        |
| 167      | Single/swivel/becket                              | <b>1</b> <sup>1</sup> /8             | 29       | <b>3</b> <sup>1</sup> / <sub>2</sub> | 89   | 1.75 | 50  | <sup>5</sup> /16 | 8        | <sup>3</sup> / <sub>16</sub> | 5           | 300            | 136            | 2000        | 907        |
| 183      | Wire swivel                                       | <b>1</b> <sup>1</sup> /8             | 29       | <b>2</b> <sup>3</sup> / <sub>4</sub> | 70   | 1.5  | 43  | <sup>5</sup> /16 | 8        | <sup>3</sup> / <sub>16</sub> | 5           | 500            | 227            | 2000        | 907        |
| 291      | Pivoting exit/472 Carbo-Cam®*                     | <b>1</b> <sup>1</sup> /8             | 29       | <b>2</b> <sup>3</sup> / <sub>4</sub> | 70   | 3.75 | 106 | 1/4              | 6        | _                            | _           | 150            | 68             | 2000        | 907        |
| 299      | Pivoting exit/472 Carbo-Cam <sup>®</sup> /becket* | <b>1</b> <sup>1</sup> /8             | 29       | <b>2</b> <sup>3</sup> / <sub>4</sub> | 70   | 4    | 113 | 1/4              | 6        | <sup>3</sup> / <sub>16</sub> | 5           | 150            | 68             | 2000        | 907        |
| Big Bull | et                                                |                                      |          |                                      |      |      |     |                  |          |                              |             |                |                |             |            |
| 125      | Single                                            | <b>1</b> <sup>1</sup> / <sub>2</sub> | - 38     | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64   | 1.5  | 43  | 3/8              | 10       | _                            | _           | 300            | 136            | 2000        | 907        |
| 126      | Single/becket                                     | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       | <b>3</b> <sup>1</sup> / <sub>2</sub> | 89   | 2    | 57  | 3/8              | 10       | _                            | _           | 300            | 136            | 2000        | 907        |
| 140      | Pivoting exit/150 Cam-Matic®*                     | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       | 31/8                                 | 79   | 8    | 227 | <sup>3</sup> /8  | 10       | _                            | _           | 300            | 136            | 2000        | 907        |
| 141      | Pivoting exit/365 Carbo-Cam®*                     | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       | 31/8                                 | 79   | 7    | 206 | <sup>3</sup> /8  | 10       | _                            | _           | 200            | 91             | 2000        | 907        |
| 146      | Single/shackle                                    | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       | 31/8                                 | 79   | 2    | 57  | <sup>3</sup> /8  | 10       | <sup>3</sup> / <sub>16</sub> | 5           | 300            | 136            | 2000        | 907        |
| 147      | Single/shackle/becket                             | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       | 4                                    | 102  | 2.25 | 64  | <sup>3</sup> /8  | 10       | <sup>3</sup> / <sub>16</sub> | 5           | 300            | 136            | 2000        | 907        |
| 148      | Traveler                                          | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       | <b>4</b> <sup>1</sup> / <sub>4</sub> | 108  | 2.5  | 71  | 3/8              | 10       | _                            | _           | 300            | 136            | 2000        | 907        |
| 168      | Single/swivel                                     | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       | 31/4                                 | 83   | 2.25 | 64  | 3/8              | 10       | <sup>3</sup> / <sub>16</sub> | 5           | 300            | 136            | 2000        | 907        |
| 169      | Single/swivel/becket                              | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       | 4                                    | 102  | 2.5  | 71  | 3/8              | 10       | <sup>3</sup> / <sub>16</sub> | 5           | 300            | 136            | 2000        | 907        |

\*#10 (5 mm) RH fasteners

# Bullet



Persson Snipe, DB Marine — Michele Postinghei photo

| Part          |                                              | She:<br>Ø                            | ave<br>1 | Len                                  | gth | Wei  | ight | Max<br>Ø                     | line<br>) | Shac                         | kle pin<br>Ø | Maxi<br>workir | imum<br>1g load | Breal<br>Ioa | king<br>Id |
|---------------|----------------------------------------------|--------------------------------------|----------|--------------------------------------|-----|------|------|------------------------------|-----------|------------------------------|--------------|----------------|-----------------|--------------|------------|
| No.           | Description                                  | in                                   | mm       | in                                   | mm  | OZ   | g    | in                           | mm        | in                           | mm           | lb             | kg              | lb           | kg         |
| Bullet        |                                              |                                      |          |                                      |     |      |      |                              |           |                              |              |                |                 |              |            |
| 084           | Double                                       | <b>1</b> <sup>1</sup> /8             | 29       | <b>2</b> <sup>3</sup> / <sub>4</sub> | 70  | 2.5  | 71   | 5/ <sub>16</sub>             | 8         | <sup>3</sup> / <sub>16</sub> | 5            | 400            | 181             | 2000         | 907        |
| 085           | Double/becket                                | <b>1</b> 1/8                         | 29       | <b>3</b> <sup>1</sup> / <sub>2</sub> | 89  | 2.75 | 78   | 5/ <sub>16</sub>             | 8         | <sup>3</sup> / <sub>16</sub> | 5            | 400            | 181             | 2000         | 907        |
| 086           | Triple                                       | <b>1</b> <sup>1</sup> /8             | 29       | 3                                    | 76  | 3.75 | 106  | <sup>5</sup> / <sub>16</sub> | 8         | <sup>3</sup> / <sub>16</sub> | 5            | 600            | 272             | 2000         | 907        |
| 087           | Triple/becket                                | <b>1</b> <sup>1</sup> /8             | 29       | 33/4                                 | 95  | 4.5  | 128  | <sup>5</sup> / <sub>16</sub> | 8         | <sup>3</sup> / <sub>16</sub> | 5            | 600            | 272             | 2000         | 907        |
| 094           | Triple/365 Carbo-Cam®                        | <b>1</b> <sup>1</sup> /8             | 29       | <b>3</b> <sup>3</sup> / <sub>4</sub> | 95  | 7    | 198  | <sup>5</sup> / <sub>16</sub> | 8         | <sup>3</sup> / <sub>16</sub> | 5            | 600            | 272             | 2000         | 907        |
| 095           | Triple/365 Carbo-Cam <sup>®</sup> /becket    | <b>1</b> <sup>1</sup> /8             | 29       | 4                                    | 102 | 7.25 | 205  | <sup>5</sup> / <sub>16</sub> | 8         | <sup>3</sup> / <sub>16</sub> | 5            | 600            | 272             | 2000         | 907        |
| 100           | Double wire                                  | <b>1</b> 1/8                         | 29       | <b>2</b> <sup>3</sup> / <sub>4</sub> | 70  | 2.75 | 78   | <sup>5</sup> / <sub>16</sub> | 8         | <sup>3</sup> / <sub>16</sub> | 5            | 750            | 340             | 2000         | 907        |
| 197           | Exit/150 Cam-Matic <sup>®</sup> (port/stbd)* | <b>1</b> 1/8                         | 29       | 3                                    | 76  | 4.5  | 128  | <sup>5</sup> / <sub>16</sub> | 8         | —                            | —            | 300            | 136             | 2000         | 907        |
| 392           | 4:1 Downhaul/468 Cam-Matic®*                 | <b>1</b> 1/8                         | 29       | 8                                    | 203 | 11   | 313  | 1/4                          | 6         | —                            | —            | 400            | 181             | 2000         | 907        |
| <b>Big Bu</b> | let                                          |                                      |          |                                      |     |      |      |                              |           |                              |              |                |                 |              |            |
| 127           | Double                                       | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       | <b>3</b> <sup>1</sup> / <sub>2</sub> | 89  | 4.25 | 120  | 3/8                          | 10        | 1/4                          | 6            | 600            | 272             | 2000         | 907        |
| 128           | Double/becket                                | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       | <b>4</b> <sup>1</sup> / <sub>2</sub> | 114 | 4.75 | 135  | 3/8                          | 10        | 1/4                          | 6            | 600            | 272             | 2000         | 907        |
| 129           | Triple                                       | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       | <b>3</b> <sup>3</sup> / <sub>4</sub> | 95  | 6.5  | 184  | 3/8                          | 10        | 1/4                          | 6            | 750            | 340             | 2000         | 907        |
| 130           | Triple/becket                                | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       | 4 <sup>3</sup> / <sub>4</sub>        | 121 | 6.75 | 191  | 3/8                          | 10        | 1/4                          | 6            | 750            | 340             | 2000         | 907        |
| 362           | Single/472 Carbo-Cam <sup>®</sup> /becket    | <b>1</b> 1/2                         | 38       | 4 <sup>3</sup> /16                   | 106 | 5    | 142  | 1/4                          | 6         | <sup>3/</sup> 16             | 5            | 150            | 68              | 2000         | 907        |

\*#10 (5 mm) RH fasteners



| Part            |                  | Sheave<br>Ø                          |    | Length                               |     | Weight |     | Max line<br>Ø                |    | Shackle pin<br>Ø |    | Maximum<br>working load |     | Breaking<br>load |     |
|-----------------|------------------|--------------------------------------|----|--------------------------------------|-----|--------|-----|------------------------------|----|------------------|----|-------------------------|-----|------------------|-----|
| No.             | Description      | in                                   | mm | in                                   | mm  | 0Z     | g   | in                           | mm | in               | mm | lb                      | kg  | lb               | kg  |
| Bullet          |                  |                                      |    |                                      |     |        |     |                              |    |                  |    |                         |     |                  |     |
| 088             | Thru-deck*       | <b>1</b> <sup>1</sup> /8             | 29 | 3                                    | 76  | 1.25   | 35  | <sup>5</sup> / <sub>16</sub> | 8  | _                | _  | 300                     | 136 | 2000             | 907 |
| 089             | In-line exit*    | <b>1</b> <sup>1</sup> /8             | 29 | 33/4                                 | 95  | 1.75   | 50  | <sup>5</sup> / <sub>16</sub> | 8  | _                | —  | 400                     | 181 | 2000             | 907 |
| 092             | Cheek**          | <b>1</b> <sup>1</sup> /8             | 29 | <b>2</b> <sup>7</sup> /8             | 73  | 1.25   | 35  | <sup>5/</sup> 16             | 8  | —                | —  | 300                     | 136 | 2000             | 907 |
| 096             | Upright* *       | <b>1</b> <sup>1</sup> /8             | 29 | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38  | 1.5    | 43  | <sup>5/</sup> 16             | 8  | —                | —  | 300                     | 136 | 2000             | 907 |
| 106             | Wire thru-deck*  | <b>1</b> <sup>1</sup> /8             | 29 | 3                                    | 76  | 1.25   | 35  | <sup>5</sup> / <sub>16</sub> | 8  | _                | —  | 500                     | 227 | 2000             | 907 |
| 108             | Wire upright**   | <b>1</b> <sup>1</sup> /8             | 29 | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38  | 1.5    | 43  | <sup>5</sup> /16             | 8  | _                | —  | 500                     | 227 | 2000             | 907 |
| 109             | Wire cheek**     | <b>1</b> <sup>1</sup> /8             | 29 | 2 <sup>7</sup> /8                    | 73  | 1.25   | 35  | <sup>5</sup> / <sub>16</sub> | 8  | —                | —  | 500                     | 227 | 2000             | 907 |
| 113             | Pivoting cheek** | <b>1</b> <sup>1</sup> /8             | 29 | <b>1</b> <sup>1</sup> /8             | 29  | 1      | 28  | <sup>5</sup> / <sub>16</sub> | 8  | —                | —  | 300                     | 136 | 2000             | 907 |
| 220             | Double upright** | <b>1</b> <sup>1</sup> /8             | 29 | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38  | 2.25   | 64  | <sup>5</sup> / <sub>16</sub> | 8  | —                | —  | 400                     | 181 | 2000             | 907 |
| 287             | Thru-deck**      | <b>1</b> <sup>1</sup> /8             | 29 | 3                                    | 76  | 1.25   | 35  | <sup>5</sup> / <sub>16</sub> | 8  | —                | —  | 300                     | 136 | 2000             | 907 |
| 288             | Wire thru-deck** | <b>1</b> <sup>1</sup> /8             | 29 | 3                                    | 76  | 1.5    | 43  | <sup>5</sup> / <sub>16</sub> | 8  | —                | —  | 400                     | 181 | 2000             | 907 |
| 289             | In-line exit**   | <b>1</b> <sup>1</sup> /8             | 29 | 33/4                                 | 95  | 2      | 60  | <sup>5</sup> / <sub>16</sub> | 8  | _                | _  | 400                     | 181 | 2000             | 907 |
| <b>Big Bull</b> | et               |                                      |    |                                      |     |        |     |                              |    |                  |    |                         |     |                  |     |
| 131             | Thru-deck*       | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | <b>3</b> <sup>1</sup> / <sub>2</sub> | 89  | 2.25   | 64  | 3/8                          | 10 | _                | —  | 300                     | 136 | 2000             | 907 |
| 132             | Cheek*           | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | <b>3</b> <sup>1</sup> / <sub>2</sub> | 89  | 2      | 57  | <sup>3</sup> /8              | 10 | _                | —  | 300                     | 136 | 2000             | 907 |
| 134             | In-line exit*    | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | 5                                    | 127 | 3.25   | 92  | <sup>3</sup> /8              | 10 | _                | —  | 600                     | 272 | 2000             | 907 |
| 222             | Upright* *       | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 2.5    | 71  | <sup>3</sup> /8              | 10 | _                | —  | 300                     | 136 | 2000             | 907 |
| 223             | Double upright** | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 3.25   | 92  | 3/8                          | 10 | _                | _  | 600                     | 272 | 2000             | 907 |
| Dinghy          |                  |                                      |    |                                      |     |        |     |                              |    |                  |    |                         |     |                  |     |
| 046             | Thru-deck‡       | <b>1</b> <sup>3</sup> / <sub>4</sub> | 44 | 3                                    | 76  | 4      | 113 | 3/8                          | 10 | _                | _  | 350                     | 159 | 2000             | 907 |

\*#10 (5 mm) FH fasteners \*\*#10 (5 mm) RH fasteners ‡#8 (4 mm) RH fasteners Contact Harken for other dinghy 1<sup>3</sup>/4" (44 mm) blocks
## 2.25 in & 3.00 in

The 2.25 in (57 mm) and 3.00 (76 mm) are compact and lightweight, with fast trim and release under high or low loads. Perfect for dinghies, scows, beachcats and iceboats, as well as small offshore racers and cruisers.

Delrin<sup>®</sup> ball bearings, sheave, and sideplates are UV stabilized with carbon black for maximum protection.

The 3.00 in (76 mm) single block comes in high-load or low-load configurations. High-load blocks feature Torlon<sup>®</sup> bearings and forged stainless steel shackles.

The wire version features Hardkote-anodized, Teflon®impregnated aluminum sheaves for strength and corrosion resistance.

#### Use for:

Shackle can lock in either direction or can swivel to keep line from twisting High-strength stainless steel straps reinforce blocks Multiple sheave configurations use a bridge coupler to spread

002

the load Removable beckets allow

attachment of spliced line



| Part  |                          | Shea<br>Ø                            | ave | Len                                  | gth | Wei                                  | ght | Max                          | line<br>ð | Shac                         | kle pin<br>Ø | Maxi<br>workir | mum<br>Ig load | Brea<br>Ioa | king<br>ad |
|-------|--------------------------|--------------------------------------|-----|--------------------------------------|-----|--------------------------------------|-----|------------------------------|-----------|------------------------------|--------------|----------------|----------------|-------------|------------|
| No.   | Description              | in                                   | mm  | in                                   | mm  | 0Z                                   | g   | in                           | mm        | in                           | mm           | lb             | kg             | lb          | kg         |
| 2.25" |                          |                                      |     |                                      |     |                                      |     |                              |           |                              |              |                |                |             |            |
| 001   | Single                   | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | <b>4</b> <sup>1</sup> / <sub>4</sub> | 108 | <b>4</b> <sup>1</sup> / <sub>2</sub> | 128 | <sup>7</sup> / <sub>16</sub> | 12        | <sup>3</sup> / <sub>16</sub> | 5            | 500            | 227            | 2500        | 1134       |
| 002   | Single/becket            | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 5                                    | 127 | 5                                    | 142 | <sup>7</sup> / <sub>16</sub> | 12        | <sup>3</sup> / <sub>16</sub> | 5            | 500            | 227            | 2500        | 1134       |
| 003   | Double                   | 21/4                                 | 57  | <b>4</b> <sup>1</sup> / <sub>2</sub> | 114 | <b>8</b> <sup>1</sup> / <sub>2</sub> | 241 | <sup>7</sup> / <sub>16</sub> | 12        | 1/4                          | 6            | 1000           | 454            | 3000        | 1361       |
| 004   | Double/becket            | 21/4                                 | 57  | <b>5</b> <sup>1</sup> / <sub>2</sub> | 138 | <b>9</b> <sup>1</sup> / <sub>2</sub> | 269 | <sup>7</sup> / <sub>16</sub> | 12        | 1/4                          | 6            | 1000           | 454            | 3000        | 1361       |
| 013   | Cheek‡*                  | 21/4                                 | 57  | 31/4                                 | 83  | 5                                    | 142 | <sup>7</sup> / <sub>16</sub> | 12        | _                            | _            | 500            | 227            | 2500        | 1134       |
| 047   | Thru-deck*               | 21/4                                 | 57  | <b>3</b> <sup>1</sup> / <sub>2</sub> | 89  | 5 <sup>1</sup> /2                    | 156 | <sup>7</sup> / <sub>16</sub> | 12        | _                            | _            | 500            | 227            | 2500        | 1134       |
| 076   | Triple/becket            | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | <b>5</b> <sup>3</sup> / <sub>4</sub> | 146 | 13 <sup>1</sup> /2                   | 383 | <sup>7</sup> / <sub>16</sub> | 12        | 1/4                          | 6            | 1200           | 544            | 3000        | 1361       |
| 206   | Upright lead * *         | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 31/4                                 | 83  | 5 <sup>1</sup> /2                    | 156 | <sup>7</sup> / <sub>16</sub> | 12        | _                            | _            | 500            | 227            | 2500        | 1134       |
| 3.00" |                          |                                      |     |                                      |     |                                      |     |                              |           |                              |              |                |                |             |            |
| 005   | Single                   | 3                                    | 76  | 5                                    | 127 | 7                                    | 198 | 7/16                         | 12        | <sup>3</sup> / <sub>16</sub> | 5            | 750            | 340            | 2500        | 1134       |
| 011   | Heavy-duty single        | 3                                    | 76  | 5 <sup>1</sup> /4                    | 133 | 8                                    | 227 | <sup>7</sup> / <sub>16</sub> | 12        | 1/4                          | 6            | 750            | 340            | 3000        | 1361       |
| 012   | Heavy-duty single/becket | 3                                    | 76  | 61/4                                 | 159 | <b>8</b> <sup>1</sup> / <sub>2</sub> | 241 | <sup>7</sup> / <sub>16</sub> | 12        | 1/4                          | 6            | 750            | 340            | 3000        | 1361       |
| 202   | Wire single              | 3                                    | 76  | 5 <sup>1</sup> /4                    | 133 | <b>9</b> <sup>1</sup> / <sub>2</sub> | 269 | 7/ <sub>16</sub>             | 12        | 1/4                          | 6            | 850            | 386            | 3000        | 1361       |

‡Includes fasteners & mounting pad \*#8 (4 mm) RH fasteners \*\*#10 (5 mm) RH fasteners

## **Hexaratchets**®

Hexaratchets<sup>®</sup> grip loaded sheets, yet allow sailors to ease and trim quickly and with complete control. A switch on the side engages and disengages the ratchet mechanism.

Ratchets feature Hardkote-anodized, Teflon®impregnated eight-sided sheaves machined from solid aluminum for strength and corrosion resistance. Free-rolling Delrin® ball bearings, sheave, and sideplates are UV stabilized with carbon black for maximum protection. Highstrength stainless steel straps reinforce blocks.

#### **Reverse Ratchets**

Use the 043 or 044 reverse ratchets with the 019 and 009 singles or 050 single with becket on spinnaker and jib sheets where ratchets rotate in opposite directions and on/off switches face up.

#### **Hexa-Cat Bases**

Combine the 193 and170 Hexa-Cat bases with Big Bullet or 2.25 in (57 mm) blocks for purchases from 5:1 to 8:1.

019



043



015

<sup>3/8"</sup> 16 mm

017

188

018

Shackle can lock in

either direction or

can swivel to keep

line from twisting

Removable becket allows insertion of spliced eve

| Port  |                                           | She                                  | ave<br>A | Ler                                  | nath | Wei                                  | iaht | Max                          | line<br>7 | Shac                         | kle pin<br>Ø | Maxi | mum<br>n load | Brea | king<br>ad | Holding power               |                  |
|-------|-------------------------------------------|--------------------------------------|----------|--------------------------------------|------|--------------------------------------|------|------------------------------|-----------|------------------------------|--------------|------|---------------|------|------------|-----------------------------|------------------|
| No.   | Description                               | in                                   | mm       | in                                   | mm   | oz                                   | g    | in                           | mm        | in                           | mm           | lb   | kg            | lb   | kg         | w/100 wrap<br>50 lb (23 kg) | Turns            |
| 2.25" |                                           |                                      |          |                                      |      |                                      |      |                              |           |                              |              |      |               |      |            |                             |                  |
| 017   | Cheek (stbd)‡                             | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>3</b> <sup>3</sup> / <sub>4</sub> | 95   | <b>4</b> <sup>1</sup> / <sub>2</sub> | 128  | <sup>3</sup> /8              | 10        | —                            | —            | 500  | 227           | 1000 | 454        | 10:1                        | Clockwise        |
| 018   | Cheek (port)‡                             | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>3</b> <sup>3</sup> / <sub>4</sub> | 95   | <b>4</b> <sup>1</sup> / <sub>2</sub> | 128  | <sup>3</sup> /8              | 10        | —                            | —            | 500  | 227           | 1000 | 454        | 10:1                        | Counterclockwise |
| 019   | Single                                    | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>4</b> <sup>1</sup> / <sub>4</sub> | 108  | 5                                    | 142  | <sup>3</sup> /8              | 10        | <sup>3</sup> / <sub>16</sub> | 5            | 500  | 227           | 2000 | 907        | 10:1                        | Clockwise        |
| 043   | Single                                    | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>4</b> <sup>1</sup> / <sub>4</sub> | 108  | 5                                    | 142  | <sup>3</sup> /8              | 10        | <sup>3</sup> / <sub>16</sub> | 5            | 500  | 227           | 2000 | 907        | 10:1                        | Counterclockwise |
| 187   | Single/150 Cam-Matic®                     | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>4</b> <sup>1</sup> / <sub>4</sub> | 108  | 10 <sup>1</sup> / <sub>2</sub>       | 298  | <sup>3</sup> /8              | 10        | <sup>3</sup> / <sub>16</sub> | 5            | 500  | 227           | 2000 | 907        | 10:1                        | Clockwise        |
| 188   | Single/150 Cam-Matic <sup>®</sup> /becket | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 5                                    | 127  | 11                                   | 312  | <sup>3</sup> /8              | 10        | <sup>3</sup> / <sub>16</sub> | 5            | 500  | 227           | 2000 | 907        | 10:1                        | Clockwise        |
| 3.00" |                                           |                                      |          |                                      |      |                                      |      |                              |           |                              |              |      |               |      |            |                             |                  |
| 009   | Single                                    | 3                                    | 76       | 5                                    | 127  | <b>8</b> <sup>1</sup> / <sub>2</sub> | 241  | <sup>7</sup> / <sub>16</sub> | 12        | <sup>3</sup> /16             | 5            | 750  | 341           | 2000 | 907        | 15:1                        | Clockwise        |
| 015   | Cheek (stbd)‡                             | 3                                    | 76       | 4                                    | 102  | <b>7</b> <sup>1</sup> / <sub>2</sub> | 213  | <sup>7</sup> /16             | 12        | —                            | —            | 750  | 341           | 1500 | 680        | 15:1                        | Clockwise        |
| 016   | Cheek (port)‡                             | 3                                    | 76       | 4                                    | 102  | <b>7</b> <sup>1</sup> / <sub>2</sub> | 213  | <sup>7</sup> /16             | 12        | —                            | —            | 750  | 341           | 1500 | 680        | 15:1                        | Counterclockwise |
| 044   | Single                                    | 3                                    | 76       | 5                                    | 127  | <b>8</b> <sup>1</sup> / <sub>2</sub> | 241  | <sup>7</sup> /16             | 12        | <sup>3</sup> / <sub>16</sub> | 5            | 750  | 341           | 2000 | 907        | 15:1                        | Counterclockwise |
| 050   | Single/becket                             | 3                                    | 76       | 6                                    | 152  | 9                                    | 255  | 7/16                         | 12        | 3/16                         | 5            | 750  | 341           | 2000 | 907        | 15:1                        | Clockwise        |

Cam cleats reverse for up or down engagement/

disenaaaement

Ratchet on/off

when loaded.

switch works even

Eight-sided aluminum

sheave for 10:1 or

15:1 holding power

17/8" 48 mm

with 180° wrap

<sup>9/16"</sup> 14 mm

016

044

‡Includes #8 (4 mm) RH fasteners and mounting pad



| Manual Victoria Contractoria Contractoria Contractoria Contractoria Contractoria Contractoria Contractoria Contra | пех  | a-cal II | laxiiii | uiii wu | rkilly | iuaus |     |      |     |
|-------------------------------------------------------------------------------------------------------------------|------|----------|---------|---------|--------|-------|-----|------|-----|
|                                                                                                                   |      | 5:       | 1       | 6:      | 1      | 7:    | 1   | 8:   | 1   |
|                                                                                                                   | Base | lb       | kg      | lb      | kg     | lb    | kg  | lb   | kg  |
| Little Hexa-Cats                                                                                                  | 193  | 1100     | 499     | 1100    | 499    | 1250  | 567 | 1250 | 567 |
| Hexa-Cats                                                                                                         | 170  | 1500     | 680     | 1500    | 680    | 1500  | 680 | 1500 | 680 |

|                    |            | Boo                | m blocks (single | e block on boon    | ı)         |                    |            |
|--------------------|------------|--------------------|------------------|--------------------|------------|--------------------|------------|
| 5                  | :1         | 6                  | :1               | 7:                 | 1          | 8                  | :1         |
| Little<br>Hexa-Cat | Hexa-Cat   | Little<br>Hexa-Cat | Hexa-Cat         | Little<br>Hexa-Cat | Hexa-Cat   | Little<br>Hexa-Cat | Hexa-Cat   |
| 128                | 004/2603/  | 129                | 048/2604         | 130                | 076/2605   | 2654               | 2677       |
|                    | 2663       |                    | or 2664          |                    | or 2665    |                    | 2631       |
|                    |            | Boom               | blocks (multipl  | e blocks on boo    | m)         |                    |            |
| 126/125            | 001/002 or | 125/127            | 001/003 or       | 126/127            | 002/003 or | 2 x 127            | 2 x 003 or |
|                    | 2601/2600  |                    | 2602/2600        |                    | 2603/2600  |                    | 2 x 2602   |
|                    | 2660/2661  |                    | 2662/2660        |                    | 2663/2660  |                    | 2 x 2662   |
| 127                | 003        | 128                | 004              | 129                | 048        | 130                | 076        |
| 193                | 170        | 193                | 170              | 193                | 170        | 193                | 170        |

|                                         | Shea<br>Ø                                                                                                                     | ave                                                                                                                                                                                                                                   | Len                                                                                                                                                                                                                                    | gth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Max                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ine<br>Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Shack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | kle pin<br>Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Maxi<br>workir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | imum<br>1g load                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Brea<br>loa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | king<br>ad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                             | in                                                                                                                            | mm                                                                                                                                                                                                                                    | in                                                                                                                                                                                                                                     | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0Z                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Use with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                         |                                                                                                                               |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Triple/light-duty/swivel/150 Cam-Matic® | <b>2</b> <sup>1</sup> / <sub>4</sub>                                                                                          | 57                                                                                                                                                                                                                                    | <b>4</b> <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                   | 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>7</sup> /16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 227                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 907                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 004 - 5:1/048 - 6:1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Double                                  | <b>2</b> <sup>1</sup> / <sub>4</sub>                                                                                          | 57                                                                                                                                                                                                                                    | 4 <sup>1</sup> /8                                                                                                                                                                                                                      | 105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>3</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>3</sup> /16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 341                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         |                                                                                                                               |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Hexa-Cat/150 Cam-Matic®                 | 3                                                                                                                             | 76                                                                                                                                                                                                                                    | 7 <sup>1</sup> /4                                                                                                                                                                                                                      | 184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 16 <sup>1</sup> /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1361                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Little Hexa-Cat/150 Cam-Matic®          | <b>2</b> <sup>1</sup> / <sub>4</sub>                                                                                          | 57                                                                                                                                                                                                                                    | <b>5</b> <sup>3</sup> / <sub>4</sub>                                                                                                                                                                                                   | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 340                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <sup>3</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                         | Description<br>Triple/light-duty/swivel/150 Cam-Matic®<br>Double<br>Hexa-Cat/150 Cam-Matic®<br>Little Hexa-Cat/150 Cam-Matic® | Shead       Shead         Ø       Description       in         Triple/light-duty/swivel/150 Cam-Matic®       21/4         Double       21/4         Hexa-Cat/150 Cam-Matic®       3         Little Hexa-Cat/150 Cam-Matic®       21/4 | Sheave<br>Ø       Description     in     mm       Triple/light-duty/swivel/150 Cam-Matic®     21/4     57       Double     21/4     57       Hexa-Cat/150 Cam-Matic®     3     76       Little Hexa-Cat/150 Cam-Matic®     21/4     57 | Sheave<br>Ø         Len           Description         in         mm         in           Triple/light-duty/swivel/150 Cam-Matic®         2 <sup>1</sup> / <sub>4</sub> 57         4 <sup>1</sup> / <sub>2</sub> Double         2 <sup>1</sup> / <sub>4</sub> 57         4 <sup>1</sup> / <sub>8</sub> Hexa-Cat/150 Cam-Matic®         3         76         7 <sup>1</sup> / <sub>4</sub> Little Hexa-Cat/150 Cam-Matic®         2 <sup>1</sup> / <sub>4</sub> 57         5 <sup>3</sup> / <sub>4</sub> | Sheave<br>Ø         Length           Description         in         mm         in         mm           Triple/light-duty/swivel/150 Cam-Matic®         2 <sup>1</sup> /4         57         4 <sup>1</sup> /2         114           Double         2 <sup>1</sup> /4         57         4 <sup>1</sup> /8         105           Hexa-Cat/150 Cam-Matic®         3         76         7 <sup>1</sup> /4         184           Little Hexa-Cat/150 Cam-Matic®         2 <sup>1</sup> /4         57         5 <sup>3</sup> /4         146 | Sheave<br>Ø         Length         Wei           Description         in         mm         in         mm         oz           Triple/light-duty/swivel/150 Cam-Matic®         2 <sup>1</sup> /4         57         4 <sup>1</sup> /2         114         18           Double         2 <sup>1</sup> /4         57         4 <sup>1</sup> /8         105         10           Hexa-Cat/150 Cam-Matic®         3         76         7 <sup>1</sup> /4         184         16 <sup>1</sup> /2           Little Hexa-Cat/150 Cam-Matic®         2 <sup>1</sup> /4         57         5 <sup>3</sup> /4         146         12 | Sheave<br>Ø         Length         Weight           Description         in         mm         in         mm         oz         g           Triple/light-duty/swivel/150 Cam-Matic®         2 <sup>1</sup> /4         57         4 <sup>1</sup> /2         114         18         510           Double         2 <sup>1</sup> /4         57         4 <sup>1</sup> /2         105         10         284           Hexa-Cat/150 Cam-Matic®         3         76         7 <sup>1</sup> /4         184         16 <sup>1</sup> /2         468           Little Hexa-Cat/150 Cam-Matic®         2 <sup>1</sup> /4         57         5 <sup>3</sup> /4         146         12         340 | Sheave<br>Ø         Length         Weight         Max           Description         in         mm         in         mm         oz         g         in           Triple/light-duty/swivel/150 Cam-Matic®         21/4         57         41/2         114         18         510         7/16           Double         21/4         57         41/8         105         10         284         3/8           Hexa-Cat/150 Cam-Matic®         3         76         71/4         184         161/2         468         7/16           Little Hexa-Cat/150 Cam-Matic®         21/4         57         53/4         146         12         340         3/8 | Sheave<br>Ø         Length         Weight<br>0         Max line<br>Ø           Description         in         mm         in         mm         oz         g         in         mm           Triple/light-duty/swivel/150 Cam-Matic®         2¹/4         57         4¹/2         114         18         510         7/16         12           Double         2¹/4         57         4¹/8         105         10         284         ³/s         12           Hexa-Cat/150 Cam-Matic®         3         76         7¹/4         184         16¹/2         468         7/16         12           Little Hexa-Cat/150 Cam-Matic®         2¹/4         57         5³/4         146         12         340         ³/s         10 | Sheave         Max line         < | Sheave<br>Ø         Length<br>In         Weight<br>Max         Max line<br>Ø         Shackle pin<br>Ø           Description         in         mm         in         mm         oz         g         in         mm         in         mm           Triple/light-duty/swivel/150 Cam-Matic®         21/4         57         41/2         114         18         510         7/16         12         1/4         6           Double         21/4         57         41/8         105         10         284         3/8         12         3/16         5           Hexa-Cat/150 Cam-Matic®         3         76         71/4         184         161/2         468         7/16         12         1/4         6           Little Hexa-Cat/150 Cam-Matic®         21/4         57         53/4         146         12         340         3/8         10         1/4         6 | Sheave<br>Ø         Length<br>Length         Weight<br>Weight         Max line<br>Ø         Shackle pin<br>Ø         Max<br>workin           Description         in         mm         in         mm         oz         g         in         mm         in         mm         lb           Triple/light-duty/swivel/150 Cam-Matic®         21/4         57         41/2         114         18         510         7/16         12         1/4         6         500           Double         21/4         57         41/8         105         10         284         3/8         12         3/16         5         750           Hexa-Cat/150 Cam-Matic®         3         76         71/4         184         161/2         468         7/16         12         1/4         6            Little Hexa-Cat/150 Cam-Matic®         21/4         57         53/4         146         12         3/8         10         1/4         6 | Sheave<br>Ø         Length         Weight<br>oz         Max line<br>Ø         Shackle pin<br>Ø         Maximum<br>working load           Description         in         mm         in         mm         oz         g         in         mm         in         mm         bk         kg           Triple/light-duty/swivel/150 Cam-Matic®         2!/4         57         4!/2         114         18         510         7/16         12         1/4         6         500         227           Double         2!/4         57         4!/8         105         10         284         3/8         12         3/16         5         750         341           Hexa-Cat/150 Cam-Matic®         3         76         7!/4         184         16!/2         468         7/16         12         1/4         6         —         —           Little Hexa-Cat/150 Cam-Matic®         2!/4         57         5³/4         146         12         340         3/8         10         1/4         6         —         — | Sheave<br>Ø         Length         Weight<br>Weight         Max line<br>Ø         Shackle pin<br>Ø         Maximum<br>working load         Brea<br>load           Description         in         mm         in         mm         oz         g         in         mm         load         load< | Sheave<br>Ø         Length<br>in         Weight<br>m         Max line<br>Ø         Shackle pin<br>Ø         Maximum<br>working load         Breaking<br>load           Description         in         mm         in         mm         oz         g         in         mm         in         mm         load         load         load         load           Triple/light-duty/swivel/150 Cam-Matic®         2!/4         57         4!/2         114         18         510         7/16         12         1/4         6         500         227         2000         907           Double         2!/4         57         4!/2         105         10         284         3/8         12         3/16         5         750         341         2500         1134           Hexa-Cat/150 Cam-Matic®         3         76         7!/4         184         16!/2         468         7/16         12         1/4         6          3000         1361           Little Hexa-Cat/150 Cam-Matic®         2!/4         57         5³/4         146         12         340         3/8         10         1/4         6          2500         1134 |

3" Actual Size 2.25" Actual Size

# **Fiddle**

Low-friction Fiddle blocks build three- and four-part purchases. They come in a variety of configurations, including Fiddles with Cam-Matic cleats on adjustable arms and Fiddles with on/off Hexaratchet® switches that toggle the ratchet mechanism. Fast trim and release under high or low loads.

Ratchets grip loaded sheets, yet allow line to be eased with complete control. They feature Hardkoteanodized, Teflon<sup>®</sup>-impregnated eight-sided sheaves machined from solid aluminum for strength and corrosion resistance. Delrin<sup>®</sup> ball bearings, sheave, and sideplates are UV stabilized with carbon black for maximum protection. High-strength stainless steel straps reinforce blocks.

For easy removal, add a 111 snap shackle to the Little Fiddle and a 112 to the Fiddle.

058

053

028

C

Use for: Mainsheets Vangs



Fiddle Actual Size

| Part      |                                                          | She<br>Ø                                           | ave<br>í | Ler                                  | ngth | Wei                                   | ght | Max             | c line<br>Ø | Shack                        | de pin<br>Ø | Maxi<br>workin | mum<br>g load | Brea<br>loa | king<br>1d |              |
|-----------|----------------------------------------------------------|----------------------------------------------------|----------|--------------------------------------|------|---------------------------------------|-----|-----------------|-------------|------------------------------|-------------|----------------|---------------|-------------|------------|--------------|
| No.       | Description                                              | in                                                 | mm       | in                                   | mm   | 0Z                                    | g   | in              | mm          | in                           | mm          | lb             | kg            | lb          | kg         | Use with     |
| Little Fi | ddle                                                     |                                                    |          |                                      |      |                                       |     |                 |             |                              |             |                |               |             |            |              |
| 053       | Little Fiddle                                            | <b>2</b> <sup>1</sup> /4/ <b>1</b> <sup>1</sup> /2 | 57/38    | 6                                    | 152  | <b>6</b> <sup>1</sup> / <sub>2</sub>  | 184 | <sup>3</sup> /8 | 10          | <sup>3</sup> / <sub>16</sub> | 5           | 500            | 227           | 2000        | 907        | 002 for 3:1  |
| 054       | Little Fiddle/becket                                     | <b>2</b> <sup>1</sup> /4/ <b>1</b> <sup>1</sup> /2 | 57/38    | <b>6</b> <sup>3</sup> / <sub>4</sub> | 171  | 7                                     | 198 | <sup>3</sup> /8 | 10          | <sup>3</sup> / <sub>16</sub> | 5           | 500            | 227           | 2000        | 907        | 053 for 4:1  |
| 055       | Little Fiddle/ratchet                                    | <b>2</b> <sup>1</sup> /4/ <b>1</b> <sup>1</sup> /2 | 57/38    | 6                                    | 152  | 7                                     | 198 | <sup>3</sup> /8 | 10          | <sup>3</sup> / <sub>16</sub> | 5           | 500            | 227           | 2000        | 907        | 002 for 3:1  |
| 056       | Little Fiddle/ratchet/becket                             | <b>2</b> <sup>1</sup> /4/ <b>1</b> <sup>1</sup> /2 | 57/38    | <b>6</b> <sup>3</sup> / <sub>4</sub> | 171  | <b>7</b> <sup>1</sup> / <sub>2</sub>  | 213 | <sup>3</sup> /8 | 10          | <sup>3</sup> / <sub>16</sub> | 5           | 500            | 227           | 2000        | 907        | 053 for 4:1  |
| 057       | Little Fiddle/150 Cam-Matic®                             | <b>2</b> <sup>1</sup> /4/ <b>1</b> <sup>1</sup> /2 | 57/38    | 6                                    | 152  | 12                                    | 340 | <sup>3</sup> /8 | 10          | <sup>3</sup> / <sub>16</sub> | 5           | 500            | 227           | 2000        | 907        | 002 for 3:1  |
| 058       | Little Fiddle/150 Cam-Matic <sup>®</sup> /becket         | <b>2</b> <sup>1</sup> /4/ <b>1</b> <sup>1</sup> /2 | 57/38    | <b>6</b> <sup>3</sup> / <sub>4</sub> | 171  | <b>12</b> <sup>1</sup> / <sub>2</sub> | 354 | <sup>3</sup> /8 | 10          | <sup>3</sup> / <sub>16</sub> | 5           | 500            | 227           | 2000        | 907        | 053 for 4:1  |
| 059       | Little Fiddle/ratchet/150 Cam-Matic®                     | <b>2</b> <sup>1</sup> /4/ <b>1</b> <sup>1</sup> /2 | 57/38    | 6                                    | 152  | 12                                    | 340 | <sup>3</sup> /8 | 10          | <sup>3</sup> / <sub>16</sub> | 5           | 500            | 227           | 2000        | 907        | 002 for 3:1  |
| 060       | Little Fiddle/ratchet/150 Cam-Matic <sup>®</sup> /becket | 2 <sup>1</sup> /4/1 <sup>1</sup> /2                | 57/38    | <b>6</b> <sup>3</sup> / <sub>4</sub> | 171  | 13                                    | 367 | <sup>3</sup> /8 | 10          | <sup>3</sup> / <sub>16</sub> | 5           | 500            | 227           | 2000        | 907        | 053 for 4:1  |
| Fiddle    |                                                          |                                                    |          |                                      |      |                                       |     |                 |             |                              |             |                |               |             |            |              |
| 028       | Fiddle                                                   | 3/1 <sup>3</sup> /4                                | 76/44    | 7 <sup>1</sup> /4                    | 184  | 11                                    | 312 | <sup>3</sup> /8 | 10          | 1/4                          | 6           | 750            | 340           | 2500        | 1134       | 2661 for 3:1 |
| 030       | Fiddle/becket                                            | 3/1 <sup>3</sup> /4                                | 76/44    | <b>8</b> <sup>1</sup> / <sub>2</sub> | 241  | <b>11</b> <sup>1</sup> / <sub>2</sub> | 326 | <sup>3</sup> /8 | 10          | 1/4                          | 6           | 750            | 340           | 2500        | 1134       | 028 for 4:1  |
| 038       | Fiddle/150 Cam-Matic <sup>®</sup> /becket                | 3/1 <sup>3</sup> /4                                | 76/44    | <b>8</b> <sup>1</sup> / <sub>2</sub> | 241  | 16 <sup>1</sup> /2                    | 468 | <sup>3</sup> /8 | 10          | 1/4                          | 6           | 750            | 340           | 2500        | 1134       | 2661 for 3:1 |
| 042       | Fiddle/ratchet/150 Cam-Matic <sup>®</sup> /becket        | 3/13/4                                             | 76/44    | <b>8</b> <sup>1</sup> / <sub>2</sub> | 241  | 18                                    | 510 | <sup>3</sup> /8 | 10          | 1/4                          | 6           | 750            | 340           | 2500        | 1134       | 028 for 4:1  |

038

042

059

## Dinghy Vang System

The Dinghy Vang comes pre-reeved with low-stretch polyester line. It is constructed with a 3:1 cascade inside a 5:1 purchase for a powerful 15:1 system.

16 mm blocks handle high loads. A Micro Carbo-Cam<sup>®</sup> allows precise trimming; it's easy to cleat because it pivots for a fair lead and angles up and down to accommodate different mounting heights.

The Dinghy Vang has a maximum mast-to-boom distance of 30 in (760 mm). A simple line adjustment shortens the system.



| Part |                            | Len | gth | We | ight | M<br>sail | ax<br>area | Maxi<br>workii | imum<br>1g load | Brea<br>loa | king<br>Id |
|------|----------------------------|-----|-----|----|------|-----------|------------|----------------|-----------------|-------------|------------|
| No.  | Description                | in  | mm  | 0Z | g    | ft²       | m²         | lb             | kg              | lb          | kg         |
| 447  | System/423 Carbo-Cam®      | 30  | 760 | 20 | 567  | 125       | 11.6       | 450            | 204             | 1200        | 544        |
| 455  | Lower unit/423 Carbo-Cam®* | 9   | 229 | 15 | 425  | 125       | 11.6       | 450            | 204             | 1200        | 544        |

\*Order your own line, a 407 and 405 block to complete system

## Two-Speed Mainsheet Systems

Harken gross-trim/fine-tune mainsheet systems are easy to install and use. These optimized systems decrease overall line clutter because they use less line than traditional gross-trim/fine-tune systems. For fast trimming, pull both tails of the mainsheet. To fine-tune or to trim using a higher purchase, pull a single tail.

Two-speed mainsheet systems come in three configurations for boats from 22 ft to 39 ft (6.5 m to 11.8 m), with mains as large as  $350 \text{ ft}^2$  ( $32.4 \text{ m}^2$ ).

#### **Systems**

|      |                                |                              | Line | Ø               |     | M    | lax main | sail are | a    |
|------|--------------------------------|------------------------------|------|-----------------|-----|------|----------|----------|------|
| Part |                                | M                            | lin  | N               | lax | End- | boom     | Mid-     | boom |
| No.  | Description                    | in                           | mm   | in              | mm  | ft²  | m²       | ft²      | m²   |
| 332  | 3:1/6:1 Self-contained system* | <sup>5</sup> / <sub>16</sub> | 8    | 3/8             | 10  | 240  | 22.3     | 180      | 16.9 |
| 383  | 4:1/8:1 Self-contained system* | <sup>5</sup> / <sub>16</sub> | 8    | <sup>3</sup> /8 | 10  | 350  | 32.4     | 275      | 25.5 |
|      |                                |                              |      |                 |     |      |          |          |      |

\*Line not included



#### Components

|      |                                                  |     | Sh   | eave Ø                                                                      |       |                                       |     |    |      |
|------|--------------------------------------------------|-----|------|-----------------------------------------------------------------------------|-------|---------------------------------------|-----|----|------|
| Part |                                                  | Pri | mary | Secon                                                                       | idary | Len                                   | gth | We | ight |
| No.  | Description                                      | in  | mm   | in                                                                          | mm    | in                                    | mm  | 0Z | g    |
| 385  | Double fiddle                                    | 3   | 76   | <b>1</b> <sup>3</sup> / <sub>4</sub>                                        | 44    | 7 <sup>3</sup> / <sub>4</sub>         | 197 | 21 | 595  |
| 386  | Double fiddle/ratchet/cross block/412 Cam-Matic® | 3   | 76   | <b>2</b> <sup>1</sup> / <sub>4</sub> / <b>1</b> <sup>3</sup> / <sub>4</sub> | 57/44 | <b>11</b> <sup>1</sup> / <sub>2</sub> | 292 | 37 | 1049 |
| 400  | Double/cross block                               | 3   | 76   | 21/4                                                                        | 57    | <b>9</b> <sup>1</sup> / <sub>2</sub>  | 241 | 22 | 625  |
| 401  | Double ratchet/fiddle/412 Cam-Matic®             | 3   | 76   | <b>1</b> <sup>3</sup> / <sub>4</sub>                                        | 44    | <b>7</b> <sup>1</sup> / <sub>4</sub>  | 184 | 31 | 885  |
| -    |                                                  |     |      |                                                                             |       |                                       |     |    |      |

## **Ordering Midrange Blocks**

#### 1. Determine block size and type

The tables below are guidelines for typical applications. Additional rigging tips are available at http://www.harken.com.

#### 2. Contact

If you have any questions, please contact your dealer or Harken Technical Service.

**Note:** Multihulls and heavy displacement monohulls should reduce the maximum sail areas shown by as much as 25%.



#### Mainsheet The farther forward a mainsheet system is on

Mainsheet

|                 |                      | Maximum mainsail area (P x E x .5 x 1.1* |    |  |  |  |
|-----------------|----------------------|------------------------------------------|----|--|--|--|
|                 |                      | ft²                                      | m² |  |  |  |
| End-Boom System | Single Attachment    | 500                                      | 46 |  |  |  |
|                 | Multiple Attachment† | 540                                      | 50 |  |  |  |
| Mid-Boom System | Single Attachment    | 425                                      | 39 |  |  |  |
|                 | Multiple Attachment† | 500                                      | 46 |  |  |  |

\*Assumes 10% roach †Assumes two or more shackles share load on both boom and deck

#### **Genoa Footblocks**

Determine the area of your foretriangle and how many degrees the footblock will deflect the line to select footblock size. For system loading details, see the Block Loading vs. Angle of Deflection and Genoa System Loading sections on page 28. See page 19 for common configurations.

the boom, the higher the loads. Systems with multiple attachment points spread the load over the boom. Use the table to determine if Midrange blocks are strong enough for your mainsail area.

See pages 18-19 for common configurations.

#### Spinnaker: Symmetrical/asymmetrical

Use the spinnaker's sail area to determine what size Midrange or high-load Midrange blocks to use for the sheet and afterguy controls. See page 22 for common configurations.

#### Mastbase Lead Blocks

Attach blocks to padeyes or 1634 Midrange ESP stand-up bases, or mount mastbase halvard leads to the deck. Use mainsail luff length and foretriangle height to determine what size Midrange or high-load Midrange blocks to use. Carbo blocks or 1986 mastbase halvard leads may be appropriate for applications with lower loads. See page 21 for common configurations.

#### **Running Backstavs**

The table below shows if Midrange or high-load Midrange blocks are strong enough for your backstay, based on the breaking strength of your runner wire.

#### Vang

See page 20 for common configurations.

#### **Genoa Footblocks**

|           | Maximum 100% foretriangle s | ail area at 35 knots (I x J x .5) |
|-----------|-----------------------------|-----------------------------------|
|           | ft²                         | m²                                |
| 180° Turn | 150                         | 14                                |
| 90° Turn  | 215                         | 20                                |

#### Spinnaker

|                        |                    | Maximum | spinnaker a | area (PxEx | x.5x1.8) |
|------------------------|--------------------|---------|-------------|------------|----------|
|                        |                    | Standar | d blocks    | High-loa   | d blocks |
|                        |                    | ft²     | m²          | ft²        | m²       |
| Sheet Blocks           | Plain              | 1100    | 100         | 1300       | 120      |
|                        | Ratchet            | 900     | 83          | —          | _        |
| Afterguy Blocks*       | Mounted Amidships  | 1100    | 100         | 1250       | 115      |
|                        | Mounted on Transom | 900     | 83          | 1000       | 93       |
|                        |                    | M       | aximum "    | l" dimensi | on       |
| Masthead Halyard Block |                    | 48      | 14.6        | 53         | 16       |
|                        | 4.450              |         |             |            |          |

\*Assumes maximum deflection of 45°

#### **Mastbase Lead Blocks**

|                              | Standa | ard blocks | High-loa     | d blocks |
|------------------------------|--------|------------|--------------|----------|
|                              | ft     | m          | ft           | m        |
|                              |        | Maximum "F | P" dimension |          |
| Main Halyard Lead Block      | 48     | 14.6       | 52           | 15.8     |
|                              |        | Maximum "  | l" dimension |          |
| Genoa Halyard Lead Block     | 46     | 14         | 50           | 15.3     |
|                              |        | Maximum "  | l" dimension |          |
| Spinnaker Halyard Lead Block | 48     | 14.6       | 53           | 16       |

#### **Running Backstavs**

|                                | Ν       | Aaximum breaking | load of runner wi | re        |
|--------------------------------|---------|------------------|-------------------|-----------|
|                                | Standar | d blocks         | High-loa          | id blocks |
| 2:1 Flying Blocks              | lb      | kg               | lb                | kg        |
| 1:1 Afterguy Deck Block        | 2200    | 998              | 2800              | 1270      |
| 2:1 Afterguy Becket Deck Block | 3600    | 1633             | 3600              | 1633      |
| 2:1 Afterguy Single Deck Block | 4500    | 2040             | 5000              | 2268      |

#### Vang

|               | Maximum mainsail ai | rea (P X E x .5 X 1.1*) |
|---------------|---------------------|-------------------------|
|               | ft²                 | m²                      |
| Fiddle Blocks | 400                 | 37                      |
| Triple Blocks | 450                 | 42                      |

\*Assumes 10% roach

## Midrange

Midrange blocks' robust construction makes them ideal to handle the high loads found on medium and large offshore boats. Sheave runs exclusively on a ball bearing system for fast trim and release under any load.

Delrin<sup>®</sup> ball bearings, sheave, and sideplates are UV stabilized with carbon black for maximum protection. A stainless steel sidestrap wraps across the block head for increased strength and safety.



Aluminum sheave

versions accept wire

Shackle can lock in either

direction or can swivel to

keep line from twisting

Fiddle

Actual Size

Removable becket allows insertion of spliced eye

| Part |                                           | Sh  | eave<br>Ø | Length                               |     | Weight                                |      | Max<br>Ø                     | Max line<br>Ø |                              | de pin<br>Ø | Maxi<br>workin | mum<br>1g load | Brea<br>Ioa | king<br>ad |              |
|------|-------------------------------------------|-----|-----------|--------------------------------------|-----|---------------------------------------|------|------------------------------|---------------|------------------------------|-------------|----------------|----------------|-------------|------------|--------------|
| No.  | Description                               | in  | mm        | in                                   | mm  | 0Z                                    | g    | in                           | mm            | in                           | mm          | lb             | kg             | lb          | kg         | Use with     |
| 1540 | Single                                    | 3   | 76        | 6 <sup>1</sup> /8                    | 156 | 13                                    | 367  | <sup>9</sup> / <sub>16</sub> | 14            | <sup>5</sup> / <sub>16</sub> | 8           | 1800           | 816            | 5000        | 2268       |              |
| 1541 | Single/becket                             | 3   | 76        | 7 <sup>1</sup> /8                    | 184 | 14                                    | 397  | <sup>9</sup> / <sub>16</sub> | 14            | <sup>5</sup> / <sub>16</sub> | 8           | 1800           | 816            | 5000        | 2268       |              |
| 1542 | Single/aluminum sheave                    | 3   | 76        | 6 <sup>1</sup> /8                    | 156 | 15                                    | 425  | <sup>9</sup> / <sub>16</sub> | 14            | <sup>5</sup> / <sub>16</sub> | 8           | 1800           | 816            | 5000        | 2268       |              |
| 1544 | Double                                    | 3   | 76        | 7 <sup>1</sup> /2                    | 191 | 25 <sup>1</sup> /2                    | 723  | <sup>9</sup> / <sub>16</sub> | 14            | <sup>5</sup> / <sub>16</sub> | 8           | 2800           | 1270           | 7000        | 3175       |              |
| 1545 | Double/becket                             | 3   | 76        | <b>8</b> <sup>1</sup> / <sub>2</sub> | 216 | <b>26</b> <sup>1</sup> / <sub>2</sub> | 751  | <sup>9</sup> / <sub>16</sub> | 14            | <sup>5</sup> / <sub>16</sub> | 8           | 2800           | 1270           | 7000        | 3175       |              |
| 1546 | Triple                                    | 3   | 76        | 73/4                                 | 197 | 36                                    | 1020 | 9/ <sub>16</sub>             | 14            | <sup>5</sup> /16             | 8           | 3800           | 1724           | 8500        | 3856       |              |
| 1548 | Cheek*                                    | 3   | 76        | 4 <sup>3</sup> /8                    | 111 | 11                                    | 312  | 9/ <sub>16</sub>             | 14            | —                            | —           | 1500           | 680            | 4200        | 1905       |              |
| 1559 | Fiddle                                    | 3/2 | 76/51     | <b>8</b> <sup>1</sup> / <sub>2</sub> | 216 | 17                                    | 482  | 9/ <sub>16</sub>             | 14            | <sup>5</sup> /16             | 8           | 1800           | 816            | 5000        | 2268       | 1541 for 3:1 |
| 1560 | Fiddle/becket                             | 3/2 | 76/51     | <b>9</b> <sup>1</sup> / <sub>2</sub> | 241 | 18                                    | 510  | <sup>9</sup> /16             | 14            | <sup>5</sup> / <sub>16</sub> | 8           | 1800           | 816            | 5000        | 2268       | 1559 for 4:1 |
| 1564 | Fiddle/280 Cam-Matic <sup>®</sup> /becket | 3/2 | 76/51     | <b>9</b> <sup>1</sup> / <sub>2</sub> | 241 | 24 <sup>1</sup> /2                    | 695  | <sup>9</sup> / <sub>16</sub> | 14            | <sup>5</sup> / <sub>16</sub> | 8           | 1800           | 816            | 5000        | 2268       | 1559 for 4:1 |
| 1586 | Single/high-load                          | 3   | 76        | 6 <sup>1</sup> /8                    | 156 | 13                                    | 367  | <sup>9</sup> /16             | 14            | <sup>5</sup> / <sub>16</sub> | 8           | 2300           | 1043           | 5000        | 2268       |              |

\*1/4" (6 mm) RH fasteners

## Midrange Hexaratchets®



*Cam arms adjust to change line angle into cam* 

|      |                                           | Sh  | eave  |                                      |      |                                       |      | Max              | line | Shack                        | de pin | Maxi   | mum    | Brea | aking |                  |
|------|-------------------------------------------|-----|-------|--------------------------------------|------|---------------------------------------|------|------------------|------|------------------------------|--------|--------|--------|------|-------|------------------|
| Part |                                           |     | Ø     | Le                                   | ngth | We                                    | ight | 1                | Ø    | 1                            | Ø      | workin | g load | lo   | ad    |                  |
| No.  | Description                               | in  | mm    | in                                   | mm   | 0Z                                    | g    | in               | mm   | in                           | mm     | lb     | kg     | lb   | kg    | Turns            |
| 1549 | Single                                    | 3   | 76    | <b>6</b> <sup>1</sup> /8             | 156  | 14                                    | 397  | <sup>9</sup> /16 | 14   | <sup>5</sup> /16             | 8      | 1800   | 816    | 5000 | 2268  | Clockwise        |
| 1550 | Single/becket                             | 3   | 76    | 7 <sup>1</sup> /8                    | 184  | 15                                    | 425  | <sup>9</sup> /16 | 14   | <sup>5</sup> /16             | 8      | 1800   | 816    | 5000 | 2268  | Clockwise        |
| 1555 | Triple/280 Cam-Matic®                     | 3   | 76    | <b>7</b> <sup>3</sup> / <sub>4</sub> | 197  | 49                                    | 1389 | 9/ <sub>16</sub> | 14   | <sup>5</sup> / <sub>16</sub> | 8      | 3800   | 1724   | 8500 | 3856  | Clockwise        |
| 1556 | Triple/280 Cam-Matic <sup>®</sup> /becket | 3   | 76    | <b>8</b> <sup>3</sup> / <sub>4</sub> | 222  | 51                                    | 1446 | 9/ <sub>16</sub> | 14   | <sup>5</sup> / <sub>16</sub> | 8      | 3800   | 1724   | 8500 | 3856  | Clockwise        |
| 1571 | Single                                    | 3   | 76    | <b>6</b> <sup>1</sup> /8             | 156  | 14                                    | 397  | 9/ <sub>16</sub> | 14   | <sup>5</sup> / <sub>16</sub> | 8      | 1800   | 816    | 5000 | 2268  | Counterclockwise |
| 1565 | Fiddle/280 Cam-Matic®                     | 3/2 | 76/51 | <b>8</b> <sup>1</sup> / <sub>2</sub> | 216  | <b>26</b> <sup>1</sup> / <sub>2</sub> | 751  | 9/ <sub>16</sub> | 14   | <sup>5</sup> / <sub>16</sub> | 8      | 1800   | 816    | 5000 | 2268  | Clockwise        |
| 1566 | Fiddle/280 Cam-Matic <sup>®</sup> /becket | 3/2 | 76/51 | <b>9</b> <sup>1</sup> / <sub>2</sub> | 241  | <b>27</b> <sup>1</sup> / <sub>2</sub> | 780  | <sup>9</sup> /16 | 14   | <sup>5</sup> / <sub>16</sub> | 8      | 1800   | 816    | 5000 | 2268  | Clockwise        |



Rocket 22, Sylvana Yachts - Ivan Ivandic photo

| Part |                                    | Sheav<br>Ø<br>in                     |    | Wei  | Weight |                              | wire<br>Ø | Max                          | line<br>Ø | Shack<br>(                   | de pin<br>Ø | Max<br>worki | imum<br>ng load | Brea<br>loa | king<br>ad |
|------|------------------------------------|--------------------------------------|----|------|--------|------------------------------|-----------|------------------------------|-----------|------------------------------|-------------|--------------|-----------------|-------------|------------|
| No.  | Description                        | in                                   | mm | 0Z   | g      | in                           | mm        | in                           | mm        | in                           | mm          | lb           | kg              | lb          | kg         |
| 300  | Single                             | 1                                    | 25 | 1    | 28     | <sup>3</sup> / <sub>32</sub> | 2         | <sup>5</sup> / <sub>32</sub> | 4         | <sup>3</sup> /16             | 5           | 1000         | 454             | 2000        | 907        |
| 301  | Cheek‡*                            | 1                                    | 25 | 1.25 | 35     | <sup>3</sup> / <sub>32</sub> | 2         | <sup>5</sup> / <sub>32</sub> | 4         | _                            | —           | 1000         | 454             | 2000        | 907        |
| 302  | Thru-deck*                         | 1                                    | 25 | 1    | 28     | <sup>3</sup> / <sub>32</sub> | 2         | <sup>5</sup> / <sub>32</sub> | 4         | _                            | —           | 1000         | 454             | 2000        | 907        |
| 304  | Single                             | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | 2.75 | 78     | 1/8                          | 3         | <sup>3</sup> / <sub>16</sub> | 5         | 1/4                          | 6           | 1500         | 680             | 3000        | 1361       |
| 305  | Cheek‡**                           | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | 3.25 | 92     | 1/8                          | 3         | <sup>3</sup> / <sub>16</sub> | 5         | _                            | _           | 1500         | 680             | 3000        | 1361       |
| 306  | Thru-deck*                         | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | 3.25 | 92     | 1/8                          | 3         | <sup>3</sup> / <sub>16</sub> | 5         | _                            | —           | 1500         | 680             | 3000        | 1361       |
| 308  | Single                             | 2                                    | 51 | 5.25 | 149    | <sup>3</sup> / <sub>16</sub> | 5         | 1/4                          | 6         | <sup>5</sup> /16             | 8           | 2000         | 907             | 4000        | 1814       |
| 309  | Cheek‡***                          | 2                                    | 51 | 6    | 170    | <sup>3</sup> / <sub>16</sub> | 5         | 1/4                          | 6         | _                            | —           | 2000         | 907             | 4000        | 1814       |
| 310  | Thru-deck**                        | 2                                    | 51 | 5.75 | 163    | <sup>3</sup> / <sub>16</sub> | 5         | 1/4                          | 6         | —                            | _           | 2000         | 907             | 4000        | 1814       |
| 312  | Single/becket                      | 1                                    | 25 | 1.25 | 35     | <sup>3</sup> / <sub>32</sub> | 2         | <sup>5</sup> / <sub>32</sub> | 4         | <sup>3</sup> /16             | 5           | 1000         | 454             | 2000        | 907        |
| 313  | Single/becket                      | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | 3    | 85     | 1/8                          | 3         | <sup>3</sup> / <sub>16</sub> | 5         | 1/4                          | 6           | 1500         | 680             | 3000        | 1361       |
| 314  | Single/becket                      | 2                                    | 51 | 5.75 | 163    | <sup>3</sup> / <sub>16</sub> | 5         | 1/4                          | 6         | <sup>5</sup> / <sub>16</sub> | 8           | 2000         | 907             | 4000        | 1814       |
| 320  | Ferrule head                       | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | 3    | 85     | 1/8                          | 3         | <sup>3</sup> / <sub>16</sub> | 5         | _                            | _           | 1500         | 680             | 3000        | 1361       |
| 321  | Small split backstay plate for 304 | —                                    | _  | 1    | 28     | _                            | —         | —                            | —         | _                            | _           | —            | —               | —           | —          |
| 322  | Split backstay plate for 308       | _                                    | _  | 1.19 | 34     | _                            | _         | _                            | _         | _                            | _           | _            | _               | _           | _          |
| 466  | Single forkhead/becket             | 1                                    | 25 | 1.02 | 29     | <sup>3</sup> / <sub>32</sub> | 2         | 5/32                         | 4         | 3/16                         | 5           | 1000         | 454             | 2000        | 907        |

±Fasteners included \*#10 (5 mm) RH fasteners \*\*1/4" (6 mm) RH fasteners \*\*\*5/16" (8 mm) RH fasteners



Puma, VO70 — Billy Black Photo

ilmastro

MOR

# **BIG BOAT BLOCKS**

## **Ordering Big Boat Blocks**

#### 1. Determine block size and type

The tables below are a guideline for typical applications. Additional rigging tips are available at http://www.harken.com.



#### 2. Contact

If you have any questions, please contact your dealer or Harken Technical Service.

**Note:** These hardware specifications assume a boat of moderate displacement sailing in normal conditions. Ultra Light Displacement Boats may use smaller hardware. Heavy displacement boats and multihulls often require stronger hardware.

#### Mainsheet

Mainsheets are usually attached near the end or the middle of the boom, depending on accessibility and whether the boat is used for racing or cruising. The farther forward a mainsheet system is on the boom, the higher the loads it sees. Systems with multiple attachment points spread the load over the boom. Use the table to choose the appropriate Black Magic<sup>®</sup>, ESP, or stainless steel blocks for your mainsail area. See pages 18-19 for common configurations.

| Maximum mainsail area (P x E x .5 x 1.1*) |                                                                                         |                                                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|-------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 57 mm L<br>Black N                        | ow-load<br>Iagic®                                                                       | d 57 mm High-loa<br>Black Magic®                                                                                                                            |                                                                                                                                                                                                                                                 | 75 mm Low-load<br>Black Magic®/<br>75 mm ESP                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 75 mm High-load<br>Black Magic®/<br>75 mm Stainless                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100<br>Black<br>100 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mm<br>Magic®<br>Stainless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 125<br>Black I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mm<br>Magic®                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 150<br>Black<br>150 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ) mm<br>Magic®/<br>Stainless                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |
| ft²                                       | m²                                                                                      | ft²                                                                                                                                                         | m²                                                                                                                                                                                                                                              | ft²                                                                                                                                                                                                                                                                                             | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ft²                                                                                                                                                                                                                                                                                                                                                                                                                                                         | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ft²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ft²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ft²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
|                                           |                                                                                         |                                                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 450                                       | 41                                                                                      | 550                                                                                                                                                         | 51                                                                                                                                                                                                                                              | 600                                                                                                                                                                                                                                                                                             | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 750                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 500                                       | 46                                                                                      | 675                                                                                                                                                         | 63                                                                                                                                                                                                                                              | 720                                                                                                                                                                                                                                                                                             | 67                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 900                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                           |                                                                                         |                                                                                                                                                             |                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| 400                                       | 37                                                                                      | 400                                                                                                                                                         | 37                                                                                                                                                                                                                                              | 450                                                                                                                                                                                                                                                                                             | 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 550                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
| 450                                       | 41                                                                                      | 575                                                                                                                                                         | 53                                                                                                                                                                                                                                              | 600                                                                                                                                                                                                                                                                                             | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 700                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1525                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |
|                                           | <b>57 mm Ll</b><br><b>Black N</b><br><b>ft</b> <sup>2</sup><br>450<br>500<br>400<br>450 | 57 mm Low-load<br>Black Magic®           ft²         m²           450         41           500         46           400         37           450         41 | 57 mm Low-load<br>Black Magie®         57 mm H<br>Black I<br>Black I<br>tf²           tf²         m²           450         41           550         46           500         46           400         37           450         41           575 | 57 mm Low-load<br>Black Magic®         57 mm High-load<br>Black Magic®           ft²         m²           450         41         550         51           500         46         675         63           400         37         400         37           450         41         575         53 | Ima           57 mm Low-load         57 mm High-load         75 mm L           Black Magic®         Black Magic®         Black Magic®         81ack Magic           tl²         m²         tl²         m²         tl²           450         41         550         51         600           500         46         675         63         720           400         37         400         37         450           450         41         575         53         600 | To mm Actinitian           57 mm Low-load<br>Black Magic®         57 mm High-load<br>Black Magic®/<br>75 mm ESP           ft²         m²         ft²         m²           450         41         550         51         600         56           500         46         675         63         720         67           400         37         400         37         450         42           450         41         575         53         600         56 | Maximum mamsane           57 mm Low-load         57 mm High-load         75 mm Low-load         75 mm Low-load           57 mm Low-load         57 mm High-load         Black Magic®/         75 mm ESP         75 mm           ft²         m²         ft²         m²         ft²         m²         ft²         75 mm           450         41         550         51         600         56         750         500         46         675         63         720         67         900           400         37         450         42         550           450         41         575         53         600         56         700 | maximum mansan arder (r x           75 mm Low-load         75 mm High-load           57 mm Low-load         57 mm High-load         Black Magic®'         75 mm High-load         Black Magic®'         75 mm High-load           Black Magic®         ft²         m²         ft²         m²         ft²         m²           450         41         550         51         600         56         750         70           500         46         675         63         720         67         900         84           400         37         450         42         550         51           450         41         575         53         600         56         700         65 | Maximum mansan area (r x E x 3 x           To mm Low-load<br>Black Magic®         75 mm Low-load<br>Black Magic®/<br>Black Magic®/<br>ft <sup>2</sup> 75 mm High-load<br>Black Magic®/<br>75 mm Stainless         100 mm<br>ft <sup>2</sup> 450         41         550         51         600         56         750         70         900           500         46         675         63         720         67         900         84         1100           400         37         450         42         550         51         700           450         41         575         53         600         56         700         65         950 | maximum manisan arte (r X E X 3 X 1.1 )           57 mm Low-load<br>Black Magic <sup>®</sup> 57 mm High-load<br>Black Magic <sup>®</sup> 75 mm Low-load<br>Black Magic <sup>®</sup> /<br>ft <sup>2</sup> m <sup>2</sup> 75 mm High-load<br>Black Magic <sup>®</sup> /<br>ft <sup>2</sup> m <sup>2</sup> 100 mm<br>Black Magic <sup>®</sup> tt <sup>2</sup> m <sup>2</sup> tt <sup>2</sup> m <sup>2</sup> tt <sup>2</sup> m <sup>2</sup> 100 mm Stainless<br>ft <sup>2</sup> Black Magic <sup>®</sup> tt <sup>2</sup> m <sup>2</sup> tt <sup>2</sup> m <sup>2</sup> tt <sup>2</sup> m <sup>2</sup> tt <sup>2</sup> m <sup>2</sup> 450         41         550         51         600         56         750         70         900         84           500         46         675         63         720         67         900         84         1100         102           400         37         400         37         450         42         550         51         700         65           450         41         575         53         600         56         700         65         950         88 | maximum mansan area (r X E X 3 X 1.1 )           75 mm Low-load<br>Black Magic®         75 mm High-load<br>Black Magic®/<br>T5 mm ESP         75 mm High-load<br>Black Magic®/<br>75 mm Stainless         100 mm<br>Black Magic®         125           til         m²         til         m²         til         m²         til         m²         til         Black Magic®/<br>75 mm Stainless         Black Magic®         125           til         m²         til         m²         til         m²         til         m²         til         m²         til         Black Magic®/<br>75 mm Stainless         Black Magic®         125         Black Magic®/<br>81 ctriate         Black Magic®/<br>81 ctriate         125         Black Magic®/<br>75 mm Stainless         Black Magic®/<br>75 mm Stainless         125         Black Magic®/<br>75 mm Stainless         125         Black Magic®/<br>75 mm Stainless         125         Black Magic         125         125         125         126         126         126         126         126         126         126         127 | Imaximum manisan area (r x e x 3 x 1.1 y           To mm Low-load<br>Black Magice <sup>®</sup> To mm High-load<br>Black Magice <sup>®</sup> /<br>tt <sup>2</sup> m <sup>2</sup> To mm High-load<br>Black Magice <sup>®</sup> /<br>tt <sup>2</sup> m <sup>2</sup> 100 mm<br>Black Magic <sup>®</sup> 125 mm<br>Black Magic <sup>®</sup> tt <sup>2</sup> m <sup>2</sup> | Indaxinitini manisana arade (r X E X 3 X 1.1 y)           To ma Low-load<br>Black Magic <sup>®</sup> 75 mm High-load<br>Black Magic <sup>®</sup> /<br>tt <sup>2</sup> m <sup>2</sup> 75 mm High-load<br>Black Magic <sup>®</sup> /<br>tt <sup>2</sup> m <sup>2</sup> 100 mm<br>Black Magic <sup>®</sup> 125 mm<br>Black Magic <sup>®</sup> 150<br>Black Magic <sup>®</sup> tt <sup>2</sup> m <sup>2</sup> tt <sup>2</sup> m <sup></sup> |  |

\*Assumes 10% roach †Assumes two or more shackles share load on both boom and deck

#### **Running Backstays**

Crews use running backstays to adjust mast bend for different wind conditions. This controls headsail sag as well as the camber (depth) of the mainsail. Use Black Magic<sup>®</sup> or stainless runner blocks with higher breaking strengths than your runner wire.

|                            |                                                                                                    |      |       |                 | Μ                | aximum                | breaking              | load of         | r <b>unner w</b> i | re                    |                       |                         |                       |       |
|----------------------------|----------------------------------------------------------------------------------------------------|------|-------|-----------------|------------------|-----------------------|-----------------------|-----------------|--------------------|-----------------------|-----------------------|-------------------------|-----------------------|-------|
|                            | 75mm<br>Black Magic®<br>57mm Air Runner®/<br>Black Magic® 3" Stainless<br>Air Runner® steel runner |      |       | 4" Sta<br>steel | inless<br>runner | 100<br>Black<br>Air R | mm<br>Magic®<br>unner | 5" Sta<br>steel | inless<br>runner   | 125<br>Black<br>Air R | mm<br>Magic®<br>unner | 150<br>Black I<br>Air R | mm<br>Magic®<br>unner |       |
|                            | lb                                                                                                 | kg   | lb    | kg              | lb               | kg                    | lb                    | kg              | lb                 | kg                    | lb                    | kg                      | lb                    | kg    |
| Flying Blocks              | 2500                                                                                               | 1134 | 10000 | 4535            | 12500            | 5670                  | 15000                 | 6800            | 19000              | 8618                  | 22000                 | 10000                   | 30000                 | 13605 |
| 2:1 Separate Deck Blocks   | 3025                                                                                               | 1372 | 12100 | 5490            | 15250            | 6920                  | 17550                 | 7960            | 23150              | 10500                 | 26500                 | 12020                   | 36136                 | 16388 |
| 2:1 Becket Deck Blocks     | 1875                                                                                               | 850  | 7500  | 3400            | 9470             | 4295                  | 10900                 | 4945            | 16500              | 7485                  | 16500                 | 7485                    | 22500                 | 10204 |
| 3:1 Deck Blocks (Block #1) | 3713                                                                                               | 1684 | 14850 | 6735            | 18750            | 8505                  | 21600                 | 9800            | 28500              | 12928                 | 32700                 | 14835                   | 44550                 | 20203 |
| 3:1 Deck Blocks (Block #2) | 4525                                                                                               | 2052 | 18100 | 8210            | 22875            | 10375                 | 26300                 | 11930           | 34750              | 15760                 | 39850                 | 18075                   | 54300                 | 24625 |

#### **Mastbase Lead Blocks**

Leading halyards and control lines aft allows crews to raise and lower sails or make tuning adjustments from the cockpit. Attach blocks to the mastcollar post or padeyes, or mount mastbase halyard leads to the deck. The table below sizes Black Magic<sup>®</sup>, stainless steel, ESP, and mastbase blocks for different foretriangle heights and luff lengths. See page 21 for common configurations.

|                   | 57 mm<br>Black Ma | Low-load<br>agic®/ESP | 57 mm High-load<br>Black Magic <sup>®</sup> /fixed<br>MBL* blocks |      | 75 mm<br>Black<br>Mastcolla<br>75 m | Low-load<br>Magic®/<br>r post block/<br>m ESP | 75 mm Higl<br>Magic<br>MBL*<br>75 mm S | h-load Black<br>®/fixed<br>blocks/<br>Stainless | 100<br>Black<br>100 mm | ) mm<br>Magic®/<br>Stainless | 125<br>Black | i mm<br>Magic® |
|-------------------|-------------------|-----------------------|-------------------------------------------------------------------|------|-------------------------------------|-----------------------------------------------|----------------------------------------|-------------------------------------------------|------------------------|------------------------------|--------------|----------------|
|                   | ft                | m                     | ft                                                                | m    | ft                                  | m                                             | ft                                     | m                                               | ft                     | m                            | ft           | m              |
|                   |                   |                       |                                                                   |      | Maxim                               | um "P" Dir                                    | nension                                |                                                 |                        |                              |              |                |
| Main Halyard      | 47                | 14.3                  | 52                                                                | 15.8 | 60                                  | 18.3                                          | 74                                     | 22.6                                            | 80                     | 25                           | 90           | 27.5           |
|                   |                   |                       |                                                                   |      | Maxin                               | 1um "I" Din                                   | nension                                |                                                 |                        |                              |              |                |
| Genoa Halyard     | 45                | 13.7                  | 50                                                                | 15.2 | 58                                  | 17.7                                          | 72                                     | 21.9                                            | 76                     | 23.2                         | 87           | 26.5           |
| Spinnaker Halyard | 47                | 14.3                  | 53                                                                | 16.1 | 60                                  | 18.3                                          | 74                                     | 22.6                                            | 82                     | 25                           | 93           | 28.4           |

\*MBL = Mastbase Lead blocks

## **Ordering Big Boat Blocks**



GY53, MP Design, Gieffe Yachts

#### **Spinnaker: Symmetrical/Asymmetrical**

Use the spinnaker's sail area to determine what size Black Magic<sup>®</sup>, stainless steel, or ESP blocks to use for the sheet and afterguy controls. See page 22 for common configurations.

|                            |                                |    |                                 |     | N                                            | laximum | spinnak                                             | er area (l | x J x 1.8                | 3)                         |                |              |                          |                            |
|----------------------------|--------------------------------|----|---------------------------------|-----|----------------------------------------------|---------|-----------------------------------------------------|------------|--------------------------|----------------------------|----------------|--------------|--------------------------|----------------------------|
|                            | 57 mm Low-load<br>Black Magic® |    | 57 mm High-load<br>Black Magic® |     | 75 mm Low-load<br>Black Magic®/<br>75 mm ESP |         | 75 mm High-load<br>Black Magic®/<br>75 mm Stainless |            | 100<br>Black N<br>100 mm | mm<br>Aagic®/<br>Stainless | 125<br>Black I | mm<br>Aagic® | 150<br>Black N<br>150 mm | mm<br>Magic®/<br>Stainless |
|                            | ft²                            | m² | ft²                             | m²  | ft²                                          | m²      | ft²                                                 | m²         | ft²                      | m²                         | ft²            | m²           | ft²                      | m²                         |
| Spinnaker Sheet, Tack Line | 720                            | 67 | 1200                            | 111 | 1400                                         | 130     | 2000                                                | 186        | 2650                     | 246                        | 4300           | 400          | 5600                     | 520                        |
| Afterguy*                  | 790                            | 73 | 1320                            | 123 | 1500                                         | 140     | 2200                                                | 204        | 2900                     | 269                        | 4700           | 437          | 6100                     | 567                        |

\*Assumes maximum deflection of 45° to winch

#### **Genoa Footblocks**

Footblocks route genoa controls from the lead car to a winch. Double footblocks or snatch blocks enable faster sheet changes. Determine the area of your foretriangle and how many degrees the footblock will deflect the line to select footblock size. For system loading details, refer to the **Block Loading vs Angle of Deflection** and **Genoa System Loading** sections on page 28. See page 19 for common configurations.

#### **Single Genoa Footblocks**

|           |                    |                    |                    | Maximum             | 100% for                   | etriangle s                | ail area at              | 40 knots (                 | I x J x .5)    |               |                             |                            |
|-----------|--------------------|--------------------|--------------------|---------------------|----------------------------|----------------------------|--------------------------|----------------------------|----------------|---------------|-----------------------------|----------------------------|
|           | 57 mm L<br>Black I | .ow-load<br>Magic® | 57 mm H<br>Black I | ligh-load<br>Magic® | 75 i<br>Black M<br>75 mm S | mm<br>Aagic®/<br>Stainless | 100<br>Black I<br>100 mm | mm<br>Aagic®/<br>Stainless | 125<br>Black I | mm<br>Vlagic® | 150<br>Black N<br>150 mm \$ | mm<br>lagic®/<br>Stainless |
|           | ft²                | m²                 | ft²                | m²                  | ft²                        | m²                         | ft²                      | m²                         | ft²            | m²            | ft²                         | m²                         |
| 180° Turn | 110                | 10                 | 180                | 17                  | 365                        | 34                         | 540                      | 50                         | 800            | 74            | 1100                        | 102                        |
| 120° Turn | 125                | 12                 | 210                | 20                  | 420                        | 39                         | 630                      | 59                         | 920            | 85            | 1256                        | 117                        |
| 90° Turn  | 155                | 14                 | 260                | 24                  | 515                        | 48                         | 770                      | 72                         | 1130           | 105           | 1540                        | 143                        |

#### **Double Genoa Footblocks**

|           | Maximum 100% foretriangle sail area at 40 knots* (l x J x .5) |    |                    |                     |                 |              |                |              |                |              |  |  |  |  |
|-----------|---------------------------------------------------------------|----|--------------------|---------------------|-----------------|--------------|----------------|--------------|----------------|--------------|--|--|--|--|
|           | 57 mm Low-load<br>Black Magic®                                |    | 57 mm H<br>Black I | ligh-load<br>Magic® | 75 i<br>Black I | nm<br>Nagic® | 100<br>Black I | mm<br>Aagic® | 125<br>Black I | mm<br>Magic® |  |  |  |  |
|           | ft²                                                           | m² | ft²                | m²                  | ft²             | m²           | ft²            | m²           | ft²            | m²           |  |  |  |  |
| 180° Turn | 75                                                            | 7  | 120                | 11                  | 240             | 22           | 360            | 33           | 530            | 49           |  |  |  |  |
| 120° Turn | 85                                                            | 8  | 140                | 13                  | 275             | 26           | 415            | 39           | 610            | 57           |  |  |  |  |
| 90° Turn  | 105                                                           | 10 | 175                | 16                  | 340             | 32           | 510            | 47           | 750            | 70           |  |  |  |  |

\*Based on load on upper sheave

## **Black Magic® AirBlocks®**

### STRONG, LIGHTWEIGHT AND FREE ROLLING

Weekend cruiser? Around-the-world racer? You'll want Black Magic<sup>®</sup> AirBlocks<sup>®</sup> aboard. With high strength-to-weight ratios and free-rolling high-load roller bearings, these versatile blocks are the workhorses of the Harken<sup>®</sup> line. Use for sail controls that see lots of action including mainsheet, runner, halyard, and

spinnaker systems.

AirBlocks<sup>®</sup> are very easy to clean and service. They have few parts and no loose balls or rollers to misplace. Unlike blocks that are riveted together, three fasteners allow quick disassembly for service.



#### 1. Isolated Metals

Dissimilar metals isolated to prevent corrosion: plastic isolators under all fastener heads and headposts.

#### **Three-Way Head**

Set screw in three-way head locks shackle in front or side positions, or lets block swivel to keep line from twisting.

#### 2. Easy Maintenance

AirBlocks<sup>®</sup> are designed for easy maintenance. Three fasteners allow quick disassembly using an Allen wrench. Blocks have few parts, and there are no loose balls or rollers.

### **DETAILS MAKE THE DIFFERENCE**

#### **LOW-FRICTION CAGED BEARINGS**

The center cage keeps Torlon<sup>®</sup> roller bearings separated and parallel to reduce friction. Dirt and salt falls between rollers. Captive Delrin<sup>®</sup> balls carry sideloads.

#### STRONG, LIGHTWEIGHT SIDEPLATES & SHEAVES

6061-T6 aluminum sideplates CNC sculpted to remove excess weight.

Thin-profile, deep-groove aluminum sheaves have radiused edges to protect high-tech line.

#### LONG-LASTING PROTECTIVE FINISH

Sheaves and sideplates are deep-saturation Hardkote-anodized for strength and durability, and UV-stabilized with black additive for maximum protection. Teflon<sup>®</sup>-impregnated for a smooth, slippery surface.



Use 57 mm Black Magic<sup>®</sup> AirBlocks<sup>®</sup> on offshore boats. These strong, lightweight blocks are sculpted aluminum, with Torlon<sup>®</sup> rollers and carbon-black balls for strength and UV protection. Rollers are housed in a unique center cage and are isolated for less friction. Blocks feature a three-way head system and come in high- and low-load configurations.

The 3195 soft attachment Loop block has a removable dead-end post for attachment to a padeye. Lashings can also be used.

#### Use for: Sheets Halyards Running backstays Control lines

Three-way head system shackle can lock in either direction or can swivel to keep line from twisting

Headpost rides on plastic bushing

Three fasteners for quick disassembly

Torlon<sup>®</sup> roller bearings for strength and reduced wear

Easy to open integrated becket

> Low-load blocks have red isolators

1951

1959



| Part |                                | Sheave<br>Ø | Len                                    | igth | We<br>w/sh | ight<br>ackle | Shack                        | de pin<br>Ø | Max                          | Line<br>J | Maxi<br>workin | mum<br>Ig load | Brea<br>loa | king<br>ad |
|------|--------------------------------|-------------|----------------------------------------|------|------------|---------------|------------------------------|-------------|------------------------------|-----------|----------------|----------------|-------------|------------|
| No.  | Description                    | mm          | in                                     | mm   | 0Z         | g             | in                           | mm          | in                           | mm        | lb             | kg             | lb          | kg         |
| 1950 | Single/swivel/low-load         | 57          | <b>4</b> <sup>11</sup> / <sub>16</sub> | 119  | 5.0        | 142           | 1/4                          | 6           | <sup>7</sup> / <sub>16</sub> | 12        | 1655           | 750            | 3310        | 1500       |
| 1951 | Single/swivel/low-load/becket  | 57          | 5 <sup>1</sup> /2                      | 140  | 5.5        | 155           | 1/4                          | 6           | <sup>7</sup> / <sub>16</sub> | 12        | 1655           | 750            | 3310        | 1500       |
| 1952 | Double/swivel/low-load         | 57          | <b>5</b> <sup>3</sup> / <sub>16</sub>  | 132  | 10.1       | 286           | <sup>5</sup> / <sub>16</sub> | 8           | <sup>7</sup> / <sub>16</sub> | 12        | 2755           | 1250           | 5510        | 2500       |
| 1954 | Triple/swivel                  | 57          | <b>5</b> <sup>3</sup> / <sub>16</sub>  | 132  | 13.2       | 375           | <sup>5</sup> / <sub>16</sub> | 8           | 7/ <sub>16</sub>             | 12        | 4850           | 2200           | 9700        | 4400       |
| 1958 | Single/swivel/high-load        | 57          | <b>4</b> <sup>11</sup> / <sub>16</sub> | 119  | 5.0        | 142           | 1/4                          | 6           | 7/ <sub>16</sub>             | 12        | 2500           | 1134           | 5000        | 2268       |
| 1959 | Single/swivel/high-load/becket | 57          | 5 <sup>1</sup> /2                      | 140  | 5.5        | 155           | 1/4                          | 6           | 7/ <sub>16</sub>             | 12        | 2500           | 1134           | 5000        | 2268       |
| 1960 | Double/swivel/high-load        | 57          | <b>5</b> <sup>3</sup> / <sub>16</sub>  | 132  | 10.1       | 286           | <sup>5</sup> / <sub>16</sub> | 8           | <sup>7</sup> / <sub>16</sub> | 12        | 3600           | 1633           | 7200        | 3267       |
| 1961 | Double/swivel/high-load/becket | 57          | 6                                      | 152  | 10.6       | 302           | <sup>5</sup> / <sub>16</sub> | 8           | <sup>7</sup> / <sub>16</sub> | 12        | 3600           | 1633           | 7200        | 3267       |
| 1965 | Stand-up/high-load*            | 57          | 4 <sup>1</sup> / <sub>2</sub>          | 114  | 7.4        | 210           | 1/4                          | 6           | <sup>7</sup> / <sub>16</sub> | 12        | 2500           | 1134           | 5000        | 2268       |
| 3195 | Single loop block**            | 57          | 3                                      | 76   | 3.25       | 92            | _                            | _           | 7/16                         | 12        | 2500           | 1134           | 5000        | 2268       |

\*Includes padeye 1/4" (6 mm)—Fastener circle: 115/32" (37 mm) \*\*Loop not included

#### 75 mm Naaic NEW: 3196

75 mm Black Magic<sup>®</sup> AirBlocks<sup>®</sup> feature Torlon<sup>®</sup> roller bearings for strength and reduced wear. The unique center cage separates rollers for less friction. Sideload ball bearings are protected by sculpted aluminum sideplates. Dissimilar metals are isolated to minimize corrosion. Low-load blocks use Delrin<sup>®</sup> rollers and type 316 stainless steel shackles.

Like all AirBlocks®, the three-way head swivels/locks in front/side positions. Blocks are easily disassembled with a single Allen wrench.

Use straphead blocks with LOUPS<sup>™</sup> or straps aligned fore/aft or side to side.

The 3196 soft attachment Loop block has a removable dead end post for attachment to a padeye. Lashings can also be used.



Sheave center carries

Dead end post for attachment to a

methods

Post removes for

alternative attachment

primary load for a

lightweight block

closed bail

Marten 49 — Andrea Francolini photo/Azzura Marine

974

3088

Soft Loop attaches securely through

sheave center

1962

3196

| Part |                        | Sheave<br>Ø | Ler                                   | igth | Weig<br>w/sha | ght<br>ckle | Shack<br>Ø                   | le pin | Ма                           | x Line<br>Ø | Max<br>workii | imum<br>1g load | Brea<br>lo: | king<br>ad |
|------|------------------------|-------------|---------------------------------------|------|---------------|-------------|------------------------------|--------|------------------------------|-------------|---------------|-----------------|-------------|------------|
| No.  | Description            | mm          | in                                    | mm   | 0Z            | g           | in                           | mm     | in                           | mm          | lb            | kg              | lb          | kg         |
| 1962 | Spriddle/becket        | 75/57       | 87/8                                  | 225  | 16.8          | 476         | <sup>5</sup> /16             | 8      | <sup>9</sup> / <sub>16</sub> | 14          | 5000          | 2268            | 10000       | 4536       |
| 1969 | Single/swivel          | 75          | 5 <sup>1</sup> /8                     | 129  | 11.5          | 325         | <sup>5</sup> /16             | 8      | <sup>9</sup> / <sub>16</sub> | 14          | 5000          | 2268            | 10000       | 4536       |
| 1970 | Single/swivel/becket   | 75          | <b>6</b> <sup>3</sup> / <sub>16</sub> | 157  | 12.4          | 351         | <sup>5</sup> /16             | 8      | <sup>9/</sup> 16             | 14          | 5000          | 2268            | 10000       | 4536       |
| 1971 | Double/swivel          | 75          | 5 <sup>1</sup> /4                     | 134  | 25.7          | 728         | 3/8                          | 10     | <sup>9/</sup> 16             | 14          | 7500          | 3402            | 15000       | 6804       |
| 1974 | Stand-up*              | 75          | 5 <sup>15</sup> / <sub>16</sub>       | 151  | 15.5          | 440         | —                            | —      | <sup>9/</sup> 16             | 14          | 5000          | 2268            | 10000       | 4536       |
| 1975 | Spriddle               | 75/57       | 713/16                                | 199  | 15.9          | 452         | <sup>5</sup> / <sub>16</sub> | 8      | <sup>9/</sup> 16             | 14          | 5000          | 2268            | 10000       | 4536       |
| 3088 | Straphead spriddle     | 75/57       | 7 <sup>3</sup> / <sub>32</sub>        | 180  | 12.8          | 362         | _                            | —      | <sup>9</sup> / <sub>16</sub> | 14          | 5000          | 2268            | 10000       | 4536       |
| 3090 | Single/swivel/low-load | 75          | 5 <sup>1</sup> /8                     | 129  | 11.5          | 325         | <sup>5</sup> / <sub>16</sub> | 8      | <sup>9</sup> / <sub>16</sub> | 14          | 3000          | 1361            | 6000        | 2722       |
| 3095 | Double/straphead       | 75          | 411/16                                | 119  | 19.2          | 545         | _                            | —      | <sup>9</sup> / <sub>16</sub> | 14          | 7500          | 3402            | 15000       | 6804       |
| 3196 | Single loop block**    | 75          | 3 <sup>15</sup> / <sub>16</sub>       | 100  | 7.27**        | 206         | _                            | _      | <sup>9</sup> /16             | 14          | 5000          | 2268            | 10000       | 4536       |

\*Includes padeye. Uses holespacing and base dimensions of 627 padeye. Maximum working load decreases at varing angles, refer to page 97 \*\*Loop not included



Spirit of Lexus, Farr 42 - Photo courtesy Austral Yachts

| Part  |                          | Sheave<br>Ø | Len                                     | gth  | Wei<br>w/sha | ght<br>ackle | Shac            | kle pin<br>Ø | Max | Line<br>Ø | Maxiı<br>workin | num<br>g load | Brea<br>loa | king<br>ad |
|-------|--------------------------|-------------|-----------------------------------------|------|--------------|--------------|-----------------|--------------|-----|-----------|-----------------|---------------|-------------|------------|
| No.   | Description              | mm          | in                                      | mm   | 0Z           | g            | in              | mm           | in  | mm        | lb              | kg            | lb          | kg         |
| 1993  | Spriddle                 | 100/75      | <b>11</b> <sup>11</sup> / <sub>16</sub> | 297  | 26.5         | 752          | <sup>3</sup> /8 | 10           | 5/8 | 16        | 7500            | 3402          | 15000       | 6804       |
| 3007  | Single/swivel            | 100         | 8                                       | 203  | 20.1         | 570          | 3/8             | 10           | 5/8 | 16        | 7500            | 3402          | 15000       | 6804       |
| 3008  | Single/swivel/becket     | 100         | <b>9</b> <sup>1</sup> / <sub>2</sub>    | 241  | 22.6         | 641          | 3/8             | 10           | 5/8 | 16        | 7500            | 3402          | 15000       | 6804       |
| 3009  | Double/swivel            | 100         | 815/16                                  | 227  | 48.3         | 1370         | 1/2             | 12           | 5/8 | 16        | 11000           | 4990          | 22000       | 9979       |
| 3012  | Stand-up*                | 100         | 711/16                                  | 195  | 30.3         | 859          | -               | _            | 5/8 | 16        | 7500            | 3402          | 15000       | 6804       |
| 3089  | Straphead spriddle       | 100/75      | 91/4                                    | 235  | 24           | 680          | _               | _            | 5/8 | 16        | 7500            | 3402          | 15000       | 6804       |
| 3199  | Single loop block**      | 100         | 5 <sup>1</sup> / <sub>16</sub>          | 128  | 13.06        | 370          | _               | _            | 5/8 | 16        | 7500            | 3402          | 15000       | 6804       |
| C8213 | Center becket for 100 mm | 100         | 1.83                                    | 46.5 | 2.4          | 67           | _               | _            | _   | _         | 2500            | 1134          | _           | _          |

\*Includes padeye. Uses hole spacing and base dimensions of 648 padeye, refer to page 97 \*\*Loop not included

#### Black Magic Three-way head can be 125 mm & 150 mm locked in either direction or can swivel to keep NEW: 3201 line from twisting Sideplate protects 125 mm and 150 mm AirBlocks® feature Torlon® rollers in a ball bearings self-contained center cage. Rollers stay parallel for low-friction efficiency. UV-resistant, carbon-black Delrin® balls carry sideloads. Easy disassembly Used on offshore boats, these blocks offer a no "climb-out" deep for service groove sheave with radiused edges to protect line. Sculpted aluminum Sideload balls sideplates and thin-profile sheaves make these blocks very lightprevent friction weight. No stainless-to-aluminum contact prevents corrosion. from unfair leads The 3201 soft attachment Loop block has a removable dead end Deep-groove post for attachment to a padeye. Lashings can also be used. sheave Use for: Sheets Halyards Running backstays 3016 3201 Removable dead end Control lines 3021 post for attachment to a closed bail Sheave center carries primary load for a lightweight block Soft Loop attaches securely See page 96 through sheave center The center becket provides block with additional stiffness for dead-ending purchases FLYING 3018

Comet 62, A. Vallicelli & C., Comar Yachts

| Part   |                          | Sheave<br>Ø | Ler                                   | igth | Wei<br>w/sha | ght<br>ackle | Shack           | de pin<br>Ø | Max | line<br>ð | Maxi<br>workin | mum<br>g load | Brea  | aking<br>ad |
|--------|--------------------------|-------------|---------------------------------------|------|--------------|--------------|-----------------|-------------|-----|-----------|----------------|---------------|-------|-------------|
| No.    | Description              | mm          | in                                    | mm   | 0Z           | g            | in              | mm          | in  | mm        | lb             | kg            | lb    | kg          |
| 125 mm |                          |             |                                       |      |              |              |                 |             |     |           |                |               |       |             |
| 3016   | Single/swivel            | 125         | 10                                    | 254  | 36.8         | 1042         | 1/2             | 12          | 3/4 | 19        | 11000          | 4990          | 22000 | 9977        |
| 3018   | Stand-up*                | 125         | <b>9</b> <sup>1</sup> / <sub>16</sub> | 230  | 43.9         | 1246         | _               | —           | 3/4 | 19        | 11000          | 4990          | 22000 | 9977        |
| 3201   | Single Loop block‡       | 125         | 6                                     | 163  | 23.20 ‡      | 658 ‡        | _               | —           | 3/4 | 19        | 11000          | 4990          | 22000 | 9977        |
| C7971  | Center becket for 125 mm | —           | <b>2</b> <sup>3</sup> /8              | 60   | 4.9          | 140          | _               | —           | _   | —         | 3667           | 1663          | —     | _           |
| 150 mm |                          |             |                                       |      |              |              |                 |             |     |           |                |               |       |             |
| 3021   | Single/swivel            | 150         | 12                                    | 305  | 61           | 1730         | <sup>5</sup> /8 | 16          | 1   | 25        | 15000          | 6802          | 30000 | 13605       |
| 3022   | Stand-up**               | 150         | <b>11</b> <sup>1</sup> /8             | 283  | 66           | 1878         | _               | _           | 1   | 25        | 15000          | 6802          | 30000 | 13605       |
| C7592  | Center becket for 150 mm | _           | <b>2</b> <sup>3</sup> / <sub>4</sub>  | 71   | 9.4          | 270          | _               | _           | _   | _         | 5000           | 2268          | _     | _           |

3022

C7971 C7592

\*Includes padeye. Uses holespacing and base dimensions of 648 padeye. Maximum working load decreases at varying angles, refer to page 97

\*\*Uses holespacing and base dimesions of 629 padeye. Maximum working load decreases at varying angles, refer to page 97 ±Loop not included

## **Stainless Steel Blocks**

Hand-polished stainless steel sideplates are the trademark of these beautiful blocks. But it's the sheave design that gives them their strength and durability. Sheaves use a low-friction composite sleeve bearing for extreme radial loads. Ball bearings handle side loads. This proven sheave design is used on super-yachts where blocks must perform under very high, sustained loads without being too large.

Block details include low-profile screw adaptors and stainless-on-stainless construction for easy service. Sheaves on footblocks remove without unbolting the block. Headposts on swivel blocks lock or swivel freely.



Three-way head system can lock in either direction or can swivel

C6866

3137

Tartan 4300 - Billy Black photo/Tartan Yachts

|               | Includes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sh                                                                                                                                                                                                                                                                                                                                                                    | eave<br>Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Len                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | gth                                                                                                                                                                                                                                                                                                                                                      | We                                                                               | ight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Max                                                                                | Line<br>Ø                                              | Maxi<br>workin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mum<br>g load                                          | Brea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | king<br>ad                                             |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Description   | padeye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in                                                                                                                                                                                                                                                                                                                                                                    | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mm                                                                                                                                                                                                                                                                                                                                                       | 0Z                                                                               | g                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in                                                                                 | mm                                                     | lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kg                                                     | lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | kg                                                     |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |
| Single        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>6</b> <sup>3</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 157                                                                                                                                                                                                                                                                                                                                                      | 25.6                                                                             | 726                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>9</sup> / <sub>16</sub>                                                       | 14                                                     | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2268                                                   | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4536                                                   |
| Single/becket | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 73/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 187                                                                                                                                                                                                                                                                                                                                                      | 26.9                                                                             | 763                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>9</sup> / <sub>16</sub>                                                       | 14                                                     | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2268                                                   | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4536                                                   |
| Footblock*    | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>4</b> <sup>5</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 110                                                                                                                                                                                                                                                                                                                                                      | 24.8                                                                             | 703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9/ <sub>16</sub>                                                                   | 14                                                     | 5250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2382                                                   | 10500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4763                                                   |
| Stand-up**    | 627                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                                                                     | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5 <sup>13</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 148                                                                                                                                                                                                                                                                                                                                                      | 29.6                                                                             | 839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 9/ <sub>16</sub>                                                                   | 14                                                     | 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2268                                                   | 10000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4536                                                   |
| 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |
| Single        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>8</b> <sup>1</sup> / <sub>8</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 206                                                                                                                                                                                                                                                                                                                                                      | 49.6                                                                             | 1406                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3/4                                                                                | 19                                                     | 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3402                                                   | 15000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6804                                                   |
| Single/becket | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>9</b> <sup>3</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 248                                                                                                                                                                                                                                                                                                                                                      | 54.4                                                                             | 1542                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3/4                                                                                | 19                                                     | 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3402                                                   | 15000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6804                                                   |
| Footblock*    | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>5</b> <sup>3</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 146                                                                                                                                                                                                                                                                                                                                                      | 53.4                                                                             | 1514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3/4                                                                                | 19                                                     | 7750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3515                                                   | 15500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7031                                                   |
| Stand-up**    | 648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4                                                                                                                                                                                                                                                                                                                                                                     | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 711/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 195                                                                                                                                                                                                                                                                                                                                                      | 59.2                                                                             | 1678                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3/4                                                                                | 19                                                     | 7500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3402                                                   | 15000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6804                                                   |
| 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |
| Single        | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                     | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>10</b> <sup>1</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 256                                                                                                                                                                                                                                                                                                                                                      | 97.9                                                                             | 2775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7/ <sub>8</sub>                                                                    | 22                                                     | 11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4989                                                   | 22000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9977                                                   |
| Stand-up**    | 648                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5                                                                                                                                                                                                                                                                                                                                                                     | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>9</b> <sup>3</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 233                                                                                                                                                                                                                                                                                                                                                      | 104.9                                                                            | 2974                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>7</sup> /8                                                                    | 22                                                     | 11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4989                                                   | 22000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9977                                                   |
| Footblock*    | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                     | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7 <sup>1</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 181                                                                                                                                                                                                                                                                                                                                                      | 100.3                                                                            | 2844                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>7</sup> /8                                                                    | 22                                                     | 11250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5102                                                   | 22500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10204                                                  |
| Single/becket | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                                                                                                                                                                                                                                                                                                                                                                     | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>12</b> <sup>1</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 306                                                                                                                                                                                                                                                                                                                                                      | 106.4                                                                            | 3016                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>7</sup> /8                                                                    | 22                                                     | 11000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4989                                                   | 22000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9977                                                   |
| 1             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                          |                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                        |
| Single        | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                     | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 125/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 321                                                                                                                                                                                                                                                                                                                                                      | 154.4                                                                            | 4377                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7/ <sub>8</sub>                                                                    | 22                                                     | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8165                                                   | 36000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16329                                                  |
| Single/becket | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 6                                                                                                                                                                                                                                                                                                                                                                     | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 381                                                                                                                                                                                                                                                                                                                                                      | 168.8                                                                            | 4785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7/8                                                                                | 22                                                     | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8165                                                   | 36000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16329                                                  |
| Footblock*    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                                                                                                     | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 85/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 219                                                                                                                                                                                                                                                                                                                                                      | 157.6                                                                            | 4468                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7/8                                                                                | 22                                                     | 18250                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8278                                                   | 36500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16556                                                  |
| Stand-up**    | 629                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6                                                                                                                                                                                                                                                                                                                                                                     | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 279                                                                                                                                                                                                                                                                                                                                                      | 167.0                                                                            | 4734                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7/8                                                                                | 22                                                     | 18000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8165                                                   | 36000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 16329                                                  |
|               | Description Single Single/becket Footblock* Stand-up** Single Single/becket Footblock* Stand-up** Single Stand-up** Footblock* Single/becket Single/becket Single S | Includes<br>padeyeSingleSingle/becketFootblock*Stand-up**627ISingle/becketFootblock*Stand-up**648ISingleStand-up**648Footblock*SingleSingleSingleSingleSingle/becketSingle/becketSingleSingleSingleSingleSingle/becketSingle/becketSingle/becketSingle/becketSingle/becketSingle/becketSingle/becketSingle/becketSingle/becketSingle/becketSingle/becketStand-up**629 | Includes<br>padeye         Sh           Description         Includes<br>padeye         in           Single          3           Single/becket          3           Footblock*          3           Stand-up**         627         3           Single          4           Single/becket          4           Single/becket          4           Stand-up**         648         4           1          5           Stand-up**         648         5           Footblock*          5           Single          5           Single/becket          5           Single/becket          5           Single/becket          5           Single          6           Single/becket          6           Single/becket          6           Single/becket          6           Single/becket          6           Stand-up**         629         6 | Includes<br>padeye         Sheave<br>Ø           Description         Padeye         in         mm           Single          3         75           Single/becket          3         75           Footblock*          3         75           Stand-up**         627         3         75           Stand-up**         627         3         75           Single          4         100           Single/becket          4         100           Single/becket          4         100           Stand-up**         648         4         100           Stand-up**         648         5         125           Stand-up**         648         5         125           Single          5         125           Single/becket          5         125           Single/becket          5         125           Single/becket          5         125           Single/becket          6         150           Single/becket          6         150           St | $\begin{array}{c c c c c c c c } & Sheave & g & Len \\ \hline 0 & g & g & Len \\ \hline 0 & g & g & g & g & g \\ \hline 0 & g & g & g & g & g \\ \hline 0 & g & g & g & g & g \\ \hline 0 & g & g & g & g & g & g \\ \hline 0 & g & g & g & g & g & g & g \\ \hline 0 & g & g & g & g & g & g & g & g \\ \hline 0 & g & g & g & g & g & g & g & g & g &$ | $\begin{tabular}{ c c c c } \hline Sheave & & & & & & & & & & & & & & & & & & &$ | $\begin{tabular}{ c c c c c } \hline Sheave & 0 & Length & We \\ \hline Description & padeye & in & mm & in & mm & oz \\ \hline \\ \hline \\ \hline \\ Single & & 3 & 75 & 6^3/_{16} & 157 & 25.6 \\ \hline \\ Single/becket & & 3 & 75 & 7^3/_8 & 187 & 26.9 \\ \hline \\ Footblock^* & & 3 & 75 & 4^5/_{16} & 110 & 24.8 \\ \hline \\ Stand-up^{**} & 627 & 3 & 75 & 5^{13}/_{16} & 1148 & 29.6 \\ \hline \\ \hline \\ \hline \\ Single & & 4 & 100 & 8^{1}/_8 & 206 & 49.6 \\ \hline \\ Single/becket & & 4 & 100 & 9^{9}/_4 & 248 & 54.4 \\ \hline \\ Footblock^* & & 4 & 100 & 5^{5}/_4 & 146 & 53.4 \\ \hline \\ Stand-up^{**} & 648 & 4 & 100 & 7^{11}/_{16} & 195 & 59.2 \\ \hline \\ \hline \\ Single & & 5 & 125 & 10^{1}/_{16} & 256 & 97.9 \\ \hline \\ Single & & 5 & 125 & 10^{1}/_{16} & 256 & 97.9 \\ \hline \\ Single & & 5 & 125 & 7^{1}/_8 & 181 & 100.3 \\ \hline \\ Single & & 5 & 125 & 7^{1}/_8 & 181 & 100.3 \\ \hline \\ Single & & 6 & 150 & 12^{5}/_8 & 321 & 154.4 \\ \hline \\ Single & & 6 & 150 & 15 & 381 & 168.8 \\ \hline \\ Footblock^* & & 6 & 150 & 15 & 381 & 168.8 \\ \hline \\ Footblock^* & & 6 & 150 & 15 & 381 & 168.8 \\ \hline \\ Footblock^* & & 6 & 150 & 15 & 381 & 168.8 \\ \hline \\ Footblock^* & & 6 & 150 & 15 & 381 & 168.8 \\ \hline \\ Footblock^* & & 6 & 150 & 15 & 381 & 168.8 \\ \hline \\ $ | $\begin{tabular}{ c c c c c } \hline Sheave & & & & & & & & & & & & & & & & & & &$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{tabular}{ c c c c c } \hline Sheave & 0 & Length & Weight & 0 \\ \hline Description & padeye & in & mm & in & mm & oz & g & in & mm \\ \hline \hline Description & & 3 & 75 & 6^3/_{16} & 157 & 25.6 & 726 & 9/_{16} & 14 \\ \hline Single & & 3 & 75 & 7^3/_8 & 187 & 26.9 & 763 & 9/_{16} & 14 \\ \hline Single/becket & & 3 & 75 & 5^{13}/_{16} & 110 & 24.8 & 703 & 9/_{16} & 14 \\ \hline Footblock* & & 3 & 75 & 5^{13}/_{16} & 148 & 29.6 & 839 & 9/_{16} & 14 \\ \hline Stand-up^{**} & 627 & 3 & 75 & 5^{13}/_{16} & 148 & 29.6 & 839 & 9/_{16} & 14 \\ \hline \hline Single & & 4 & 100 & 8^{1}/_8 & 206 & 49.6 & 1406 & 3/_4 & 19 \\ \hline Single/becket & & 4 & 100 & 9^{9}/_4 & 248 & 54.4 & 1542 & 3/_4 & 19 \\ \hline Single/becket & & 4 & 100 & 5^{5}/_4 & 146 & 53.4 & 1514 & 3/_4 & 19 \\ \hline Stand-up^{**} & 648 & 4 & 100 & 7^{11}/_{16} & 195 & 59.2 & 1678 & 3/_4 & 19 \\ \hline Stand-up^{**} & 648 & 5 & 125 & 9^{3}/_{16} & 233 & 104.9 & 2974 & 7/_8 & 22 \\ \hline Stand-up^{**} & 648 & 5 & 125 & 9^{3}/_{16} & 233 & 104.9 & 2974 & 7/_8 & 22 \\ \hline Stand-up^{**} & 648 & 5 & 125 & 9^{3}/_{16} & 233 & 104.9 & 2974 & 7/_8 & 22 \\ \hline Stand-up^{**} & 648 & 5 & 125 & 7^{1}/_8 & 181 & 100.3 & 2844 & 7/_8 & 22 \\ \hline Single/becket & & 5 & 125 & 7^{1}/_8 & 181 & 100.3 & 2844 & 7/_8 & 22 \\ \hline Single/becket & & 5 & 125 & 7^{1}/_8 & 321 & 154.4 & 4377 & 7/_8 & 22 \\ \hline Single/becket & & 6 & 150 & 15 & 381 & 168.8 & 4785 & 7/_8 & 22 \\ \hline Single/becket & & 6 & 150 & 15 & 381 & 168.8 & 4785 & 7/_8 & 22 \\ \hline Single/becket & & 6 & 150 & 15 & 381 & 168.8 & 4785 & 7/_8 & 22 \\ \hline Single/becket & & 6 & 150 & 15 & 381 & 168.8 & 4785 & 7/_8 & 22 \\ \hline Single/becket & & 6 & 150 & 15 & 381 & 168.8 & 4785 & 7/_8 & 22 \\ \hline Single/becket & & 6 & 150 & 15 & 381 & 168.8 & 4785 & 7/_8 & 22 \\ \hline Single/becket & & 6 & 150 & 15 & 381 & 168.8 & 4785 & 7/_8 & 22 \\ \hline Single/becket & & 6 & 150 & 15 & 381 & 168.8 & 4785 & 7/_8 & 22 \\ \hline Single/becket & & 6 & 150 & 15 & 381 & 168.8 & 4785 & 7/_8 & 22 \\ \hline Single/becket & & 6 & 150 & 11 & 279 & 167.0 & 4734 & 7/_8 & 22 \\ \hline Stand-up^{**} & 629 & 6 & 150 & 11 &$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{tabular}{ c c c c c c c c } \hline Sheave & for an and a constraint of the second $ | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$ |

3136

\*See page 74 for hole spacing \*\*Refer to page 97 for hole spacing and base dimensions



| Part   |                     | She                                  | ave<br>Ø | Clev                         | is pin<br>Ø | Ler                                   | ngth | We   | ight | Max                          | Line<br>Ø | Max<br>worki | imum<br>ng load | Brea<br>loa | king<br>ad | Use     |
|--------|---------------------|--------------------------------------|----------|------------------------------|-------------|---------------------------------------|------|------|------|------------------------------|-----------|--------------|-----------------|-------------|------------|---------|
| No.    | Description         | in                                   | mm       | in                           | mm          | in                                    | mm   | 0Z   | g    | in                           | mm        | lb           | kg              | lb          | kg         | padeye  |
| 57 mm  |                     |                                      |          |                              |             |                                       |      |      |      |                              |           |              |                 |             |            |         |
| 3042   | Mastcollar/low-load | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | _                            | 6           | 33/8                                  | 86   | 3.6  | 102  | 3/8                          | 10        | 1655         | 750             | 3310        | 1500       |         |
| 3044   | Padeye/high-load    | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <sup>5</sup> / <sub>16</sub> | 8           | 33/8                                  | 86   | 3.9  | 110  | 3/8                          | 10        | 2500         | 1134            | 5000        | 2268       | 627     |
| 75 mm  |                     |                                      |          |                              |             |                                       |      |      |      |                              |           |              |                 |             |            |         |
| 3046   | Mastcollar/low-load | 3                                    | 75       | 5/ <sub>16</sub>             | 8           | <b>4</b> <sup>7</sup> / <sub>16</sub> | 113  | 8.5  | 240  | <sup>9</sup> /16             | 14        | 3000         | 1361            | 6000        | 2721       | _       |
| 3047   | Padeye              | 3                                    | 75       | 3/8                          | 10          | 47/16                                 | 113  | 9    | 250  | <sup>9</sup> / <sub>16</sub> | 14        | 5000         | 2268            | 10000       | 4535       | 648/689 |
| 100 mm |                     |                                      |          |                              |             |                                       |      |      |      |                              |           |              |                 |             |            |         |
| 3050   | Padeye              | 4                                    | 100      | 1/2                          | 12.7        | 5 <sup>13</sup> /16                   | 148  | 15.3 | 436  | <sup>5</sup> /8              | 16        | 7500         | 3402            | 15000       | 6804       | _       |

## Mastbase Halyard Lead

Low-profile mastbase halyard lead blocks are lightweight and can be grouped in a small area at the mastbase. Flared cheeks prevent chafe on the halyards. Keeps line close to deck

High-load bearing system has Teflon<sup>®</sup> composite bushing, sideload balls

Hardkote-anodized aluminum sheave for additional strength



1990 3123 C8508

1988

| Part   |                         | She<br>Ø                             | ave<br>) | Wi                                     | dth | Ler               | ngth     | Hei                                   | ght | Max   | i line<br>Ø | We   | ight | Maxi<br>workir | imum<br>1g load | Brea  | aking<br>ad |
|--------|-------------------------|--------------------------------------|----------|----------------------------------------|-----|-------------------|----------|---------------------------------------|-----|-------|-------------|------|------|----------------|-----------------|-------|-------------|
| No.    | Description             | in                                   | mm       | in                                     | mm  | in                | mm       | in                                    | mm  | in    | mm          | OZ   | g    | lb             | kg              | lb    | kg          |
| 1986   | Halyard lead block*     | <b>1</b> 3/4                         | 44       | 7/8                                    | 22  | 313/16            | 97       | <b>2</b> <sup>1</sup> / <sub>4</sub>  | 57  | 3/8   | 10          | 3.36 | 95   | 750            | 340             | 1500  | 680         |
| 1988   | Mastbase block/fixed**  | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>1</b> 3/8                           | 35  | 33/16             | 81       | 27/8                                  | 73  | 3/8   | 10          | 6.2  | 175  | 2500           | 1136            | 5000  | 2273        |
| 1990   | Mastbase block/fixed*** | 3                                    | 76       | 15/8                                   | 41  | 45/8              | 117      | 33/4                                  | 95  | 1/2   | 12          | 11.5 | 326  | 5000           | 2273            | 10000 | 4545        |
| 3123   | Mastbase block/fixed‡   | 4                                    | 102      | <b>1</b> <sup>5</sup> /8               | 41  | 5 <sup>1</sup> /8 | 130      | 5 <sup>1</sup> /8                     | 130 | 11/16 | 18          | 24.9 | 708  | 11000          | 4990            | 22000 | 9980        |
| C8508  | Mastbase block/fixed‡‡  | 4 <sup>15</sup> / <sub>16</sub>      | 125      | <b>1</b> <sup>15</sup> / <sub>16</sub> | 49  | 7 <sup>1</sup> /4 | 184      | <b>6</b> <sup>7</sup> / <sub>32</sub> | 158 | 3/4   | 19          | 44.5 | 1261 | 15000          | 6804            | 30000 | 13608       |
| 1.11.1 | N 511                   | 4444                                 |          |                                        | •   |                   | <b>.</b> |                                       |     |       |             |      |      |                | 1.11            |       |             |

\*'/4" (6 mm) RH \*\*'/4" (6 mm) FH \*\*\*'/6" (8 mm) FH  $\ddagger$ /6" 16 mm HH  $\ddagger$ Contact Harken to request quote and lead time. For full product line, visit www.harkencustom.com

## Over-the-Top

Over-the-top blocks lead lines aft over cabin houses, coamings, and splashguards. They feature highload sheaves and come in single, double, and triple configurations.







| Part  |                             | She<br>Q                             | ave<br>J | Wi                                   | dth | Ler                                   | ngth | He    | ight | Max             | c line<br>Ø | We   | ight | Maxi<br>workir | mum<br>1g load | Brea<br>loa | king<br>ad |
|-------|-----------------------------|--------------------------------------|----------|--------------------------------------|-----|---------------------------------------|------|-------|------|-----------------|-------------|------|------|----------------|----------------|-------------|------------|
| No.   | Description                 | in                                   | mm       | in                                   | mm  | in                                    | mm   | in    | mm   | in              | mm          | 0Z   | g    | lb             | kg             | lb          | kg         |
| 3002  | Single over-the-top block*  | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>1</b> <sup>3</sup> /8             | 35  | <b>3</b> <sup>1</sup> / <sub>4</sub>  | 83   | 31/4  | 83   | <sup>3</sup> /8 | 10          | 6.4  | 181  | 2500           | 1136           | 5000        | 2272       |
| 3003  | Double over-the-top block*  | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 27/16                                | 62  | <b>3</b> <sup>1</sup> / <sub>4</sub>  | 83   | 31/4  | 83   | <sup>3</sup> /8 | 10          | 12.2 | 346  | 2500           | 1136           | 5000        | 2272       |
| 3004  | Triple over-the-top block*  | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>3</b> <sup>1</sup> / <sub>2</sub> | 89  | <b>3</b> <sup>1</sup> / <sub>4</sub>  | 83   | 31/4  | 83   | <sup>3</sup> /8 | 10          | 18.1 | 513  | 2500           | 1136           | 5000        | 2272       |
| C8322 | Single over-the-top block** | <b>1</b> <sup>3</sup> / <sub>4</sub> | 45       | <b>1</b> 7/16                        | 36  | <b>3</b> <sup>1</sup> / <sub>16</sub> | 78   | 37/32 | 82   | 1/2             | 12          | 5.6  | 159  | 2500           | 1136           | 5000        | 2272       |
| C8624 | Single over-the-top block** | 2 <sup>15</sup> /16                  | 75       | 1 <sup>11</sup> /16                  | 43  | 4                                     | 101  | 4     | 101  | 9/16            | 14          | 18.5 | 526  | 5000           | 2272           | 10000       | 4536       |

\*1/4" (6 mm) FH \*\*Contact Harken to request quote and lead time. For full product line, visit www.harkencustom.com

## Flip-Flop

The low-profile Flip-Flop blocks are light weight and can be used for various leads on your boat including halyard leads, mainsheet leads and spinnaker sheet leads.

The Flip-Flop block has aluminum Hardkoteanodized side plates and features Hardkoteanodized Teflon impregnated aluminum sheaves for strength and corrosion resistance.

The high-load flip-flop blocks pivot around the line axis to keep line close to the deck. Hinged construction allows variable leads. Lockoff provides a temporary stop to free up winches. close to deck

Hollow axle runs line

High-load bearing system has Teflon<sup>®</sup> composite bushing, sideload balls



1987 Block mounts on machined aluminum feet. Pivots easily

3122

| uunnnunn   | 1661. 1 100 |
|------------|-------------|
| on plastic | isolators   |

| <u> </u> |                           | She                                  | ave | w:                                   | dth | La                                   | aath | Ца                | aht | Max             | ( line | Wai   | abt   | Maxi    | mum    | Brea  | king |
|----------|---------------------------|--------------------------------------|-----|--------------------------------------|-----|--------------------------------------|------|-------------------|-----|-----------------|--------|-------|-------|---------|--------|-------|------|
| Part     |                           | ,                                    | 0   | VVI                                  | um  | Lei                                  | iyui | пеі               | yni |                 | Ø      | we    | iyin  | WUTKIII | y ioau | 100   | iu   |
| No.      | Description               | in                                   | mm  | in                                   | mm  | in                                   | mm   | in                | mm  | in              | mm     | 0Z    | g     | lb      | kg     | lb    | kg   |
| 1987     | Flip-flop block*          | 3                                    | 76  | 27/8                                 | 72  | 6                                    | 152  | 4                 | 100 | 1/2             | 12     | 17.37 | 493   | 5000    | 2273   | 10000 | 4545 |
| 1989     | Flip-flop block/lockoff*  | 3                                    | 76  | <b>2</b> <sup>7</sup> /8             | 72  | 6                                    | 152  | 4                 | 100 | 1/2             | 12     | 21.1  | 598   | 5000    | 2273   | 10000 | 4545 |
| 3122     | Flip-flop block**         | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | <b>4</b> <sup>3</sup> / <sub>8</sub> | 111  | 27/8              | 73  | 3/8             | 10     | 9     | 255   | 2500    | 1136   | 5000  | 2273 |
| 3194     | Flip-flop block/lockoff** | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 4 <sup>3</sup> /8                    | 111  | 2 <sup>7</sup> /8 | 73  | <sup>3</sup> /8 | 10     | 11.2  | 317.8 | 2500    | 1136   | 5000  | 2273 |
|          |                           |                                      |     |                                      |     |                                      |      |                   |     |                 |        |       |       |         |        |       |      |

\*5/16" (8 mm) SH \*\*1/4" (6 mm) SH

## Crossover

Crossover blocks provide a cleaner, more efficient deck. These easy-to-install blocks mount behind the stopper bank on each side of the cabin house and can route any line to the winch on the opposite side. Use the 1984 for boats to 38 ft (11.5 m) and the 1981 for boats to 48 ft (15 m).



| Part |                 | Shea<br>Ø                                  | ave | Ler                      | ngth | Hei                                  | ight | Мах                          | c Line<br>Ø | We  | ight | Maxi<br>workir | imum<br>1g load | Brea<br>Io | king<br>ad |
|------|-----------------|--------------------------------------------|-----|--------------------------|------|--------------------------------------|------|------------------------------|-------------|-----|------|----------------|-----------------|------------|------------|
| No.  | Description     | in mm                                      |     | in                       | mm   | in                                   | mm   | in                           | mm          | 0Z  | g    | lb             | kg              | lb         | kg         |
| 1981 | Crossover block | 10 mm<br>2 <sup>3</sup> / <sub>16</sub> 56 |     | <b>2</b> <sup>5</sup> /8 | 66   | <b>1</b> 7/16                        | 36   | <sup>7</sup> / <sub>16</sub> | 12          | 8   | 227  | 3000           | 1361            | 6000       | 2721       |
| 1984 | Crossover block | <b>1</b> <sup>3</sup> / <sub>4</sub>       | 44  | 2 <sup>1</sup> /16       | 52   | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32   | 3/8                          | 10          | 4.2 | 119  | 2000           | 907             | 4000       | 1814       |

## Footblocks

Black Magic<sup>®</sup> footblocks carry some of the highest loads imposed by running rigging. The Torlon<sup>®</sup> rollers on these lightweight, free-running blocks are housed in a center cage, with no contact between bearings. UV-resistant, carbon-black Delrin<sup>®</sup> balls handle sideloads.

Either metric or imperial flathead fasteners may be used for mounting and are not exposed.

**Use for:** Genoas Spinnakers





3033

3006

|        |                           |                                      |          |                                        |     |                                        |      |      |      |                              |             |                |               | Refe        | r to page  | 74 for ho                        | le spacing  |
|--------|---------------------------|--------------------------------------|----------|----------------------------------------|-----|----------------------------------------|------|------|------|------------------------------|-------------|----------------|---------------|-------------|------------|----------------------------------|-------------|
| Part   |                           | She                                  | ave<br>Ø | Len                                    | gth | Hei                                    | ght  | Wei  | ight | Мах                          | c Line<br>Ø | Maxi<br>workin | mum<br>g load | Brea<br>Io: | king<br>ad | Faste<br>(F                      | eners<br>H) |
| No.    | Description               | in                                   | mm       | in                                     | mm  | in                                     | mm   | 0Z   | g    | in                           | mm          | lb             | kg            | lb          | kg         | in                               | mm          |
| 57 mm  |                           |                                      |          |                                        |     |                                        |      |      |      |                              |             |                |               |             |            |                                  |             |
| 1963   | Single/high-load          | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 35/16                                  | 84  | 1                                      | 25   | 4.2  | 119  | <sup>7</sup> /16             | 12          | 2500           | 1134          | 5000        | 2268       | 4 x 1/4                          | 4 x 6       |
| 1964   | Double/high-load          | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 35/16                                  | 84  | <b>1</b> 13/16                         | 46   | 6.9  | 195  | <sup>7</sup> /16             | 12          | 1650           | 750           | 3300        | 1500       | 4 x 1/4                          | 4 x 6       |
| 1967   | Single/high-load/lockoff* | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 35/16                                  | 84  | 1                                      | 25   | 5.3  | 150  | <sup>7</sup> /16             | 12          | 2500           | 1134          | 5000        | 2268       | 4 x 1/4                          | 4 x 6       |
| 1968   | Double/high-load/lockoff* | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 35/16                                  | 84  | <b>1</b> <sup>13</sup> / <sub>16</sub> | 46   | 9.6  | 272  | <sup>7</sup> / <sub>16</sub> | 12          | 1650           | 750           | 3300        | 1500       | 4 x 1/4                          | 4 x 6       |
| 75 mm  |                           |                                      |          |                                        |     |                                        |      |      |      |                              |             |                |               |             |            |                                  |             |
| 1972   | Single                    | 3                                    | 75       | 4 <sup>3</sup> /8                      | 111 | <b>1</b> <sup>1</sup> / <sub>4</sub>   | 32   | 10.2 | 288  | <sup>9</sup> /16             | 14          | 5250           | 2380          | 10500       | 4762       | 4 x <sup>5</sup> / <sub>16</sub> | 4 x 8       |
| 1973   | Double                    | 3                                    | 75       | 4 <sup>3</sup> /8                      | 111 | <b>2</b> <sup>1</sup> / <sub>4</sub>   | 57   | 18   | 508  | <sup>9</sup> /16             | 14          | 3465           | 1572          | 6930        | 3143       | 4 x <sup>5</sup> / <sub>16</sub> | 4 x 8       |
| 3005   | Single/lockoff*           | 3                                    | 75       | 4 <sup>3</sup> /8                      | 111 | <b>1</b> 1/4                           | 32   | 11.7 | 333  | 9/ <sub>16</sub>             | 14          | 5250           | 2380          | 10500       | 4762       | 4 x <sup>5</sup> / <sub>16</sub> | 4 x 8       |
| 3006   | Double/lockoff*           | 3                                    | 75       | 4 <sup>3</sup> /8                      | 111 | <b>2</b> <sup>1</sup> / <sub>4</sub>   | 57   | 20.7 | 586  | <sup>9</sup> /16             | 14          | 3465           | 1572          | 6930        | 3143       | 4 x <sup>5</sup> / <sub>16</sub> | 4 x 8       |
| 100 mr | n                         |                                      |          |                                        |     |                                        |      |      |      |                              |             |                |               |             |            |                                  |             |
| 3010   | Single                    | 4                                    | 100      | 55/8                                   | 143 | <b>1</b> <sup>5</sup> / <sub>16</sub>  | 33   | 20.6 | 584  | <sup>5</sup> /8              | 16          | 7500           | 3402          | 15000       | 6803       | 4 x <sup>3</sup> /8              | 4 x 10      |
| 3011   | Double                    | 4                                    | 100      | 55/8                                   | 143 | 27/16                                  | 62   | 36.2 | 1025 | <sup>5</sup> /8              | 16          | 4950           | 2250          | 9900        | 4500       | 4 x <sup>3</sup> /8              | 4 x 10      |
| 125 mr | n                         |                                      |          |                                        |     |                                        |      |      |      |                              |             |                |               |             |            |                                  |             |
| 3017   | Single                    | 5                                    | 125      | <b>6</b> <sup>15</sup> / <sub>16</sub> | 176 | <b>1</b> 11/16                         | 43   | 35.7 | 1012 | 3/4                          | 19          | 11000          | 4990          | 22000       | 9977       | 4 x 1/2                          | 4 x 12      |
| 3033   | Double                    | 5                                    | 125      | 615/16                                 | 176 | 2 <sup>13</sup> /16                    | 71.5 | 62.2 | 1762 | 3/4                          | 19          | 7260           | 3292          | 14520       | 6585       | 4 x 1/2                          | 4 x 12      |
| 150 mr | n                         |                                      |          |                                        |     |                                        |      |      |      |                              |             |                |               |             |            |                                  |             |
| 3023   | Single                    | 6                                    | 150      | 81/16                                  | 205 | 17/8                                   | 48   | 60.6 | 1719 | 1                            | 25          | 15000          | 6818          | 30000       | 13636      | 4 x <sup>5</sup> /8              | 4 x 16      |

\*Lockoffs are intended to hold lines temporarily and should not be used in place of line stoppers or clutches

## Air Runners® Black

Black Magic<sup>®</sup> Air Runners<sup>®</sup> are strong, lightweight blocks with extremely free-rolling sheaves. Blocks feature Torlon<sup>®</sup> roller bearings in a center cage for strength. Sideload bearing strips dampen rig vibration.

Integrated sideplate bails and recessed cotter key help produce a smooth design that won't snag lifelines.

Heads are offered with parallel/perpendicular shackles. Tangs attach turnbuckles, toggles, and other fittings. No tools required for installation.

> Block Sock on Tommy Hilfiger Freedom America — Billy Black Photo

> > 3035 3036 3037

> > 3038

Foam padded Block Socks easily install over Air Runners<sup>®</sup> to protect your blocks, deck, and crew.



Parallel

Perpendicular

**Tang Plate** 

#### **Runner Blocks**

|        |               | She                                  | eave |                                       |     |      |      | Clev | ris pin | Max                          | Line | Maxir  | num    | Brea  | iking |
|--------|---------------|--------------------------------------|------|---------------------------------------|-----|------|------|------|---------|------------------------------|------|--------|--------|-------|-------|
| Part   |               | 1                                    | Ø    | Len                                   | gth | We   | ight |      | Ø       | !                            | Ø    | workin | g load | lo    | ad    |
| No.    | Description   | in                                   | mm   | in                                    | mm  | 0Z   | g    | in   | mm      | in                           | mm   | lb     | kg     | lb    | kg    |
| 57 mm  |               |                                      |      |                                       |     |      |      |      |         |                              |      |        |        |       |       |
| 3039   | Single        | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57   | 33/8                                  | 86  | 4.4  | 124  | 3/8  | 10      | 1/2                          | 12   | 2500   | 1134   | 5000  | 2268  |
| 75 mm  |               |                                      |      |                                       |     |      |      |      |         |                              |      |        |        |       |       |
| 1991   | Single        | 3                                    | 75   | 45/8                                  | 118 | 9.3  | 264  | 1/2  | 12.7    | <sup>9</sup> / <sub>16</sub> | 14   | 5000   | 2268   | 10000 | 4544  |
| 1992   | Single/becket | 3                                    | 75   | 5 <sup>3</sup> /4                     | 146 | 10.3 | 293  | 1/2  | 12.7    | <sup>9</sup> / <sub>16</sub> | 14   | 5000   | 2268   | 10000 | 4544  |
| 100 mm |               |                                      |      |                                       |     |      |      |      |         |                              |      |        |        |       |       |
| 3013   | Single        | 4                                    | 100  | <b>6</b> <sup>3</sup> / <sub>16</sub> | 157 | 17.5 | 495  | 5/8  | 15.9    | 5/8                          | 16   | 7500   | 3402   | 15000 | 6802  |
| 3014   | Single/becket | 4                                    | 100  | 79/16                                 | 193 | 19.4 | 550  | 5/8  | 15.9    | 5/8                          | 16   | 7500   | 3402   | 15000 | 6802  |
| 125 mm |               |                                      |      |                                       |     |      |      |      |         |                              |      |        |        |       |       |
| 3019   | Single        | 5                                    | 125  | 711/16                                | 195 | 29.0 | 824  | 3/4  | 19      | 3/4                          | 19   | 11000  | 4990   | 22000 | 9980  |
| 3020   | Single/becket | 5                                    | 125  | <b>9</b> <sup>1</sup> / <sub>2</sub>  | 240 | 32.6 | 922  | 3/4  | 19      | 3/4                          | 19   | 11000  | 4990   | 22000 | 9980  |
| 150 mm |               |                                      |      |                                       |     |      |      |      |         |                              |      |        |        |       |       |
| 3024   | Single        | 6                                    | 150  | <b>8</b> <sup>3</sup> / <sub>4</sub>  | 221 | 49.4 | 1400 | 3/4  | 19      | 1                            | 25   | 15000  | 6802   | 30000 | 13605 |
| 3025   | Single/becket | 6                                    | 150  | 10 <sup>13</sup> /16                  | 275 | 55.2 | 1566 | 3/4  | 19      | 1                            | 25   | 15000  | 6802   | 30000 | 13605 |

| Heads         |          |      |      | Tangs    |     |       |                              |         |                  |           | Block Sock  | S         |
|---------------|----------|------|------|----------|-----|-------|------------------------------|---------|------------------|-----------|-------------|-----------|
| Perpendicular | Parallel | We   | ight | Tang     | We  | eight | Runne                        | r pin Ø | Checks           | tay pin Ø | Block Socks |           |
| Part No.      | Part No. | 0Z   | g    | Part No. | 0Z  | g     | in                           | mm      | in               | mm        | Part No.    | Fits      |
| 3048          | 3048     | 3.8  | 108  | 747      | 3   | 85    | <sup>7</sup> / <sub>16</sub> | 11.1    | 1/4              | 6         | 3035        | 1991/1992 |
| 3051          | 3051     | 7.4  | 210  | 3052     | 5.5 | 156   | 5/8                          | 15.9    | 3/8              | 10        | 3036        | 3013/3014 |
| 3030          | 3030     | 13.8 | 381  | 3031     | 9   | 255   | 3/4                          | 19      | 7/ <sub>16</sub> | 11.1      | 3037        | 3019/3020 |
| 3028*         | 3026*    | 19   | 537  | 3027*    | 11  | 310   | 3/4                          | 19      | 1/2              | 12.7      | 3038        | 3024/3025 |

\*150 mm Runner post and tang adapters made to order



#### **Runner Blocks**

|      |               | She | eave |                                      |      |    |       | Clev                         | is pin | Max                          | Line | Maxi   | imum    | Brea  | iking |
|------|---------------|-----|------|--------------------------------------|------|----|-------|------------------------------|--------|------------------------------|------|--------|---------|-------|-------|
| Part |               | ļ   | Ø    | Le                                   | ngth | W  | eight |                              | Ø      | 1                            | Ø    | workir | ng load | lo    | ad    |
| No.  | Description   | in  | mm   | in                                   | mm   | 0Z | g     | in                           | mm     | in                           | mm   | lb     | kg      | lb    | kg    |
| 737  | Single        | 3   | 76   | 47/8                                 | 124  | 14 | 397   | 1/2                          | 12.7   | <sup>9</sup> /16             | 14   | 5000   | 2268    | 10000 | 4544  |
| 1853 | Single        | 4   | 102  | <b>6</b> <sup>1</sup> / <sub>8</sub> | 156  | 21 | 595   | 9/ <sub>16</sub>             | 14.3   | <sup>9</sup> /16             | 14   | 6250   | 2835    | 12500 | 5670  |
| 1855 | Single        | 5   | 127  | <b>7</b> <sup>3</sup> / <sub>4</sub> | 197  | 44 | 1247  | 11/16                        | 17.5   | <sup>5</sup> /8              | 16   | 9500   | 4310    | 19000 | 8618  |
| 1863 | Single/becket | 4   | 102  | 75/16                                | 186  | 27 | 768   | <sup>9</sup> / <sub>16</sub> | 14.3   | <sup>9</sup> / <sub>16</sub> | 14   | 6250   | 2835    | 12500 | 5670  |

| Heads         |          |    |       | Tangs    |                                      |       |                 |          |                 |          |           |
|---------------|----------|----|-------|----------|--------------------------------------|-------|-----------------|----------|-----------------|----------|-----------|
| Perpendicular | Parallel | W  | eight | Tang     | We                                   | eight | Runne           | er pin Ø | Checkst         | ay pin Ø |           |
| Part No.      | Part No. | 0Z | g     | Part No. | OZ                                   | g     | in              | mm       | in              | mm       | Fits      |
| 740           | 740      | 7  | 198   | 747      | 3                                    | 85    | 7/16            | 11.1     | 1/4             | 6.35     | 737       |
| 1859          | —        | 10 | 280   | 1857     | <b>5</b> <sup>1</sup> / <sub>2</sub> | 156   | 1/2             | 12.7     | <sup>3</sup> /8 | 9.5      | 1853/1863 |
| 1861          | 1862     | 13 | 369   | 1858     | 9                                    | 255   | <sup>5</sup> /8 | 16       | 7/16            | 11.1     | 1855      |
|               |          |    |       |          |                                      |       |                 |          |                 |          |           |

# **Snatch Blocks**

Harken<sup>®</sup> Snatch blocks feature low-friction roller/ball bearing sheaves and a unique push-button latch for one-handed operation. The opening side allows sheets to be inserted without reeving.

Urethane sideplates prevent damage to decks, spars, and cabin houses. An integral bail allows blocks to hang from lifelines with shockcord. Snap shackles attach to padeyes and bails, while trunnion shackles attach to toerails and other fixtures.

Snatch blocks are offered in high-load and low-load configurations and are used on offshore boats of all sizes.

#### Use for:

Genoa leads Mast base reefing blocks Protected trip buttons Changing sheets Spinnaker sheet deflector blocks



| Part |                             | Sheave<br>Ø Length<br>in mm in n     |    | gth                                  | We  | ight | Max | c line<br>Ø     |    | A               |    | В                             | Max<br>worki | imum<br>ng load | Brea<br>Io | iking<br>ad |      |
|------|-----------------------------|--------------------------------------|----|--------------------------------------|-----|------|-----|-----------------|----|-----------------|----|-------------------------------|--------------|-----------------|------------|-------------|------|
| No.  | Description                 | in                                   | mm | in                                   | mm  | 0Z   | g   | in              | mm | in              | mm | in                            | mm           | lb              | kg         | lb          | kg   |
| 1600 | Snatch block                | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64 | <b>5</b> <sup>3</sup> / <sub>4</sub> | 146 | 18   | 510 | <sup>5</sup> /8 | 16 | <sup>5</sup> /8 | 16 | 3/4                           | 19           | 2250            | 1021       | 4500        | 2041 |
| 1601 | High-load                   | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64 | <b>6</b> <sup>1</sup> / <sub>4</sub> | 159 | 19   | 552 | <sup>5</sup> /8 | 16 | <sup>5</sup> /8 | 16 | 11/16                         | 26           | 3500            | 1588       | 7000        | 3175 |
| 1608 | Midrange/trunnion           | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64 | 513/16                               | 147 | 18   | 510 | 5/8             | 16 | 11/16           | 17 | <sup>13</sup> / <sub>16</sub> | 21           | 2250            | 1021       | 4500        | 2041 |
| 1609 | Midrange/high-load/trunnion | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64 | 5 <sup>9</sup> / <sub>16</sub>       | 166 | 20   | 564 | <sup>5</sup> /8 | 16 | 7/8             | 22 | 11/16                         | 26           | 3500            | 1588       | 7000        | 3175 |

## High-Load Snatch Blocks

Crew can quickly fasten these opening blocks wherever needed. ULC bearing technology ensures sheaves turn smoothly and maintain efficiency at high loads. Snap-fit Torlon® ball bearings handle thrust loads, and the integral head-spacer prevents the Hardkote-anodized sideplates from binding the sheave. The articulating Loop carries the block's primary load.

**Use for:** Static line applications



| Part   | rt Ø Length<br>p. Description in mm in mm |                                      |      |                                      | gth | Wei   | ght* | Lo                            | op<br>Ø | Max                                   | iline<br>Ø | Maxi<br>workir | mum<br>1g load | Brea<br>lo: | king<br>ad |          |
|--------|-------------------------------------------|--------------------------------------|------|--------------------------------------|-----|-------|------|-------------------------------|---------|---------------------------------------|------------|----------------|----------------|-------------|------------|----------|
| No.    | Description                               | in                                   | mm   | in                                   | mm  | 0Z    | g    | in                            | mm      | in                                    | mm         | lb             | kg             | lb          | kg         | Use Loop |
| HC8796 | 2.3T Snatch block                         | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38.5 | 2 <sup>3</sup> /8                    | 60  | 3.95  | 112  | <sup>5</sup> / <sub>16</sub>  | 7       | <sup>7</sup> / <sub>16</sub>          | 11         | 5070           | 2300           | 10140       | 4600       | HCP1800  |
| HC8832 | 5T Snatch block                           | <b>2</b> <sup>1</sup> / <sub>4</sub> | 56   | 2 <sup>3</sup> /8                    | 86  | 8.64  | 245  | 3/8                           | 10      | <sup>5</sup> /8                       | 16         | 10805          | 5000           | 21610       | 9800       | HCP1772  |
| HC8910 | 8T Snatch block                           | 3                                    | 75   | <b>4</b> <sup>1</sup> / <sub>2</sub> | 114 | 20.28 | 575  | 1/2                           | 12      | 3/4                                   | 18         | 18080          | 8000           | 36160       | 16400      | HCP1868  |
| HC8628 | 12T Snatch block                          | 4                                    | 100  | 5 <sup>13</sup> / <sub>16</sub>      | 148 | 47.62 | 1350 | <sup>11</sup> / <sub>16</sub> | 17      | <b>1</b> <sup>3</sup> / <sub>16</sub> | 30         | 26460          | 12000          | 52920       | 24000      | HCP1852  |

Contact Harken to request quote and lead time. For full product line, visit www.harkencustom.com \*Includes weight of Loop and Velcro® strap

# **Cruising ESP**

Cruising ESP blocks complement our existing blocks in looks and function, but are simpler in design and construction. Sheaves feature sleeve bearings to handle high static loads and are ideal for halyards or limited purchase systems on cruising boats. Available in aluminum or hand-polished stainless steel.

#### Teardrops

Use teardrop blocks for direct attachment to padeyes, mast collar posts, perforated mast collars, or in mastbase situations where leads might change.

#### **Footblocks**

Use footblocks to redirect lines on the deck. Footblocks with lockoffs temporarily secure sheets and are designed for port or starboard installation by flipping them over.

#### **Swivels and Fiddles**

Use cruising ESP swivel and fiddle blocks in winch-driven purchases of 4:1 or less. Perfect for vangs or mainsheet systems on cruising boats from 35 ft to 45 ft (10 m to 14 m).

Flip block over to 6077 mount on opposite 6078 side of boat Lockoff Can be double temporarily stacked secures sheets Lockoff blocks feature aluminum sheaves Plastic sleeve bearing Ball bearings handle for high static loads low loads and side loads from unfair leads 6091 6092 6093 14 mm (6050, 6056)

6050 6095 6095

6065



Billy Black photo

Refer to page 74 for 6077/6078/6091/6092/6093 hole spacing.

|            | Sheave                 |                                      |          |                                      |      |      | Clavi | o nin                        | Mos         | line            | Movi | , <u> </u> | Dree    | kina  | Movie | akoff | East   | tonoro                       |     |
|------------|------------------------|--------------------------------------|----------|--------------------------------------|------|------|-------|------------------------------|-------------|-----------------|------|------------|---------|-------|-------|-------|--------|------------------------------|-----|
| <b>.</b> . |                        | 3116                                 | ave<br>X | Lon                                  | ath  | Wai  | aht   | GIEVI                        | s µiii<br>x | IVIA)           | a    | Workin     |         | Drea  | Killy |       | JCKUII | ras                          |     |
| Part       |                        | . '                                  | ,        | Len                                  | yın  | wei  | yni   | . '                          | ,           |                 | U U  | WUIKII     | iy iuau |       | iu .  |       | 1U .   | . (                          | гп) |
| NO.        | Description            | in                                   | mm       | in                                   | mm   | OZ   | g     | in                           | mm          | in              | mm   | lb         | kg      | lb    | kg    | lb    | kg     | IN                           | mm  |
| 57 mn      | 1                      |                                      |          |                                      |      |      |       |                              |             |                 |      |            |         |       |       |       |        |                              |     |
| 6050       | Mastcollar             | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 311/16                               | 93.5 | 4.3  | 122   | <sup>5</sup> / <sub>16</sub> | 8           | <sup>5</sup> /8 | 16   | 2100       | 850     | 4190  | 1900  | _     | _      | _                            |     |
| 6065       | Padeye block           | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 311/16                               | 93.5 | 4.5  | 128   | <sup>5</sup> /16             | 8           | <sup>5</sup> /8 | 16   | 2100       | 850     | 4190  | 1900  | _     | _      | _                            |     |
| 6077       | Footblock/lockoff* * ‡ | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 37/8                                 | 99   | 8    | 226   | —                            | _           | 5/8             | 16   | 2500       | 1135    | 5000  | 2272  | 1200  | 550    | <sup>5</sup> / <sub>16</sub> | 8   |
| 6091       | Footblock‡             | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 37/8                                 | 99   | 5.4  | 153   | —                            | _           | 5/8             | 16   | 2500       | 1135    | 5000  | 2272  | _     | —      | <sup>5</sup> / <sub>16</sub> | 8   |
| 6095       | Mastcollar/low-load    | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 4 <sup>5</sup> /8                    | 117  | 4    | 113   | —                            | 6           | 5/8             | 16   | 1650       | 750     | 3300  | 1500  | _     | —      | —                            |     |
| 6096       | Narrow Mastcollar      | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>3</b> <sup>1</sup> / <sub>2</sub> | 89   | 3.3  | 94    | —                            | 6           | 3/8             | 10   | 1650       | 748     | 3300  | 1497  | —     | —      | —                            |     |
| 6097       | Narrow Mastcollar      | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>3</b> <sup>1</sup> / <sub>2</sub> | 89   | 3.5  | 99    | <sup>5</sup> / <sub>16</sub> | 8           | <sup>3</sup> /8 | 10   | 1650       | 748     | 3300  | 1497  | _     | _      | _                            |     |
| 75 mn      | 1                      |                                      |          |                                      |      |      |       |                              |             |                 |      |            |         |       |       |       |        |                              |     |
| 6056       | Mastcollar             | 3                                    | 75       | 45/8                                 | 117  | 7.8  | 221   | <sup>5</sup> /16             | 8           | 3/4             | 19   | 3000       | 1361    | 6000  | 2721  | _     | _      | —                            | _   |
| 6057       | Padeye block           | 3                                    | 75       | 411/16                               | 119  | 8.4  | 238   | <sup>3</sup> /8              | 10          | 3/4             | 19   | 3500       | 1587    | 7000  | 3175  | _     | —      | —                            |     |
| 6078       | Foot/lockoff**‡        | 3                                    | 75       | 4 <sup>3</sup> /8                    | 112  | 12   | 340   | —                            | _           | 3/4             | 19   | 3500       | 1587    | 7000  | 3175  | 1200  | 550    | <sup>5</sup> / <sub>16</sub> | 8   |
| 6092       | Footblock‡             | 3                                    | 75       | 4 <sup>3</sup> /8                    | 112  | 10.3 | 293   | —                            | —           | 3/4             | 19   | 3500       | 1587    | 7000  | 3175  | _     | —      | <sup>5</sup> / <sub>16</sub> | 8   |
| 6098       | Narrow Mastcollar      | 3                                    | 75       | 47/16                                | 113  | 6.4  | 181   | <sup>5</sup> / <sub>16</sub> | 8           | 1/2             | 12   | 2500       | 1134    | 5000  | 2268  | _     | _      | —                            | _   |
| 100 m      | m                      |                                      |          |                                      |      |      |       |                              |             |                 |      |            |         |       |       |       |        |                              |     |
| 6093       | Footblock‡             | 4                                    | 100      | 511/16                               | 144  | 22.6 | 642   | _                            | _           | 3/4             | 19   | 7500       | 3402    | 15000 | 6804  | _     | _      | 1/2                          | 12  |

\*\*Lockoffs are intended to hold lines temporarily and should not be used in place of line stoppers or clutches

‡If double stacked, upper block is two-thirds of listed MWL and breaking load

## **Cruising ESP**



|        |                              | Shea                                 | ave   |                                      |     |      |     | Shack                        | le pin | Ma              | x line | Maxi   | mum    | Brea | iking |
|--------|------------------------------|--------------------------------------|-------|--------------------------------------|-----|------|-----|------------------------------|--------|-----------------|--------|--------|--------|------|-------|
| Part   |                              | Ø                                    |       | Len                                  | gth | Wei  | ght | (                            | ð      |                 | Ø      | workin | g load | lo   | ad    |
| No.    | Description                  | in                                   | mm    | in                                   | mm  | 0Z   | g   | in                           | mm     | in              | mm     | lb     | kg     | lb   | kg    |
| 57 mm  |                              |                                      |       |                                      |     |      |     |                              |        |                 |        |        |        |      |       |
| 6059   | Single/swivel                | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57    | <b>5</b> <sup>1</sup> / <sub>2</sub> | 140 | 7.7  | 218 | <sup>5</sup> / <sub>16</sub> | 8      | 5/8             | 16     | 2500   | 1135   | 5000 | 2272  |
| 6094   | Single/swivel/becket         | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57    | 611/16                               | 170 | 9    | 255 | <sup>5</sup> / <sub>16</sub> | 8      | <sup>5</sup> /8 | 16     | 2500   | 1135   | 5000 | 2272  |
| 75 mm  |                              |                                      |       |                                      |     |      |     |                              |        |                 |        |        |        |      |       |
| 6058   | Single/swivel                | 3                                    | 75    | 61/4                                 | 159 | 12   | 340 | <sup>5</sup> / <sub>16</sub> | 8      | 3/4             | 19     | 3500   | 1587   | 7000 | 3175  |
| 6084   | Single/swivel/becket         | 3                                    | 75    | 7 <sup>1</sup> /4                    | 184 | 13   | 369 | <sup>5</sup> / <sub>16</sub> | 8      | 3/4             | 19     | 3500   | 1587   | 7000 | 3175  |
| 6085   | Fiddle                       | 3/113/16                             | 75/46 | <b>8</b> <sup>3</sup> / <sub>8</sub> | 213 | 14.7 | 415 | <sup>5</sup> / <sub>16</sub> | 8      | 3/4             | 19     | 3500   | 1587   | 7000 | 3175  |
| 6086   | Fiddle/becket                | 3/113/16                             | 75/46 | <b>9</b> <sup>1</sup> / <sub>2</sub> | 241 | 15.6 | 444 | <sup>5</sup> / <sub>16</sub> | 8      | 3/4             | 19     | 3500   | 1587   | 7000 | 3175  |
| 6099   | Fiddle/becket/280 Cam-Matic® | 3/113/16                             | 75/46 | <b>9</b> <sup>1</sup> / <sub>2</sub> | 241 | 25.2 | 715 | <sup>5</sup> / <sub>16</sub> | 8      | 3/4             | 19     | 2000   | 907    | 4000 | 1814  |
| 100 mm | 1                            |                                      |       |                                      |     |      |     |                              |        |                 |        |        |        |      |       |
| 6100   | Single/swivel                | 4                                    | 100   | <b>8</b> <sup>1</sup> / <sub>8</sub> | 206 | 28.5 | 808 | 3/8                          | 10     | 3/4             | 19     | 4870   | 2209   | 9740 | 4418  |



| Part   |                          | She<br>Ø                             | ave<br>I | Len                                    | gth  | Wei   | ight | Clevis<br>p                  | /Shackle<br>in Ø | Max<br>Ø        | line<br>í | Maxi<br>workin | mum<br>g load | Brea<br>Ioa | king<br>d‡ | Max I<br>Io | ockoff<br>ad | Faste<br>(R                  | eners<br>H) |
|--------|--------------------------|--------------------------------------|----------|----------------------------------------|------|-------|------|------------------------------|------------------|-----------------|-----------|----------------|---------------|-------------|------------|-------------|--------------|------------------------------|-------------|
| No.    | Description              | in                                   | mm       | in                                     | mm   | 0Z    | g    | in                           | mm               | in              | mm        | lb             | kg            | lb          | kg         | lb          | kg           | in                           | mm          |
| 57 mm  |                          |                                      |          |                                        |      |       |      |                              |                  |                 |           |                |               |             |            |             |              |                              |             |
| 6068   | Single/swivel            | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 5 <sup>1</sup> /2                      | 140  | 11    | 312  | <sup>5</sup> / <sub>16</sub> | 8                | <sup>5</sup> /8 | 16        | 2500           | 1135          | 5000        | 2272       | —           | _            | _                            | _           |
| 6069   | Mastcollar               | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 311/16                                 | 93.5 | 7     | 198  | <sup>5</sup> / <sub>16</sub> | 8                | <sup>5</sup> /8 | 16        | 2500           | 1135          | 5000        | 2272       | —           | _            | —                            | —           |
| 6070   | Single foot/lockoff*‡    | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 33/4                                   | 132  | 9     | 255  | —                            | _                | <sup>5</sup> /8 | 16        | 2500           | 1135          | 5000        | 2272       | 650         | 295          | <sup>3</sup> /8              | 10          |
| 6076   | Footblock**‡             | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 33/4                                   | 95   | 7     | 198  | —                            | _                | <sup>5</sup> /8 | 16        | 2500           | 1135          | 5000        | 2272       | —           | _            | <sup>3</sup> /8              | 10          |
| 6089   | Single/swivel/becket     | <b>2</b> <sup>1</sup> / <sup>4</sup> | 57       | 611/16                                 | 170  | 12.5  | 354  | <sup>5</sup> / <sub>16</sub> | 8                | <sup>5</sup> /8 | 16        | 2500           | 1135          | 5000        | 2272       | —           | _            | _                            | _           |
| 75 mm  |                          |                                      |          |                                        |      |       |      |                              |                  |                 |           |                |               |             |            |             |              |                              |             |
| 6072   | Single/swivel            | 3                                    | 75       | 61/4                                   | 159  | 19    | 539  | <sup>5</sup> / <sub>16</sub> | 8                | 3/4             | 19        | 3500           | 1587          | 7000        | 3175       | —           | _            | _                            | _           |
| 6073   | Mastcollar               | 3                                    | 75       | <b>4</b> <sup>5</sup> / <sub>8</sub>   | 117  | 16    | 454  | <sup>5</sup> / <sub>16</sub> | 8                | 3/4             | 19        | 3000           | 1361          | 6000        | 2721       | —           | _            | _                            | —           |
| 6074   | Single foot/lockoff*‡    | 3                                    | 75       | 4 <sup>3</sup> /8                      | 111  | 17    | 482  | —                            | _                | 3/4             | 19        | 3500           | 1587          | 7000        | 3175       | 750         | 340          | <sup>3</sup> /8              | 10          |
| 6079   | Footblock**‡             | 3                                    | 75       | <b>41</b> / <sub>2</sub>               | 114  | 16    | 454  | —                            | —                | 3/4             | 19        | 3500           | 1587          | 7000        | 3175       | _           | —            | <sup>3</sup> /8              | 10          |
| 6080   | Fiddle                   | 3/113/16                             | 75/46    | <b>8</b> <sup>3</sup> / <sub>8</sub>   | 213  | 24    | 680  | <sup>5</sup> / <sub>16</sub> | 8                | 3/4             | 19        | 3500           | 1587          | 7000        | 3175       | _           | —            | _                            | —           |
| 6081   | Fiddle/becket            | 3/113/16                             | 75/46    | <b>9</b> <sup>1</sup> / <sub>2</sub>   | 241  | 26.25 | 744  | <sup>5</sup> / <sub>16</sub> | 8                | 3/4             | 19        | 3500           | 1587          | 7000        | 3175       | —           | —            | —                            | —           |
| 6087   | Single/swivel/becket     | 3                                    | 75       | 7 <sup>1</sup> /4                      | 184  | 21.25 | 602  | <sup>5</sup> /16             | 8                | 3/4             | 19        | 3500           | 1587          | 7000        | 3175       | —           | —            | —                            | —           |
| Deck O | rganizers                |                                      |          |                                        |      |       |      |                              |                  |                 |           |                |               |             |            |             |              |                              |             |
| 6071   | Deck organizer/3-sheave‡ | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>9</b> <sup>15</sup> / <sub>16</sub> | 252  | 21    | 595  | _                            |                  | <sup>5</sup> /8 | 16        | 6000           | 2721          | 12000       | 5442       | _           | _            | 3/8                          | 10          |
| 6075   | Deck organizer/3-sheave‡ | <b>1</b> <sup>1</sup> / <sub>2</sub> | 40       | 711/16                                 | 179  | 10    | 284  | _                            | _                | 1/2             | 12        | 3000           | 1361          | 6000        | 2721       | _           | _            | <sup>5</sup> / <sub>16</sub> | 8           |

\*Lockoffs are intended to hold lines temporarily and should not be used in place of line stoppers or clutches \*\* Refer to page 74 for 6076/6079 hole spacing ‡If double stacked, upper block/organizer is two-thirds of listed MWL and breaking load

## **Specifications**



| Part                | Fasten                       | ers (FH) | ŀ                                      | 4  | E                                     | 3  | (                                     | ;   | I                                      | D  | I                                     |     | F                                     |     |                               | G  |
|---------------------|------------------------------|----------|----------------------------------------|----|---------------------------------------|----|---------------------------------------|-----|----------------------------------------|----|---------------------------------------|-----|---------------------------------------|-----|-------------------------------|----|
| No.                 | in                           | mm       | in                                     | mm | in                                    | mm | in                                    | mm  | in                                     | mm | in                                    | mm  | in                                    | mm  | in                            | mm |
| 1963/1964/1967/1968 | 1/4                          | 6        | 9/ <sub>32</sub>                       | 7  | 7/8                                   | 23 | <b>2</b> <sup>1</sup> / <sub>32</sub> | 52  | 5/8                                    | 16 | <b>2</b> <sup>9</sup> / <sub>32</sub> | 58  | 35/16                                 | 84  | 15/32                         | 12 |
| 1972/1973/3005/3006 | <sup>5</sup> / <sub>16</sub> | 8        | 3/8                                    | 10 | <b>1</b> 1/8                          | 29 | 2 <sup>13</sup> /16                   | 71  | <sup>13</sup> / <sub>16</sub>          | 21 | 3                                     | 76  | 45/16                                 | 110 | 5/8                           | 34 |
| 3010/3011           | <sup>3</sup> /8              | 10       | 7/ <sub>16</sub>                       | 11 | <b>1</b> <sup>1</sup> / <sub>2</sub>  | 38 | 35/8                                  | 93  | <b>1</b> 1/8                           | 28 | 315/16                                | 100 | 55/8                                  | 143 | <sup>13</sup> / <sub>16</sub> | 21 |
| 3017/3033           | 1/2                          | 12       | 17/32                                  | 14 | 1 <sup>25</sup> /32                   | 50 | 47/16                                 | 113 | <b>1</b> <sup>11</sup> / <sub>32</sub> | 35 | 4 <sup>29</sup> / <sub>32</sub>       | 125 | 629/32                                | 176 | <sup>29</sup> / <sub>32</sub> | 23 |
| 3023                | <sup>5</sup> /8              | 16       | <sup>19</sup> / <sub>32</sub>          | 15 | 2 <sup>3</sup> / <sub>32</sub>        | 53 | 5 <sup>3</sup> / <sub>32</sub>        | 129 | <b>1</b> <sup>5</sup> /8               | 41 | 5 <sup>29</sup> / <sub>32</sub>       | 150 | <b>8</b> <sup>1</sup> / <sub>16</sub> | 204 | <sup>15</sup> / <sub>16</sub> | 24 |
| 3131                | <sup>5</sup> / <sub>16</sub> | 8        | 3/8                                    | 10 | <b>1</b> <sup>1</sup> /4              | 32 | 4                                     | 102 | <sup>13</sup> /16                      | 22 | 1 <sup>5</sup> /32                    | 80  | 4 <sup>13</sup> / <sub>32</sub>       | 112 | _                             | _  |
| 3134                | <sup>3</sup> /8              | 10       | <sup>15</sup> / <sub>32</sub>          | 12 | <b>1</b> <sup>1</sup> / <sub>2</sub>  | 40 | 55/32                                 | 131 | 1 <sup>3</sup> / <sub>32</sub>         | 28 | 4 <sup>1</sup> /8                     | 105 | <b>5</b> <sup>3</sup> / <sub>4</sub>  | 146 | _                             | _  |
| 3137                | <sup>5</sup> /8              | 16       | <sup>11</sup> / <sub>16</sub>          | 18 | <b>2</b> <sup>5</sup> / <sub>16</sub> | 60 | 725/32                                | 198 | 1 <sup>23</sup> /32                    | 44 | <b>6</b> <sup>3</sup> / <sub>16</sub> | 157 | 85/8                                  | 219 | _                             | _  |
| 6070                | <sup>3</sup> /8              | 10       | <b>1</b> <sup>31</sup> / <sub>32</sub> | 50 | 25/32                                 | 55 | <b>2</b> <sup>1</sup> / <sub>4</sub>  | 57  | _                                      | —  | _                                     | _   | _                                     | _   | _                             | _  |
| 6074                | <sup>3</sup> /8              | 10       | 2                                      | 51 | <b>2</b> <sup>1</sup> / <sub>2</sub>  | 63 | 2 <sup>29</sup> /32                   | 74  | _                                      | —  | _                                     | _   | _                                     | _   | _                             | _  |
| 6076                | 3/8                          | 10       | _                                      | _  | 25/32                                 | 55 | <b>2</b> <sup>1</sup> / <sub>4</sub>  | 57  | _                                      | —  | _                                     | _   | _                                     | _   | _                             | _  |
| 6077                | <sup>5</sup> / <sub>16</sub> | 8        | 1/2                                    | 13 | 25/32                                 | 55 | 2                                     | 51  | <sup>9/</sup> 16                       | 14 | <b>2</b> <sup>1</sup> / <sub>4</sub>  | 57  | 325/32                                | 96  | _                             | _  |
| 6078                | <sup>5</sup> / <sub>16</sub> | 8        | 1/2                                    | 13 | 2 <sup>13</sup> /32                   | 61 | 2                                     | 51  | <sup>9</sup> / <sub>16</sub>           | 14 | 27/8                                  | 74  | <b>4</b> <sup>5</sup> / <sub>16</sub> | 110 | _                             | _  |
| 6079                | <sup>3</sup> /8              | 10       | _                                      | _  | <b>2</b> <sup>1</sup> / <sub>2</sub>  | 63 | 2 <sup>31</sup> / <sub>32</sub>       | 75  | —                                      | —  | —                                     | _   | —                                     | _   | _                             | _  |
| 6091                | <sup>5</sup> /16             | 8        | 1/2                                    | 13 | <b>2</b> <sup>5</sup> / <sub>32</sub> | 55 | —                                     | _   | <sup>9</sup> / <sub>16</sub>           | 14 | <b>2</b> <sup>1</sup> / <sub>4</sub>  | 57  | 2 <sup>21</sup> /32                   | 67  | _                             | _  |
| 6092                | <sup>5</sup> /16             | 8        | 1/2                                    | 13 | 2 <sup>13</sup> /32                   | 61 | <sup>9</sup> / <sub>16</sub>          | 14  | <b>1</b> <sup>9</sup> / <sub>32</sub>  | 15 | 2 <sup>31</sup> / <sub>32</sub>       | 75  | <b>4</b> <sup>3</sup> / <sub>8</sub>  | 111 | _                             | _  |
| 6093                | 1/2                          | 12       | 11/16                                  | 17 | <b>3</b> <sup>1</sup> / <sub>32</sub> | 77 | _                                     | _   | 11/16                                  | 18 | 41/8                                  | 105 | 315/16                                | 100 | _                             | _  |
| 3183                | 1/2                          | 12       | 19/32                                  | 15 | 1 <sup>25</sup> /32                   | 45 | 617/32                                | 166 | 13/16                                  | 21 | 5 <sup>3</sup> / <sub>16</sub>        | 131 | 7 <sup>1</sup> /8                     | 181 | _                             | _  |

# Megayacht Blocks

Megayacht blocks are designed to handle the extremely high loads generated by today's large ocean-going monohulls and multihulls. The Teflon®-impregnated ultra-light composite bearing system (ULC) rides on a heat-treated 17-4 PH stainless steel inner race to handle primary loads. Snap-fit Torlon® ball bearings carry thrust loads. Megayacht blocks are available in Hardkoteanodized 6061-T6 aluminum and mirror-polished stainless steel. ULC bearing construction allows a narrower sheave to reduce weight

HC8671

HC8663

HC8661

HC8636

Use hollow inner race as a becket attachment for weight reduction







.

HC9080 HC9085 HC9090 HC9095

HC8670 HC8657 HC8639 HC8635

| Aluminum         Stainless         Description         in         mm         in         mm         lb         kg         lb         kg           100 mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Parl          | No.       |                  | She  | eave<br>Ø | Max             | c line<br>Ø | Maxi<br>workir | mum<br>1g load | Brea<br>Io | aking<br>ad |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------|------------------|------|-----------|-----------------|-------------|----------------|----------------|------------|-------------|
| 100 mm           HC8073         HC9076         Stand-up block         3.94         100 <sup>5</sup> /s         16         11025         5000         22050         10000           HC8670         HC9077         Swivel block         3.94         100 <sup>5</sup> /s         16         11025         5000         22050         10000           HC8667         HC9078         Teardrop         3.94         100 <sup>5</sup> /s         16         11025         5000         22050         10000           HC8671         HC9079         Double footblock         3.94         100 <sup>5</sup> /s         16         11025         5000         22050         10000           HC8671         HC9081         Stand-up block         3.94         100 <sup>5</sup> /s         16         11025         5000         22050         10000           HC8671         HC9081         Stand-up block         3.92         125 <sup>3</sup> /s         19         15435         7000         30870         14000           HC8640         HC9082         Swivel block         4.92         125 <sup>3</sup> /s         19         15435         7000         30870         14000           HC8640         HC9083         Single                                                                                                                                                                             | Aluminum      | Stainless | Description      | in   | mm        | in              | mm          | lb             | kg             | lb         | kg          |
| HC8673         HC9076         Stand-up block         3.94         100         %         16         11025         5000         22050         10000           HC8670         HC9077         Swivel block         3.94         100         %         16         11025         5000         22050         10000           HC8667         HC9078         Teardrop         3.94         100         %         16         11025         5000         22050         10000           HC8078         HC90080         Single footblock         3.94         100         %         16         11025         5000         22050         10000           HC8071         HC9079         Double footblock         3.94         100         %         16         71325         3333         14699         6666           125 <mm< td="">         Teardrop         4.92         125         %         19         15435         7000         30870         14000           HC8667         HC9083         Teardrop         4.92         125         %         19         15435         7000         30870         14000           HC8663         HC9084         Double footblock         4.92         125         %         19</mm<>                                                                                                                                                                                        | 100 mm        |           |                  |      |           |                 |             |                |                |            |             |
| HC8670         HC9077         Swivel block         3.94         100         ½         16         11025         5000         22050         10000           HC8667         HC9078         Teardrop         3.94         100         ½         16         11025         5000         22050         10000           HC8828         HC9080         Single footblock         3.94         100         ½         16         11025         5000         22050         10000           HC8871         HC9079         Double footblock         3.94         100         ½         16         7350         3333         14699         6666           125         mm         HC8674         HC9081         Stand-up block         4.92         125         ¼         19         15435         7000         30870         14000           HC8667         HC9082         Swivel block         4.92         125         ¾         19         15435         7000         30870         14000           HC8663         HC9085         Single footblock         4.92         125         ¾         19         15435         7000         30870         14000           HC8663         HC9084         Double footblock         4                                                                                                                                                                                           | HC8673        | HC9076    | Stand-up block   | 3.94 | 100       | <sup>5</sup> /8 | 16          | 11025          | 5000           | 22050      | 10000       |
| HC8667         HC9078         Teardrop         3.94         100         5/s         16         11025         5000         22050         10000           HC8928         HC9080         Single footblock         3.94         100         5/s         16         11025         5000         22050         10000           HC8071         HC9079         Double footblock         3.94         100         5/s         16         7350         3333         14699         6666           I25 <mm< th="">         I         HC3674         HC9081         Stand-up block         4.92         125         3/s         19         15435         7000         30870         14000           HC3657         HC9083         Teardrop         4.92         125         3/s         19         15435         7000         30870         14000           HC36640         HC9083         Teardrop         4.92         125         3/s         19         15435         7000         30870         14000           HC3663         HC9084         Double footblock         4.92         125         3/s         19         10187         4620         20374         9200           HC3663         <thhc9086< th="">         Stand-up block         &lt;</thhc9086<></mm<>                                                                                                                                            | HC8670        | HC9077    | Swivel block     | 3.94 | 100       | <sup>5</sup> /8 | 16          | 11025          | 5000           | 22050      | 10000       |
| HC8928         HC9080         Single footblock         3.94         100         5/s         16         11025         5000         22050         10000           HC8671         HC9079         Double footblock         3.94         100         5/s         16         7350         3333         14699         6666           125 mm         HC9081         Stand-up block         4.92         125         3/4         19         15435         7000         30870         14000           HC8667         HC9081         Stand-up block         4.92         125         3/4         19         15435         7000         30870         14000           HC8664         HC9085         Single footblock         4.92         125         3/4         19         15435         7000         30870         14000           HC8663         HC9084         Double footblock         4.92         125         3/4         19         10187         4620         20374         9240           HC8663         HC9086         Stand-up block         5.91         150         1         25         22050         10000         44100         20000           HC8663         HC9086         Teardrop         5.91         150<                                                                                                                                                                                  | HC8667        | HC9078    | Teardrop         | 3.94 | 100       | <sup>5</sup> /8 | 16          | 11025          | 5000           | 22050      | 10000       |
| HC8671         HC9079         Double footblock         3.94         100         5/s         16         7350         3333         14699         6666           125 mm         HC8674         HC9081         Stand-up block         4.92         125         3/4         19         15435         7000         30870         14000           HC8667         HC9081         Swivel block         4.92         125         3/4         19         15435         7000         30870         14000           HC86640         HC9083         Teardrop         4.92         125         3/4         19         15435         7000         30870         14000           HC8663         HC9085         Single footblock         4.92         125         3/4         19         15435         7000         30870         14000           HC8663         HC9084         Double footblock         4.92         125         3/4         19         10187         4620         20374         9240           HC8663         HC9086         Stand-up block         5.91         150         1         25         22050         10000         44100         20000           HC8663         HC9087         Swirel block         5.91 <td>HC8928</td> <td>HC9080</td> <td>Single footblock</td> <td>3.94</td> <td>100</td> <td><sup>5</sup>/8</td> <td>16</td> <td>11025</td> <td>5000</td> <td>22050</td> <td>10000</td> | HC8928        | HC9080    | Single footblock | 3.94 | 100       | <sup>5</sup> /8 | 16          | 11025          | 5000           | 22050      | 10000       |
| 125 mm           HC8674         HC9081         Stand-up block         4.92         125         3/4         19         15435         7000         30870         14000           HC8657         HC9082         Swivel block         4.92         125         3/4         19         15435         7000         30870         14000           HC8640         HC9083         Teardrop         4.92         125         3/4         19         15435         7000         30870         14000           HC8640         HC9083         Teardrop         4.92         125         3/4         19         15435         7000         30870         14000           HC8663         HC9085         Single footblock         4.92         125         3/4         19         10187         4620         20374         9240           IC8663         HC9086         Stand-up block         5.91         150         1         25         22050         10000         44100         20000           HC8675         HC9086         Stand-up block         5.91         150         1         25         22050         10000         44100         20000           HC8633         HC9088         Teardrop         5.9                                                                                                                                                                                                  | HC8671        | HC9079    | Double footblock | 3.94 | 100       | <sup>5</sup> /8 | 16          | 7350           | 3333           | 14699      | 6666        |
| HC8674         HC9081         Stand-up block         4.92         125         3/4         19         15435         7000         30870         14000           HC8657         HC9082         Swivel block         4.92         125         3/4         19         15435         7000         30870         14000           HC8660         HC9083         Teardrop         4.92         125         3/4         19         15435         7000         30870         14000           HC8663         HC9085         Single footblock         4.92         125         3/4         19         15435         7000         30870         14000           HC8663         HC9085         Single footblock         4.92         125         3/4         19         10187         4620         20374         9240           HC8663         HC9086         Stand-up block         5.91         150         1         25         22050         10000         44100         20000           HC8633         HC9086         Stand-up block         5.91         150         1         25         22050         10000         44100         20000           HC8633         HC9088         Teadrop         5.91         150                                                                                                                                                                                               | 125 mm        |           |                  |      |           |                 |             |                |                |            |             |
| HC8657         HC9082         Swivel block         4.92         125         3/4         19         15435         7000         30870         14000           HC8640         HC9083         Teardrop         4.92         125         3/4         19         15435         7000         30870         14000           HC8640         HC9083         Teardrop         4.92         125         3/4         19         15435         7000         30870         14000           HC8663         HC9084         Double footblock         4.92         125         3/4         19         15435         7000         30870         14000           HC8663         HC9084         Double footblock         4.92         125         3/4         19         10187         4620         20374         9240           HC8663         HC9086         Stand-up block         5.91         150         1         25         22050         10000         44100         20000           HC8633         HC9088         Teardrop         5.91         150         1         25         22050         10000         44100         20000           HC8633         HC9088         Teardrop         5.91         150         1                                                                                                                                                                                                | HC8674        | HC9081    | Stand-up block   | 4.92 | 125       | 3/4             | 19          | 15435          | 7000           | 30870      | 14000       |
| HC8640         HC9083         Teardrop         4.92         125         3/4         19         15435         7000         30870         14000           HC8929         HC9085         Single footblock         4.92         125         3/4         19         15435         7000         30870         14000           HC8663         HC9084         Double footblock         4.92         125         3/4         19         15435         7000         30870         14000           HC8663         HC9084         Double footblock         4.92         125         3/4         19         10187         4620         20374         9240           150         m         125         3/4         19         10187         4620         20374         9240           150         n         25         22050         10000         44100         20000           HC8633         HC9087         Swivel block         5.91         150         1         25         22050         10000         44100         20000           HC8633         HC9088         Teardrop         5.91         150         1         25         22050         10000         44100         20000           HC8661 </th <td>HC8657</td> <td>HC9082</td> <td>Swivel block</td> <td>4.92</td> <td>125</td> <td>3/4</td> <td>19</td> <td>15435</td> <td>7000</td> <td>30870</td> <td>14000</td>                                   | HC8657        | HC9082    | Swivel block     | 4.92 | 125       | 3/4             | 19          | 15435          | 7000           | 30870      | 14000       |
| HC8929         HC9085         Single footblock         4.92         125         3/4         19         15435         7000         30870         14000           HC8663         HC9084         Double footblock         4.92         125         3/4         19         10187         4620         20374         9240           150 mm         HC8665         HC9086         Stand-up block         5.91         150         1         25         22050         10000         44100         20000           HC8675         HC9086         Stand-up block         5.91         150         1         25         22050         10000         44100         20000           HC8633         HC9087         Swivel block         5.91         150         1         25         22050         10000         44100         20000           HC8633         HC9088         Teardrop         5.91         150         1         25         22050         10000         44100         20000           HC8630         HC9089         Double footblock         5.91         150         1         25         22050         10000         44100         20000           HC8661         HC9089         Double footblock         5.91 <td>HC8640</td> <td>HC9083</td> <td>Teardrop</td> <td>4.92</td> <td>125</td> <td>3/4</td> <td>19</td> <td>15435</td> <td>7000</td> <td>30870</td> <td>14000</td>                   | HC8640        | HC9083    | Teardrop         | 4.92 | 125       | 3/4             | 19          | 15435          | 7000           | 30870      | 14000       |
| HC8663         HC9084         Double footblock         4.92         125         3/4         19         10187         4620         20374         9240           ISO mm         HC8675         HC9086         Stand-up block         5.91         150         1         25         22050         10000         44100         20000           HC8639         HC9087         Swivel block         5.91         150         1         25         22050         10000         44100         20000           HC8633         HC9087         Swivel block         5.91         150         1         25         22050         10000         44100         20000           HC8633         HC9088         Teardrop         5.91         150         1         25         22050         10000         44100         20000           HC8630         HC9090         Single footblock         5.91         150         1         25         22050         10000         44100         20000           HC8661         HC9089         Double footblock         5.91         150         1         25         14699         6666         29398         13332           IT5         IM         25         33075         15000 <td>HC8929</td> <td>HC9085</td> <td>Single footblock</td> <td>4.92</td> <td>125</td> <td>3/4</td> <td>19</td> <td>15435</td> <td>7000</td> <td>30870</td> <td>14000</td>                     | HC8929        | HC9085    | Single footblock | 4.92 | 125       | 3/4             | 19          | 15435          | 7000           | 30870      | 14000       |
| 150 mm           HC8675         HC9086         Stand-up block         5.91         150         1         25         22050         10000         44100         20000           HC8639         HC9087         Swivel block         5.91         150         1         25         22050         10000         44100         20000           HC8633         HC9087         Swivel block         5.91         150         1         25         22050         10000         44100         20000           HC8633         HC9088         Teardrop         5.91         150         1         25         22050         10000         44100         20000           HC8630         HC9090         Single footblock         5.91         150         1         25         22050         10000         44100         20000           HC8661         HC9089         Double footblock         5.91         150         1         25         14699         6666         29398         13332           IT5         HC8032         HC9091         Stand-up block         6.89         175         1         25         33075         15000         66150         30000           HC8635         HC9092         Swivel                                                                                                                                                                                                   | HC8663        | HC9084    | Double footblock | 4.92 | 125       | 3/4             | 19          | 10187          | 4620           | 20374      | 9240        |
| HC8675HC9086Stand-up block5.9115012522050100004410020000HC8639HC9087Swivel block5.9115012522050100004410020000HC8633HC9088Teardrop5.9115012522050100004410020000HC8930HC9090Single footblock5.9115012522050100004410020000HC8661HC9089Double footblock5.911501251469966662939813332 <b>175 mm</b> Image: Stand-up block6.8917512533075150006615030000HC8635HC9092Swivel block6.8917512533075150006615030000HC8631HC9093Teardrop6.8917512533075150006615030000HC8636HC9094Double footblock6.8917512533075150006615030000HC8636HC9094Double footblock6.8917512522050100004410020000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 150 mm        |           |                  |      |           |                 |             |                |                |            |             |
| HC8639         HC9087         Swivel block         5.91         150         1         25         22050         10000         44100         20000           HC8633         HC9088         Teardrop         5.91         150         1         25         22050         10000         44100         20000           HC8633         HC9088         Teardrop         5.91         150         1         25         22050         10000         44100         20000           HC8930         HC9090         Single footblock         5.91         150         1         25         22050         10000         44100         20000           HC8661         HC9089         Double footblock         5.91         150         1         25         14699         6666         29398         13332           175         MC         25         14699         5666         29398         13332           175         M         25         33075         15000         66150         30000           HC8635         HC9091         Stand-up block         6.89         175         1         25         33075         15000         66150         30000           HC8631         HC9093         Teardr                                                                                                                                                                                                           | HC8675        | HC9086    | Stand-up block   | 5.91 | 150       | 1               | 25          | 22050          | 10000          | 44100      | 20000       |
| HC8633         HC9088         Teardrop         5.91         150         1         25         22050         10000         44100         20000           HC8930         HC9090         Single footblock         5.91         150         1         25         22050         10000         44100         20000           HC8661         HC9089         Double footblock         5.91         150         1         25         22050         10000         44100         20000           HC8661         HC9089         Double footblock         5.91         150         1         25         14699         6666         29398         13332 <b>175 mm</b> HC8092         HC9091         Stand-up block         6.89         175         1         25         33075         15000         66150         30000           HC8635         HC9092         Swivel block         6.89         175         1         25         33075         15000         66150         30000           HC8631         HC9093         Teardrop         6.89         175         1         25         33075         15000         66150         30000           HC8636         HC9095         Single footblock         6.89                                                                                                                                                                                                       | HC8639        | HC9087    | Swivel block     | 5.91 | 150       | 1               | 25          | 22050          | 10000          | 44100      | 20000       |
| HC8930         HC9090         Single footblock         5.91         150         1         25         22050         10000         44100         20000           HC8661         HC9089         Double footblock         5.91         150         1         25         14699         6666         29398         13332           175 mm         HC8032         HC9091         Stand-up block         6.89         175         1         25         33075         15000         66150         30000           HC8635         HC9092         Swivel block         6.89         175         1         25         33075         15000         66150         30000           HC8631         HC9093         Teardrop         6.89         175         1         25         33075         15000         66150         30000           HC8931         HC9095         Single footblock         6.89         175         1         25         33075         15000         66150         30000           HC8636         HC9094         Double footblock         6.89         175         1         25         33075         15000         66150         30000           HC8636         HC9094         Double footblock         6.89 <td>HC8633</td> <td>HC9088</td> <td>Teardrop</td> <td>5.91</td> <td>150</td> <td>1</td> <td>25</td> <td>22050</td> <td>10000</td> <td>44100</td> <td>20000</td>                    | HC8633        | HC9088    | Teardrop         | 5.91 | 150       | 1               | 25          | 22050          | 10000          | 44100      | 20000       |
| HC8661         HC9089         Double footblock         5.91         150         1         25         14699         6666         29398         13332           175 mm         HC8032         HC9091         Stand-up block         6.89         175         1         25         33075         15000         66150         30000           HC8635         HC9092         Swivel block         6.89         175         1         25         33075         15000         66150         30000           HC8631         HC9093         Teardrop         6.89         175         1         25         33075         15000         66150         30000           HC8931         HC9095         Single footblock         6.89         175         1         25         33075         15000         66150         30000           HC8636         HC9094         Double footblock         6.89         175         1         25         33075         15000         66150         30000                                                                                                                                                                                                                                                                                                                                                                                                                         | HC8930        | HC9090    | Single footblock | 5.91 | 150       | 1               | 25          | 22050          | 10000          | 44100      | 20000       |
| HC8932         HC9091         Stand-up block         6.89         175         1         25         33075         15000         66150         30000           HC8635         HC9092         Swivel block         6.89         175         1         25         33075         15000         66150         30000           HC8635         HC9093         Teardrop         6.89         175         1         25         33075         15000         66150         30000           HC8631         HC9093         Teardrop         6.89         175         1         25         33075         15000         66150         30000           HC8931         HC9095         Single footblock         6.89         175         1         25         33075         15000         66150         30000           HC8636         HC9094         Double footblock         6.89         175         1         25         22050         10000         44100         20000                                                                                                                                                                                                                                                                                                                                                                                                                                               | HC8661        | HC9089    | Double footblock | 5.91 | 150       | 1               | 25          | 14699          | 6666           | 29398      | 13332       |
| HC8932         HC9091         Stand-up block         6.89         175         1         25         33075         15000         66150         30000           HC8635         HC9092         Swivel block         6.89         175         1         25         33075         15000         66150         30000           HC8635         HC9092         Swivel block         6.89         175         1         25         33075         15000         66150         30000           HC8631         HC9093         Teardrop         6.89         175         1         25         33075         15000         66150         30000           HC8931         HC9095         Single footblock         6.89         175         1         25         33075         15000         66150         30000           HC8636         HC9094         Double footblock         6.89         175         1         25         22050         10000         44100         20000                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u>175 mm</u> |           |                  |      |           |                 |             |                |                |            |             |
| HC8635         HC9092         Swivel block         6.89         175         1         25         33075         15000         66150         30000           HC8631         HC9093         Teardrop         6.89         175         1         25         33075         15000         66150         30000           HC8631         HC9093         Teardrop         6.89         175         1         25         33075         15000         66150         30000           HC8931         HC9095         Single footblock         6.89         175         1         25         33075         15000         66150         30000           HC8636         HC9094         Double footblock         6.89         175         1         25         22050         10000         44100         20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | HC8932        | HC9091    | Stand-up block   | 6.89 | 175       | 1               | 25          | 33075          | 15000          | 66150      | 30000       |
| HC8631         HC9093         Teardrop         6.89         175         1         25         33075         15000         66150         30000           HC8931         HC9095         Single footblock         6.89         175         1         25         33075         15000         66150         30000           HC8636         HC9094         Double footblock         6.89         175         1         25         23075         15000         66150         30000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HC8635        | HC9092    | Swivel block     | 6.89 | 175       | 1               | 25          | 33075          | 15000          | 66150      | 30000       |
| HC8931         HC9095         Single footblock         6.89         175         1         25         33075         15000         66150         30000           HC8636         HC9094         Double footblock         6.89         175         1         25         22050         10000         44100         20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | HC8631        | HC9093    | Teardrop         | 6.89 | 175       | 1               | 25          | 33075          | 15000          | 66150      | 30000       |
| HC8636         HC9094         Double footblock         6.89         175         1         25         22050         10000         44100         20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | HC8931        | HC9095    | Single footblock | 6.89 | 175       | 1               | 25          | 33075          | 15000          | 66150      | 30000       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | HC8636        | HC9094    | Double footblock | 6.89 | 175       | 1               | 25          | 22050          | 10000          | 44100      | 20000       |

# **Grand Prix**

#### **TTR Blocks**

The TTR (Titanium Roller) AirBlock® surpasses all other blocks with 98% efficiency, increasing trimming speed and harnessing power other blocks lose to friction. 6061-T6 Hardkote-anodized Teflon®impregnated sideplates don't flex, so sheaves run smoothly. High-load titanium rollers handle bearing loads. Snap-fit Torlon<sup>®</sup> ball bearings carry side loads.

#### **ULC Loop Blocks**

ULC (Ultra Light Composite) blocks feature lightweight, strong materials and Harken's standard bearing system for an exceptionally high strength-to-weight ratio. ULC blocks excel in static line applications that require small adjustments.

Articulating Loop attachments and sculpted head ensure a fair lead

Soft attachment Loops carry the primary load for a lightweight block

Inner and outer bearing races are made of titanium for strength

Block opens easily for maintenance

> Soft attachment Loops can be configured as becket or fiddle block

Numbers, Judel/Vrolijk 66', Goetz Custom Boats – Sharon Green photo

C8488

C8580

| Devit     |                                 | She              | ave         | Lor         | ath        | Wa       | iaht     | Max                             | (line<br>Ø | Maxi        | imum<br>Inad | Brea  | aking    |
|-----------|---------------------------------|------------------|-------------|-------------|------------|----------|----------|---------------------------------|------------|-------------|--------------|-------|----------|
| No        | Description                     | in               | ,<br>mm     | in          | mm         | 07       | п        | in                              | mm         | lh          | kn           | lh iu | au<br>kn |
|           | n*                              |                  |             |             |            |          | 9        |                                 |            |             | ng           | 15    | ĸġ       |
| C7915     | 40 mm Tall wide                 | <b>1</b> 9/16    | 40          | 2 95        | 75         | 5 36     | 152      | 2 x 1/2                         | 2 x 12     | 5100        | 2313         | 10201 | 4626     |
| C8291     | 40 mm Short wide                | 19/16            | 40          | 2 44        | 62         | 5 19     | 147      | 2 x 1/2                         | 2 x 12     | 5100        | 2313         | 10201 | 4626     |
| C8488     | 40 mm Short narrow              | 19/16            | 40          | 2 40        | 61         | 3.88     | 110      | 1/2                             | 12         | 5100        | 2313         | 10201 | 4626     |
| TTR**     |                                 | . , 10           |             | 2.10        | 0.         | 0.00     |          | /2                              |            | 0.00        | 2010         | 10201 | .020     |
| C8878     | 3.0T AirBlock®                  | 2.24             | 57          | 2.79        | 71         | 3.84     | 109      | 3/8                             | 10         | 6614        | 3000         | 13228 | 6000     |
| C8491     | 5 OT Narrow AirBlock®           | 3                | 75          | 3.82        | 97         | 7 77     | 220      | 1/2                             | 12         | 11025       | 5000         | 22050 | 10000    |
| C8580     | 5.0T Wide AirBlock®             | 3                | 75          | 3.82        | 97         | 9.32     | 264      | 2 x 1/2                         | 2 x 12     | 11025       | 5000         | 22050 | 10000    |
| C8723     | 5.0T Narrow footblock           | 3                | 75          | 4.29        | 109        | 16.16    | 458      | 9/16                            | 14         | 11025       | 5000         | 22050 | 10000    |
| C8724     | 5.0T Wide footblock             | 3                | 75          | 4.68        | 119        | 17.6     | 499      | 2 x <sup>9</sup> /16            | 2 x 14     | 11025       | 5000         | 22050 | 10000    |
| C8727     | 5.0T Sheave                     | 3                | 75          | _           | _          | 6.56     | 186      | <sup>9</sup> / <sub>16</sub>    | 14         | 11025       | 5000         | 22050 | 10000    |
| C8575     | 6.5T Narrow AirBlock®           | 4                | 100         | 4.92        | 125        | 16.03    | 454      | 5/8                             | 16         | 14333       | 6500         | 28666 | 13000    |
| C9161     | 6.5T Wide AirBlock®             | 4                | 100         | 5.79        | 147        | 22.4     | 635      | 2 x <sup>3</sup> / <sub>4</sub> | 2 x 20     | 14333       | 6500         | 28666 | 13000    |
| C9015     | 6.5T Sheave                     | 4                | 100         | _           | _          | 14.1     | 400      | 3/4                             | 20         | 14333       | 6500         | 28666 | 13000    |
| C8462     | 8.0T Narrow AirBlock®           | 5                | 125         | 6.06        | 154        | 29.48    | 835      | 11/16                           | 18         | 17641       | 8000         | 35281 | 16000    |
| C8757     | 8.0T Wide AirBlock <sup>®</sup> | 5                | 125         | 5.94        | 151        | 34.39    | 975      | 2 x <sup>5</sup> /8             | 2 x 16     | 17641       | 8000         | 35281 | 16000    |
| C8807     | 8.0T Footblock                  | 5                | 125         | 6.49        | 165        | 48.78    | 1383     | 3/4                             | 19         | 17641       | 8000         | 35281 | 16000    |
| C8754     | 10.0T Narrow AirBlock®          | 6                | 150         | 7.1         | 181        | 48.29    | 1368     | <sup>13</sup> / <sub>16</sub>   | 20         | 22046       | 10000        | 44092 | 20000    |
| C8957     | 10.0T Wide AirBlock®            | 6.1              | 155         | 7.67        | 195        | 72.77    | 2063     | 2 x <sup>7</sup> /8             | 2 x 22     | 22046       | 10000        | 44092 | 20000    |
| C8755     | 12.0T AirBlock <sup>®</sup>     | 7                | 175         | 8.3         | 221        | 66.86    | 1894     | 7/8                             | 22         | 26455       | 12000        | 52910 | 24000    |
| C8734     | 15.0T AirBlock <sup>®</sup>     | 8                | 200         | 9.537       | 242        | 109.04   | 3089     | 1                               | 26         | 33069       | 15000        | 66138 | 30000    |
| Contact H | arken to request quote and lead | time. For full p | roduct line | , visit www | .harkencus | stom.com | *Max loo | p Ø: 1/4" (1                    | 7 mm)      | **Loops not | t included   |       |          |

C8878

C8734



## **COMPLEMENTARY HARDWARE**

## **Ball Bearing Cam Cleats**



### PERFECT SAIL TRIM EVERY TIME

Tired of banging on the mainsheet to uncleat, or watching the cleat let go at just the wrong moment? Harken® ball bearing cam cleats hold lines securely and release instantly for easy, precise trimming. With a downward flick of the wrist, the sheet snaps into the cam—and stays exactly where you want it. Pull up and the cleat immediately releases—even under the highest loads. Smooth teeth grip line of all sizes including the small diameter hard line preferred by racers.

Accessories include flairleads, fairleads, adapter plate, wedge kits, risers, bases and color-coded cam caps.

### **DETAILS MAKE THE DIFFERENCE**

#### **EASY-OPEN BALL BEARING CAMS**

Multiple rows of high-load ball bearings reduce friction so cams open easily for snap-down, rather than draw-through cleating.

The cam horns and smooth V-shape guide line for easy entry. This allows precise sail control without having to readjust the cleated line.

The Teflon<sup>®</sup> surface of the aluminum Cam-Matic<sup>®</sup> improves the cleat's fast line engagement. The Cam-Matic<sup>®</sup> is the only cleat that will engage under maximum line tension.

#### **PROTECTIVE TOOTH DESIGN**

Rounded teeth hold securely by squeezing rather than cutting into line to reduce wear.

#### **HIGH-WEAR OR LIGHTWEIGHT MODELS**

Aluminum Cam-Matics<sup>®</sup> are Hardkote-anodized for high-load, high-wear, continuous adjustment applications. Available in Micro, standard and Offshore sizes.

Lightweight fiber-reinforced Carbo-Cams<sup>®</sup> for racing where weight is critical, or where adjustments are less frequent. Available in Micro and standard sizes.

#### LONG-LASTING PROTECTION

Ball bearings and Carbo-Cams<sup>®</sup> UV-stabilized with carbon-black additive for maximum protection.



1. Versatile Cam Shape Cam design allows each line size to be held by the most teeth for superior holding power.

## **Ball Bearing Cam Cleats**



#### 468 and 471: available January 2009

|         |                                     |                                       |        |                                        |           |                                      |         |         |     | Line Ø                                                     |         | Fastener                              |      | Maximum |         | Breaking |     |                       |
|---------|-------------------------------------|---------------------------------------|--------|----------------------------------------|-----------|--------------------------------------|---------|---------|-----|------------------------------------------------------------|---------|---------------------------------------|------|---------|---------|----------|-----|-----------------------|
| Part    |                                     | He                                    | ight   | Len                                    | igth      | Wi                                   | dth     | Wei     | ght | min -                                                      | max     | spa                                   | cing | worki   | ng load | loa      | ad  |                       |
| No.     | Description                         | in                                    | mm     | in                                     | mm        | in                                   | mm      | 0Z      | g   | in                                                         | mm      | in                                    | mm   | lb      | kg      | lb       | kg  | Pawls                 |
| 150     | Cam-Matic®*                         | <b>1</b> <sup>3</sup> /16             | 30     | 2 <sup>9</sup> /16                     | 65        | <b>1</b> <sup>1</sup> /4             | 32      | 2.50    | 71  | <sup>1</sup> /8 - <sup>1</sup> /2                          | 3 - 12  | <b>1</b> <sup>1</sup> / <sub>2</sub>  | 38   | 300     | 136     | 750      | 340 | Aluminum              |
| 280     | Offshore Cam-Matic <sup>®</sup> *** | <b>1</b> <sup>1</sup> /4              | 32     | 33/8                                   | 85        | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38      | 5.25    | 148 | <sup>1</sup> /4 - <sup>5</sup> /8                          | 6 - 16  | <b>2</b> <sup>1</sup> / <sub>16</sub> | 52   | 500     | 227     | 1000     | 454 | Aluminum              |
| 468     | Micro Cam-Matic®**                  | 7/8                                   | 22     | <b>1</b> <sup>7</sup> /8               | 48        | <sup>15</sup> / <sub>16</sub>        | 24      | 0.93    | 26  | <sup>3</sup> / <sub>32</sub> - <sup>1</sup> / <sub>4</sub> | 2 - 6   | <b>1</b> 1/16                         | 27   | 200     | 91      | 400      | 181 | Aluminum              |
| 365     | Carbo-Cam <sup>®</sup> *            | 1 <sup>3</sup> /32                    | 28     | <b>2</b> <sup>9</sup> / <sub>16</sub>  | 65        | <b>1</b> <sup>1</sup> /4             | 32      | 1.44    | 42  | <sup>1</sup> /8 - <sup>3</sup> /8                          | 3 - 10  | <b>1</b> <sup>1</sup> / <sub>2</sub>  | 38   | 200     | 91      | 500      | 227 | Plastic carbon-matrix |
| 412     | Double Cam-Matic <sup>®</sup> ****  | <b>2</b> <sup>1</sup> / <sub>16</sub> | 53     | <b>3</b> <sup>17</sup> / <sub>32</sub> | 81        | <b>1</b> <sup>1</sup> /4             | 32      | 4.50    | 126 | <sup>5</sup> / <sub>16</sub> - <sup>3</sup> / <sub>8</sub> | 8 - 10  | 27/16                                 | 62   | 500     | 227     | 750      | 340 | Aluminum              |
| 471     | Micro Carbo-Cam <sup>®**</sup>      | 7/8                                   | 22     | 17/8                                   | 48        | <sup>15</sup> / <sub>16</sub>        | 24      | 0.67    | 19  | 1/8 - 1/4                                                  | 3 - 6   | <b>1</b> <sup>1</sup> / <sub>16</sub> | 27   | 150     | 68      | 300      | 136 | Plastic carbon-matrix |
| *#10 /5 | mm) EU factonoro **#0 (             | 1 mm)                                 | DU fac | tonoro                                 | * * * 1/. | ' (6 mm                              | ) EU fo | otonoro | *** | *#10 /5 m                                                  | m\T∐ fo | otonoro                               |      |         |         |          |     |                       |

#10 (5 mm) FH fasteners \*#8 (4 mm) RH fasteners <sup>1</sup>/4" (6 mm) FH fasteners \*#10 (5 mm) TH fasteners

## **Cam Kits**

NEW: 472, 473, 474, 469, 470

| 472 | 473<br>326 | 469<br>327 | 474      | 470<br>459 |
|-----|------------|------------|----------|------------|
| 010 | 010        | 010        |          |            |
|     | •••        | •••        | <b>O</b> | T          |

### **Micro Kits**

#### 469, 470, 472, 473, 474: available January 2009 Standard Kits

| Part |                                                |     |       |          | Wei | ght | Part |                                                |     |       |          | Wei  | ght |
|------|------------------------------------------------|-----|-------|----------|-----|-----|------|------------------------------------------------|-----|-------|----------|------|-----|
| No.  | Description                                    | Cam | Wedge | Fairlead | 0Z  | g   | No.  | Description                                    | Cam | Wedge | Fairlead | 0Z   | g   |
| 472  | Carbo-Cam <sup>®</sup> /wedge/wire fairlead    | 471 | 297   | 475      | 1.2 | 33  | 326  | Carbo-Cam <sup>®</sup> /wire fairlead          | 365 | —     | 298      | 2.00 | 54  |
| 469  | Cam-Matic <sup>®</sup> /wire fairlead          | 468 | _     | 475      | 1.2 | 33  | 327  | Cam-Matic /wire fairlead                       | 150 | _     | 298      | 3.00 | 85  |
| 473  | Carbo-Cam <sup>®</sup> /wire fairlead          | 471 | _     | 475      | 0.9 | 26  | 458  | Carbo-Cam <sup>®</sup> /X-Treme Angle Fairlead | 365 | _     | 380      | 2.00 | 54  |
| 474  | Carbo-Cam <sup>®</sup> /X-Treme Angle Fairlead | 471 | _     | 476      | 1.7 | 47  | 459  | Cam-Matic <sup>®</sup> /X-Treme Angle Fairlead | 150 | _     | 375      | 2.06 | 58  |
| 470  | Cam-Matic <sup>®</sup> /X-Treme Angle Fairlead | 468 | —     | 476      | 1.9 | 55  |      |                                                |     |       |          |      |     |

## Cam Cleat Accessories

#### NEW: 475, 476

Use these accessories to adapt our cleats for many applications, such as cleaning up your cockpit controls with color-coding or leading a line cleanly to a cleat.

Wire fairleads maintain a low profile while holding the line close to the cleat.

The X-Treme Angle Fairlead allows releasing and recleating at angles up to 90° to the cleat. This sets it apart from other fairleads where line uncleats at extreme angles, and can't recleat without centering the line. The low-friction stainless bail provides a bulletproof turning point. Perfect for traveler and cabintop controls or deck cleats—a must for the new Laser® deck cleating system.

Low-profile top-mounted flairleads can also be used to guide lines. They feature stainless wearguards and are available in various colors for color-coding your cams. We offer a wide range of eyestraps to hold line at the cleat and to provide fair leads. *Cleat and uncleat at angles up to 90 degrees* 

Stainless steel loop provides low-friction turning post

> Base plate ensures optimal cleating height

Ideal for Laser<sup>®</sup> outhaul/ cunningham controls

Use with risers and angled wedges

476

475 and 476: available January 2009

|          |                            |                               |            |                                       |             |                                        |            |                                       |        |      |          |                                       |            | , <b>,</b>      |
|----------|----------------------------|-------------------------------|------------|---------------------------------------|-------------|----------------------------------------|------------|---------------------------------------|--------|------|----------|---------------------------------------|------------|-----------------|
|          |                            | Hei                           | Ua         | iaht                                  | اما         | ath                                    | w          | idth                                  | Wainht |      | Fastener |                                       |            |                 |
| Part     | Description                | auuve                         | s Galli    | пе                                    | iyiii<br>mm | LUII                                   | iyui<br>mm | in                                    |        | wei  | yni      | əµa<br>in                             | uniy<br>mm | Eito            |
| NU.      | Description                | 111                           |            | - 111                                 | 11111       | - 111                                  | 11111      | - 111                                 |        | UZ   | y        | - 111                                 | 11111      | FIIS            |
|          |                            |                               |            |                                       |             |                                        |            |                                       |        |      |          |                                       |            | 100/17/         |
| 281      | Eyestrap                   | 1/2                           | 12         |                                       | —           | 1//16                                  | 36         | //16                                  | 11     | .16  | 4.5      | 1 1/16                                | 27         | 468/471         |
| 475      | Wire fairlead              | _                             | _          | 15/16                                 | 23          | 11/8                                   | 48         | 15/16                                 | 24     | .29  | 8        | <b>1</b> <sup>1</sup> / <sub>16</sub> | 27         | 468/471         |
| 293      | Flat cam riser             | _                             | _          | 5/8                                   | 16          | 17/8                                   | 48         | <sup>15</sup> / <sub>16</sub>         | 24     | .50  | 14       | <b>1</b> <sup>1</sup> / <sub>16</sub> | 27         | 468/471         |
| 294      | 15° Angled micro cam riser | _                             | _          | 3/4                                   | 19          | 17/8                                   | 48         | 15/16                                 | 24     | .75  | 21       | <b>1</b> <sup>1</sup> / <sub>16</sub> | 27         | 468/471         |
| 297      | Cam wedge kit              | _                             | —          | —                                     | —           | 17/8                                   | 48         | <sup>15</sup> / <sub>16</sub>         | 24     | .16  | 5        | <b>1</b> <sup>1</sup> / <sub>16</sub> | 27         | 468/471         |
| 476      | X-Treme Angle Fairlead     | 7/8                           | 22         | <b>1</b> 7/16                         | 37          | <b>1</b> 5/16                          | 33         | 2                                     | 51     | 1    | 29       | <b>1</b> 1/16                         | 27         | 468/471         |
| 424      | Flairlead‡‡                | <sup>7</sup> / <sub>16</sub>  | 11         | _                                     | _           | 15/8                                   | 41         | 5/8                                   | 16     | .13  | 3.5      | <b>1</b> 1/16                         | 27         | 468/471         |
| Standard |                            |                               |            |                                       |             |                                        |            |                                       |        |      |          |                                       |            |                 |
| 137      | Eyestrap                   | 3/4                           | 19         | _                                     | _           | 2                                      | 51         | <sup>9</sup> / <sub>16</sub>          | 14     | .32  | 9        | <b>1</b> <sup>1</sup> / <sub>2</sub>  | 38         | 150/365         |
| 145      | Cam wedge kit              | _                             | _          | _                                     | _           | <b>2</b> <sup>9</sup> / <sub>16</sub>  | 65         | <b>1</b> <sup>1</sup> /4              | 32     | 1.00 | 28       | <b>1</b> <sup>1</sup> / <sub>2</sub>  | 38         | 150/365         |
| 201      | Low-profile eyestrap       | <sup>3</sup> /8               | 10         | _                                     | _           | 17/8                                   | 48         | 7/16                                  | 11     | .16  | 4.5      | <b>1</b> <sup>1</sup> / <sub>2</sub>  | 38         | 150/365         |
| 295      | Flat cam riser             | _                             | _          | 1                                     | 28          | 2 <sup>9</sup> /16                     | 65         | <b>1</b> <sup>1</sup> /4              | 32     | 1.50 | 38       | <b>1</b> <sup>1</sup> / <sub>2</sub>  | 38         | 150/365         |
| 296      | 15° Angled cam riser       | _                             | _          | 1                                     | 25          | <b>2</b> <sup>9</sup> / <sub>16</sub>  | 65         | <b>1</b> <sup>1</sup> / <sub>4</sub>  | 32     | 1.25 | 35       | <b>1</b> <sup>1</sup> / <sub>2</sub>  | 38         | 150/365         |
| 298      | Wire fairlead              | _                             | _          | <b>1</b> <sup>1</sup> / <sub>4</sub>  | 32          | <b>2</b> <sup>9</sup> / <sub>16</sub>  | 65         | <b>1</b> 1/4                          | 32     | .50  | 14       | <b>1</b> 1/2                          | 38         | 150/365         |
| 375      | X-Treme Angle Fairlead‡    | <sup>15</sup> / <sub>16</sub> | 24         | <b>2</b> <sup>1</sup> / <sub>4</sub>  | 57          | <b>1</b> <sup>13</sup> / <sub>16</sub> | 46         | 2 <sup>9</sup> /16                    | 65     | 1.92 | 56       | <b>1</b> 1/2                          | 38         | 150             |
| 380      | X-Treme Angle Fairlead‡    | 15/16                         | 24         | <b>2</b> <sup>3</sup> / <sub>16</sub> | 54          | <b>1</b> <sup>13</sup> / <sub>16</sub> | 46         | <b>2</b> <sup>9</sup> / <sub>16</sub> | 65     | 1.92 | 56       | <b>1</b> 1/2                          | 38         | 365             |
| 425      | Flairlead‡‡                | 5/8                           | 16         | _                                     | _           | 2 <sup>3</sup> /16                     | 56         | <b>1</b> <sup>3</sup> / <sub>16</sub> | 21     | .25  | 7        | <b>1</b> <sup>1</sup> / <sub>2</sub>  | 38         | 150/365         |
| 431      | Colored cam caps±±         | blue/yello                    | ow/green/t | black/red                             |             |                                        |            |                                       |        |      |          |                                       |            | 150/468/365/471 |
| 438      | Cam adapter plate          |                               | _          | <sup>9</sup> / <sub>16</sub>          | 14          | 3                                      | 76         | <b>1</b> 7/16                         | 36     | 2.50 | 71       | 1 <sup>1</sup> /2                     | 38         | 150/365         |
| Offshore |                            |                               |            |                                       |             | -                                      |            |                                       |        |      |          |                                       |            |                 |
| 282      | Large evestrap             | 15/16                         | 23         | _                                     | _           | 2 <sup>13</sup> /16                    | 71         | 3/4                                   | 19     | .80  | 23       | <b>2</b> <sup>1</sup> / <sub>16</sub> | 52         | 280             |
| 283      | Offshore cam wedge kit     |                               |            | _                                     | _           | 33/8                                   | 85         | 11/2                                  | 38     | 1.50 | 43       | 21/16                                 | 52         | 280             |
| 200      | ononoro ouni wougo kit     |                               |            |                                       |             | 0 / 0                                  | 50         | 1 / 2                                 | 50     | 1.00 | -0       | - / 10                                | 52         | 200             |

#Max line Ø: %" (10 mm) ## Indicate color: BL (blue), Y (yellow), G (green), B (black), R (red)

## **Cam Cleat Accessories**















294







Wedge kits and risers are available to improve the angle of your cams. Underdeck shims are included with angled risers and wedges for easy mounting



Color code your cams with replaceable cam caps. These fit over the standard caps on standard and micro cleats





475













Lightweight, fiber-reinforced flairleads feature stainless wearguards for long life and are available in various colors for color-coding your cams

The 438 adapter plate is perfect for use on masts and booms. It raises the cleat off the mast to improve the cleating angle and control











## Cam Bases

Use cam swivel bases when leads must rotate to face the trimmer.

Ball bearing swivel bases feature dual rows of Delrin<sup>®</sup> ball bearings that swivel freely even under high loads. Bases include stand-up springs and a U-adaptor to accept a variety of appropriate blocks.

The 144 is the standard configuration with a tall arm. It is ideal for mounting in the cockpit or for use on larger keelboats and small offshore boats that use 3.00 in (76 mm) plastic blocks. The lowprofile 205 is used when installation is at deck level and when smaller blocks are used. The 1574 accepts Midrange blocks.

The 216 features a second cleat for lines led vertically through the base of the swivel. It is frequently used to combine vang or backstay controls in the same swivel base that handles the mainsheet.

The 240 and 241 are simple swivel bases for main and jib sheets on very small boats or for control lines on boats of all sizes.

The 402 and 403 are fitted with a double cam for use in two-speed mainsheet systems.

The 462 swivel base with 338 Micro Cam-Matic<sup>®</sup> provides precise cleating. The 16 mm sheaves feature low-friction stainless steel ball bearings to handle high loads. Ideal for controls where cleating angles change dramatically.

Use for: Mainsheets Jib sheets Control lines



|      |                                                      |                                        |       |                                      |     |                  | Lin   | Ø                            |    | Fast                                  | Fastener |              | mum |                                              |
|------|------------------------------------------------------|----------------------------------------|-------|--------------------------------------|-----|------------------|-------|------------------------------|----|---------------------------------------|----------|--------------|-----|----------------------------------------------|
| Part | t                                                    |                                        | ight  | t Weight                             |     | M                | in    | Μ                            | ax | spa                                   | cing     | working load |     |                                              |
| No.  | Description                                          | in                                     | mm    | 0Z                                   | g   | in               | mm    | in                           | mm | in                                    | mm       | lb           | kg  | Use with                                     |
| 144  | Swivel base/150 Cam-Matic®*                          | 53/4                                   | 146   | 13                                   | 369 | 1/8              | 3     | 1/2                          | 12 | 3/4                                   | 19       | —            | —   | 57mm/75mm/2.25"/3.00"/ratchets               |
| 205  | Little swivel base/150 Cam-Matic®*                   | 41/2                                   | 114   | 12                                   | 340 | 1/8              | 3     | 1/2                          | 12 | 3/4                                   | 19       | —            | —   | 57mm/Big Bullet/Dinghy/2.25"/little ratchets |
| 216  | Duocam swivel base/365, 423 Carbo-Cam®*              | <b>5</b> <sup>3</sup> / <sub>4</sub>   | 146   | 16                                   | 454 | —                | —     | —                            | —  | 3/4                                   | 19       | —            | —   | 57mm/2.25"/3.00"/ratchets                    |
| 238  | 150 Cam-Matic <sup>®</sup> on plate/bullseye‡        | <b>1</b> 5/16                          | 33    | 4                                    | 113 | 1/8              | 3     | 1/2                          | 12 | 11/2/1                                | 38/25    | 300          | 139 |                                              |
| 239  | 365 Carbo-Cam <sup>®</sup> on plate/bullseye‡        | <b>1</b> 5/16                          | 33    | 3                                    | 85  | 1/8              | 3     | <sup>3</sup> /8              | 10 | 11/2/1                                | 38/25    | 200          | 91  |                                              |
| 240  | Bullseye swivel base/150 Cam-Matic®*                 | <b>1</b> <sup>15</sup> / <sub>16</sub> | 49    | 7.5                                  | 213 | 1/8              | 3     | 1/2                          | 12 | <b>1</b> <sup>1</sup> / <sub>32</sub> | 26       | 300          | 136 |                                              |
| 241  | Bullseye swivel base/365 Carbo-Cam®*                 | <b>1</b> ½                             | 38    | <b>6</b> <sup>1</sup> / <sub>2</sub> | 184 | 1/8              | 3     | <sup>3</sup> /8              | 10 | <b>1</b> <sup>1</sup> / <sub>32</sub> | 26       | 150          | 68  |                                              |
| 360  | Swivel base/Trigger cleat*                           | 51/2                                   | 138   | 15.25                                | 433 | 1/8              | 3     | 1/2                          | 12 | 3/4                                   | 19       | _            | —   | 57mm/75mm/2.25"/3.00"/ratchets               |
| 361  | Little swivel base/Trigger cleat*                    | <b>4</b> 5/ <sub>16</sub>              | 110   | 14                                   | 398 | 1/8              | 3     | 1/2                          | 12 | 3/4                                   | 19       | —            | —   | Big Bullet/Dinghy/2.25"/little ratchets      |
| 379  | 423 Micro Carbo-Cam <sup>®</sup> on plate/bullseye‡‡ | 7/ <sub>8</sub>                        | 22    | 1.75                                 | 50  | 1/8              | 3     | 1/4                          | 6  | <b>1</b> 1/16                         | 27       | 150          | 68  |                                              |
| 402  | Small swivel base/412 Cam-Matic®*                    | 43/8                                   | 111   | 12.75                                | 362 | <sup>5/</sup> 16 | 8     | 7/ <sub>16</sub>             | 11 | 3/4                                   | 19       | —            | —   | 57mm/2.25" Double ratchets                   |
| 403  | Swivel base/412 Cam-Matic®*                          | <b>5</b> <sup>3</sup> / <sub>4</sub>   | 146   | 14                                   | 398 | <sup>5/</sup> 16 | 8     | <sup>7</sup> / <sub>16</sub> | 11 | 3/4                                   | 19       | —            | —   | 57mm/2.25"/3.00" Double ratchets             |
| 462  | Swivel base/338 Micro Cam-Matic®/16 mm sheaves       | <b>1</b> <sup>13</sup> /16             | 46    | 4.8                                  | 136 | 1/8              | 3     | 1/4                          | 6  | <b>1</b> <sup>1</sup> / <sub>32</sub> | 26       | 200          | 91  |                                              |
| 1574 | Midrange swivel base/280 Cam-Matic®**                | 5 <sup>15</sup> /16                    | 151   | 23                                   | 652 | 1/4              | 6     | <sup>5</sup> /8              | 16 | <b>1</b> 1/ <sub>16</sub>             | 27       | _            | —   | Midrange                                     |
| *#10 | (Emm) FU factorer **1/" (Emm) FU factorer            | +#10 //                                | 5 mm) |                                      |     |                  | 0 / 1 |                              |    | ****                                  |          |              |     |                                              |

"#10 (5 mm) FH fastener \*\*'/4" (6 mm) FH fastener ‡#10 (5 mm) RH fastener ‡‡#8 (4 mm) RH fastener
# Trigger Cleat

The Nash Trigger cleat has a unique mechanism that allows you to release highly loaded lines with complete control. Pulling the sheet down on the trigger trips the pawls and frees the sheet. The trigger serves as a snubbing surface to control release.

In light air, or once the trigger releases the load, the cleat operates like a normal cam cleat. The Trigger cleat is constructed of rugged stainless steel. It is very reliable in heavy air.

Trigger cleats are ideal on highly loaded systems like mainsheets, vangs, and even for some halyards. They have developed a cult-like following in some classes where the crew loves the ability to spill the mainsail reliably during close-quarters maneuvering.

The 355 cam mounting bracket attaches the Trigger cleat to 3.00 in (75 mm) low-profile triples.

Use for: Mainsheets Halyards Vangs Control lines





Spring-loaded cams close to cleat line

Pulling line down against trigger opens cams so line may be eased



355

|      |                             |                                       |     |                                       |     |                   |     |     |     |                  | Lin | e Ø |    | Max   | imum    |                |
|------|-----------------------------|---------------------------------------|-----|---------------------------------------|-----|-------------------|-----|-----|-----|------------------|-----|-----|----|-------|---------|----------------|
| Part |                             | Len                                   | gth | Wi                                    | dth | Hei               | ght | Wei | ght | N                | lin | N   | ax | worki | ng load |                |
| No.  | Description                 | in                                    | mm  | in                                    | mm  | in                | mm  | 0Z  | g   | in               | mm  | in  | mm | lb    | kg      | Fasteners      |
| 418  | Trigger cleat               | <b>2</b> <sup>1</sup> / <sub>2</sub>  | 64  | 3                                     | 76  | 1 <sup>3</sup> /8 | 35  | 5.6 | 159 | <sup>3</sup> /16 | 5   | 1/2 | 12 | 500   | 227     | #10 TH 5 mm TH |
| 355  | Trigger cleat adaptor plate | <b>3</b> <sup>9</sup> / <sub>64</sub> | 79  | <b>1</b> <sup>9</sup> / <sub>32</sub> | 31  | 1/4               | 6   | 1.3 | 36  | _                | —   | —   | _  | —     | —       | —              |
| *0   | 07.6                        |                                       |     |                                       |     |                   |     |     |     |                  |     |     |    |       |         |                |

\*See page 97 for specifications

# **Stay Tensioners**

Harken<sup>®</sup> stay tensioners are reliable mechanical adjusters that are easy to install and simple to use. Tensioners are made of polished stainless steel and chromed bronze, and feature bronze worm gears and thread drives to prevent galling under load. Moving components are mounted on greased roller bearings for easy adjustment.

Tensioners come in four sizes for boats from 27 ft to 50 ft (8 m to 15 m) with backstays from  $\frac{9}{42}$  in to  $\frac{1}{2}$  in (7 mm to 12 mm). B1722 tensioners have fold-down adjustment handles. The other tensioners accept a standard winch handle and are available in custom lengths.

### **Use for:** Backstays

Inner forestays Babystays



| Part  |             | P                | in<br>Ø | Pin-to<br>clos                 | )-pin<br>ed | Str                                  | oke | Ja<br>wio        | w<br>dth | Ja<br>dej                | w<br>oth | Wei  | ight | Max                          | c wire<br>Ø | Maxi<br>workin | mum<br>g load | Brea<br>lo: | king<br>ad |              |
|-------|-------------|------------------|---------|--------------------------------|-------------|--------------------------------------|-----|------------------|----------|--------------------------|----------|------|------|------------------------------|-------------|----------------|---------------|-------------|------------|--------------|
| No.   | Description | in               | mm      | in                             | mm          | in                                   | mm  | in               | mm       | in                       | mm       | lb   | kg   | in                           | mm          | lb             | kg            | lb          | kg         | Adjust with  |
| B500  | Small       | 9/ <sub>16</sub> | 14      | 23 <sup>1</sup> /8             | 587         | 7                                    | 180 | 9/ <sub>16</sub> | 15       | <b>1</b> 3/16            | 30       | 9.9  | 4.5  | <sup>3</sup> /8              | 10          | 8377           | 3800          | 16755       | 7600       | Winch handle |
| B501  | Large       | 5/8              | 16      | 26 <sup>1</sup> / <sub>4</sub> | 667         | 811/16                               | 220 | 11/16            | 17       | <b>1</b> ³/8             | 35       | 18.1 | 8.24 | 1/2                          | 12          | 14330          | 6500          | 28660       | 13000      | Winch handle |
| B502  | Small       | 5/8              | 16      | 23 <sup>1</sup> /8             | 587         | 7                                    | 180 | 5/8              | 16       | <b>1</b> 3/16            | 30       | 9.9  | 4.5  | <sup>3</sup> /8              | 10          | 8377           | 3800          | 16755       | 7600       | Winch handle |
| B503  | Large       | 3/4              | 19      | 26 <sup>1</sup> /4             | 667         | 811/16                               | 220 | 3/4              | 19       | <b>1</b> <sup>3</sup> /8 | 35       | 21.0 | 9.53 | 1/2                          | 12          | 14330          | 6500          | 28660       | 13000      | Winch handle |
| B1722 | Large       | 1/2              | 12      | 19                             | 483         | <b>6</b> <sup>1</sup> / <sub>4</sub> | 160 | 1/2              | 12       | 1                        | 25       | 8.3  | 3.75 | <sup>9</sup> / <sub>32</sub> | 7           | 5732           | 2600          | 11464       | 5200       | Handle       |

# Stand-Up Bases

Stand-up bases allow a wide variety of blocks to be held upright, swivel freely, or pivot so lines have a fair lead under load.

## **Ball and Socket Swivel Bases**

The ball-and-socket design lets blocks articulate up to 45 degrees and swivel freely. The 460 and 461 bases (high-load versions of the 010 and 029) have stainless steel reinforcement plates to handle the high load capacities of 57 mm and 75 mm Carbo blocks. Bases may be fitted with springs, but blocks won't hit the deck without them.

## **Stanchion Mount Base**

The 061 stanchion mount base attaches blocks to  $\frac{1}{16}$  in or 1 in (22 or 25 mm) stanchions or pulpits and is often used to lead furling lines to the cockpit. Allows blocks to swivel and pivot for fairleads.

## Midrange Cruising ESP Stand-Up

Use the1634 stand-up base with Midrange blocks and 57 mm or 75 mm Cruising ESP blocks. Block headpost fits into socket without shackle. The low-profile design is ideal for mastbase and halyard lead blocks.

### Springs

Springs support blocks on padeyes, eyestraps, bases, and traveler cars, and prevent blocks from hitting the deck.

### **Stand-Up Boots**

Made of durable, flexible PVC, stand-up boots hold blocks up without snagging lines. The 369 fits 40 mm and 57 mm Carbo and Black Magic<sup>®</sup> blocks. The 370 fits 75 mm Carbo blocks.



097, 071, 1603

B

### **Bases**

| Part |                                  | Hei                                      | ght | We  | ight | Ba   | ise<br>Ø | Inside           | socket<br>Ø | F                            | Pin<br>Ø | Maxi<br>workin | mum<br>g load | Brea<br>Io | ıking<br>ad |                                  |
|------|----------------------------------|------------------------------------------|-----|-----|------|------|----------|------------------|-------------|------------------------------|----------|----------------|---------------|------------|-------------|----------------------------------|
| No.  | Description                      | in                                       | mm  | 0Z  | g    | in   | mm       | in               | mm          | in                           | mm       | lb             | kg            | lb         | kg          | Use with                         |
| 010  | Ball/socket*                     | $\frac{1\frac{3}{4}}{2}$ 51              |     | 3   | 85   | 21/8 | 54       | <sup>3</sup> /8  | 10          | <sup>3</sup> / <sub>16</sub> | 5        | 400            | 181           | 1300       | 590         | 2.25"/Little Fiddle/ratchets     |
| 029  | Large ball/socket*               | $\frac{1\frac{3}{4}}{2}$ $\frac{44}{51}$ |     | 4   | 113  | 21/8 | 54       | 7/ <sub>16</sub> | 12          | 1/4                          | 6        | 400            | 181           | 1300       | 590         | Fiddle/3.00" cruiser/ratchets    |
| 061  | Stanchion mount                  | 11/4 32                                  |     | 2   | 57   | _    | —        | 3/8              | 10          | 3∕ <sub>16</sub>             | 5        | 350            | 159           | —          | —           | Bullet/Big Bullet/2.25"/ratchets |
| 460  | Ball/socket/high-load*           | <b>1</b> ¾                               | 44  | 4   | 113  | 21/8 | 54       | 3/8              | 10          | 3∕ <sub>16</sub>             | 5        | 800            | 363           | 2500       | 1134        | 57 mm Carbo                      |
| 461  | Large ball/socket/high-load*     | 2 51                                     |     | 4.5 | 128  | 21/8 | 54       | 7/16             | 12          | 1/4                          | 6        | 1000           | 454           | 2500       | 1134        | 75 mm Carbo                      |
| 1634 | Midrange/Cruising ESP stand-up** | <b>1</b> <sup>15/</sup> 16               | 49  | 9   | 255  | 27/8 | 73       | 9⁄16             | 15          | <sup>5/</sup> 16             | 8        | 3500           | 1588          | 7000       | 3175        | Midrange/Cruising ESP            |
| 1634 | Midrange/Cruising ESP stand-up** | <b>1</b> <sup>15/</sup> 16               | 49  | 9   | 255  | 21/8 | 73       | 9⁄16             | 15          | <sup>5</sup> ∕16             | 8        | 3500           | 1588          | 7000       | 3175        | Midrange/Cruising ESP            |

061

### **Base accessories**

| Part |                          | Wei | ight |      | A  | E                        | 3  | Shack                        | de pin<br>Ø |
|------|--------------------------|-----|------|------|----|--------------------------|----|------------------------------|-------------|
| No.  | Description              | 0Z  | g    | in   | mm | in                       | mm | in                           | mm          |
| 071  | Stand-up spring          | .32 | 9.1  | 2    | 51 | 7/8                      | 22 | —                            | —           |
| 077  | DN adaptor               | 2.4 | 69   | 1/4  | 32 | 11/16                    | 17 | <sup>3</sup> / <sub>16</sub> | 5           |
| 097  | Small stand-up spring    | .13 | 3.7  | 1    | 25 | 3/4                      | 19 | —                            | —           |
| 369  | Small stand-up boot      | .45 | 12.7 | 2    | 51 | <b>1</b> %16             | 40 | —                            | —           |
| 370  | Large stand-up boot      | 1.1 | 30.8 | 25/8 | 67 | <b>2<sup>3</sup>/</b> 16 | 55 | —                            | —           |
| 1603 | Midrange stand-up spring | .74 | 21   | 21/2 | 64 | 13/8                     | 35 | _                            | _           |

\*#10 (5 mm) FH fasteners \*\*1/4" (6 mm) RH fasteners

# Accessories

Accessories are designed to make standard blocks more versatile or fill a special need.

### Handhold

The 062 handhold is popular on boats like Solings and scows to help hiking crew re-enter the boat. It can also be used as a handle for things like engine covers. It has drain holes.

## **Bullseye Fairlead**

Use the 237 and 339 where there is little deflection in the line such as when routing a spinnaker pole foreguy aft along the cabin house.

## **Sail Chafe Protectors**

Use 285 to ease genoas over lifelines or past shrouds and to help large roach mainsails clear backstays.

## Prefeeder

Use 947 with racing foils or furling systems.

## **Dinghy Clew Hook**

The 433 and 394 dinghy clew hooks are designed for Lasers<sup>®</sup> and other loose-footed dinghies. They install permanently on the boom and allow you to instantly attach and adjust your sail in high wind and waves.







237



Malango 8.70, Pierre Rolland, idbmarine — Pierrick Contin photo

| Part |                              | ŀ                                     | 1   |                                      | В  | Part |                      | We   | ight |
|------|------------------------------|---------------------------------------|-----|--------------------------------------|----|------|----------------------|------|------|
| No.  | Description                  | in                                    | mm  | in                                   | mm | No.  | Description          | 0Z   | g    |
| 062  | Handhold*                    | 5 <sup>3</sup> /4                     | 146 | <b>3</b> <sup>1</sup> / <sub>2</sub> | 89 | 394  | Dinghy clew hook/404 | 1.00 | 28.4 |
| 237  | Bullseye fairlead * *        | <b>1</b> <sup>1</sup> / <sub>4</sub>  | 32  | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | 433  | Dinghy clew hook     | .65  | 18.4 |
| 285  | Sail chafe protector set (2) | <b>2</b> <sup>3</sup> / <sub>4</sub>  | 70  | _                                    | —  | 947  | Prefeeder            | .13  | 3.7  |
| 339  | Micro bullseve fairlead±     | <b>1</b> <sup>1</sup> / <sub>16</sub> | 27  | 3/4                                  | 19 |      |                      |      |      |

\*#10 (5 mm) FH fasteners 

# **Self-Contained Sheaves**

Self-contained sheaves are designed for sailors to use in custom applications.

The Micro, Bullet and Big Bullet sheaves are Delrin® with Delrin® ball bearings. They are scored for rope. 16 mm AirBlock® sheaves are Delrin® and feature stainless ball bearings that ride in a grooved race. Midrange sheaves come in either Delrin® or aluminum for wire.

Wire sheaves ride on high-load composite bearings. They are Hardkote-anodized aluminum with Teflon® impregnation.

Ball bearings in the  $1\frac{1}{2}$  in (38 mm) and 2 in (51 mm) sheaves minimize friction. The 1 in (25 mm) wire sheave uses low-friction washers for this purpose.

Two 160 sheaves make up the 161 dual sheave universal lead. Use this sheave to divert a line that must turn in either direction.

Use Cruising ESP sheaves to handle high static loads from halyards and reef lines. Sheaves are carbon-black Delrin® for UV protection and turn on stainless steel spacers. Contained sideload ball bearings allow sheaves to spin freely when loads are released. Sheaves require a sideplate for the sideload balls to roll on.

Use for: **Custom** applications

Plastic sleeve bearing for high static loads

6064

Ball bearings handle low loads and sideloads from unfair leads



6063





| Part |                         | She                                  | ave<br>Ø | Wi                            | dth | We  | ight | Li                           | ne | Ma<br>W                      | ax Ø<br>/ire | Cen                          | ter Pin<br>Ø | Maxi<br>workir | imum<br>1g load |
|------|-------------------------|--------------------------------------|----------|-------------------------------|-----|-----|------|------------------------------|----|------------------------------|--------------|------------------------------|--------------|----------------|-----------------|
| No.  | Description             | in                                   | mm       | in                            | mm  | 0Z  | g    | in                           | mm | in                           | mm           | in                           | mm           | lb             | kg              |
| 160  | Bullet                  | <b>1</b> <sup>1</sup> /8             | 29       | 1/2                           | 12  | .25 | 7    | <sup>5</sup> / <sub>16</sub> | 8  | _                            | _            | 1/4                          | 6.27         | 300            | 136             |
| 161  | Dual sheave             | <b>1</b> <sup>1</sup> /8             | 29       | 7/8                           | 22  | 1   | 28   | <sup>5</sup> / <sub>16</sub> | 8  | _                            | _            | 1/4                          | 6.27         | 300            | 136             |
| 265  | Big Bullet              | <b>1</b> 1/2                         | 38       | 9/ <sub>16</sub>              | 14  | .5  | 14   | 3/8                          | 10 | —                            | _            | 1/4                          | 6.27         | 300            | 136             |
| 277  | Micro                   | 7/8                                  | 22       | <sup>13</sup> / <sub>32</sub> | 10  | .1  | 3    | 1/4                          | 6  | _                            | _            | <sup>3</sup> / <sub>16</sub> | 4.75         | 200            | 91              |
| 303  | Wire                    | 1                                    | 25       | 9/ <sub>32</sub>              | 7   | .25 | 7    | <sup>5</sup> / <sub>32</sub> | 4  | <sup>3</sup> /32             | 2            | <sup>3</sup> / <sub>16</sub> | 4.75         | 1000           | 454             |
| 307  | Wire                    | <b>1</b> 1/2                         | 38       | <sup>13</sup> / <sub>32</sub> | 10  | 1   | 28   | <sup>3</sup> / <sub>16</sub> | 5  | 1/8                          | 3            | 1/4                          | 6.27         | 1500           | 680             |
| 311  | Wire                    | 2                                    | 51       | <sup>13</sup> / <sub>32</sub> | 10  | 1.5 | 43   | 1/4                          | 6  | <sup>3</sup> / <sub>16</sub> | 5            | <sup>5</sup> / <sub>16</sub> | 8.10         | 2000           | 907             |
| 415  | 16 mm                   | <sup>5</sup> /8                      | 16       | <sup>5</sup> / <sub>16</sub>  | 8   | .13 | 4    | <sup>3</sup> / <sub>16</sub> | 5  | —                            | —            | <sup>3</sup> / <sub>16</sub> | 4.75         | 250            | 113             |
| 1533 | Small Midrange          | 2                                    | 51       | <sup>7</sup> /8               | 22  | 1.5 | 43   | <sup>5</sup> /8              | 16 | _                            | —            | 1/4                          | 6.27         | 500            | 227             |
| 1534 | Small Midrange/aluminum | 2                                    | 51       | <sup>7</sup> /8               | 22  | 2.5 | 71   | <sup>5</sup> /8              | 16 | <sup>3</sup> /16             | 5            | 1/4                          | 6.27         | 500            | 227             |
| 6062 | Cruising ESP            | <b>1</b> 9/16                        | 40       | 11/16                         | 17  | .8  | 23   | 1/2                          | 12 | _                            | _            | <sup>5</sup> / <sub>16</sub> | 8.10         | 1250           | 567             |
| 6063 | Cruising ESP            | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <sup>13</sup> / <sub>16</sub> | 21  | 1.6 | 46   | 5/8                          | 16 | —                            | —            | 3/8                          | 10.00        | 2500           | 1134            |
| 6064 | Cruising ESP            | 215/16                               | 75       | 7/8                           | 22  | 4.4 | 126  | 3/4                          | 19 | _                            | _            | 3/8                          | 10.00        | 3500           | 1588            |

# **Big Boat Sheaves**

Big Boat sheaves are available for special applications as well as for replacement sheaves in Big Boat blocks. Made of Hardkote-anodized, Teflon®-impregnated 6061-T6 aluminum, sheaves feature Torlon® rollers to carry high radial loads and carbon-black Delrin® balls to support sideloads and provide UV protection. Select sheaves based on load-carrying capability.

Installation requires clamping or securing inner race.

## Use for:

Mainsheets Spinnaker sheets Afterguy/foreguy Footblocks

Carbon-black balls for UV protection

Torlon<sup>®</sup> roller/ball bearing system

> Hardkote-anodized, Teflon®-impregnated 6061-T6 aluminum

> > 640 500

> > 603

X

Ð

0

500

657



1539



Solaris One 48, Bill Tripp, Cantiere SE RI GI of Aquileia S.p.A. – Carlo Borlenghi/Tassotto & Max

| Part | She                                  | eave<br>Ø | Wi                       | dth | We | ight | Cent                         | er pin<br>Ø | Fast                         | eners | Fast<br>cire                         | ener<br>:le | Max              | k line<br>Ø | Maxir<br>working | num<br>g load | Brea<br>lo: | king<br>ad |
|------|--------------------------------------|-----------|--------------------------|-----|----|------|------------------------------|-------------|------------------------------|-------|--------------------------------------|-------------|------------------|-------------|------------------|---------------|-------------|------------|
| No.  | in                                   | mm        | in                       | mm  | 0Z | g    | in                           | mm          | in                           | mm    | in                                   | mm          | in               | mm          | lb               | kg            | lb          | kg         |
| 500  | 3                                    | 76        | <sup>7</sup> /8          | 22  | 6  | 170  | <sup>3</sup> /8              | 10.00       | <sup>3</sup> /8              | 10    | _                                    | —           | <sup>9</sup> /16 | 14          | 4950             | 2245          | 9900        | 4490       |
| 518  | 4 <sup>1</sup> / <sub>2</sub>        | 114       | 1                        | 25  | 16 | 454  | 3/4                          | 19.10       | <sup>3</sup> /8              | 10    | <b>1</b> <sup>3</sup> /8             | 35          | 3/4              | 18          | 7500             | 3401          | 15000       | 6803       |
| 519  | 5 <sup>1</sup> /2                    | 140       | <b>1</b> <sup>1</sup> /8 | 29  | 27 | 765  | <sup>7</sup> /8              | 22.28       | <sup>3</sup> /8              | 10    | <b>1</b> <sup>5</sup> /8             | 41          | <sup>7</sup> /8  | 22          | 9100             | 4127          | 18200       | 8254       |
| 520  | 7                                    | 178       | <b>1</b> 1/8             | 29  | 45 | 1280 | <b>1</b> 1/2                 | 38.00       | 1/2                          | 12    | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64          | 7/8              | 22          | 14000            | 6349          | 28000       | 12698      |
| 550  | 4                                    | 102       | 7/8                      | 22  | 10 | 284  | 3/8                          | 10.00       | 3/8                          | 10    | _                                    | _           | <sup>9</sup> /16 | 14          | 4950             | 2245          | 9900        | 4490       |
| 603  | 3                                    | 76        | <b>1</b> 9/16            | 40  | 10 | 284  | 3/8                          | 10.00       | 3/8                          | 10    | _                                    | —           | 3/4              | 18          | 4950             | 2245          | 9900        | 4490       |
| 640  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64        | <b>1</b> 1/4             | 32  | 6  | 170  | <sup>5</sup> / <sub>16</sub> | 8.10        | <sup>5</sup> / <sub>16</sub> | 8     | _                                    | —           | <sup>9</sup> /16 | 14          | 2000             | 907           | 4000        | 1814       |
| 657  | <b>4</b> <sup>1</sup> / <sub>2</sub> | 114       | 15/8                     | 41  | 25 | 709  | 3/4                          | 19.10       | 3/8                          | 10    | 13/8                                 | 35          | 7/8              | 18          | 14850            | 6736          | 29700       | 13472      |
| 1539 | 2 <sup>1</sup> /2                    | 64        | 13/8                     | 35  | 7  | 198  | <sup>5</sup> /16             | 8.10        | <sup>5</sup> / <sub>16</sub> | 8     | _                                    | _           | 1/2              | 12          | 3000             | 1361          | 6000        | 2721       |

0

×

# **High-Load Sheaves**

High-load sheaves are offered as replacement parts or for use in special applications. Their bearing system combines sideload-carrying balls with a Teflon<sup>®</sup> composite bushing to carry radial loads. While not as free-rolling as the standard Harken® ball/roller bearing system, this compact bearing system is extremely durable and perfect for carrying high loads in a restricted diameter.



Durable

| Part | Sh                                   | eave<br>Ø | Wi                       | dth | We | ight | Cen                                  | ter pin<br>Ø | Li  | Ma:<br>ne | xØ<br>W                      | /ire | Maxi<br>workir | mum<br>1g load | Brea<br>Ioa | king<br>d* |
|------|--------------------------------------|-----------|--------------------------|-----|----|------|--------------------------------------|--------------|-----|-----------|------------------------------|------|----------------|----------------|-------------|------------|
| No   | in                                   | mm        | in                       | mm  | 0Z | g    | in                                   | mm           | in  | mm        | in                           | mm   | lb             | kg             | lb          | kg         |
| 712  | 4                                    | 102       | 7/8                      | 22  | 10 | 284  | 11/16                                | 17.60        | 1/2 | 12        | <sup>5</sup> / <sub>16</sub> | 8    | 12000          | 5443           | 32000       | 14515      |
| 714  | 5                                    | 127       | 1                        | 25  | 17 | 481  | 7/8                                  | 22.28        | 5/8 | 16        | <sup>5</sup> / <sub>16</sub> | 8    | 15000          | 6804           | 51000       | 23133      |
| 716  | 6                                    | 152       | 1                        | 25  | 23 | 652  | 7/8                                  | 22.28        | 5/8 | 16        | <sup>3</sup> /8              | 10   | 18000          | 8165           | 51000       | 23133      |
| 727  | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57        | 7/8                      | 22  | 4  | 113  | <sup>3</sup> /8                      | 10.00        | 1/2 | 12        | <sup>5</sup> / <sub>16</sub> | 8    | 4950           | 2245           | 9900        | 4491       |
| 754  | 3                                    | 76        | 7/8                      | 22  | 5  | 142  | 1/2                                  | 12.70        | 1/2 | 12        | <sup>5</sup> / <sub>16</sub> | 8    | 7000           | 3175           | 16500       | 7484       |
| 1734 | 8                                    | 203       | <b>1</b> <sup>3</sup> /8 | 35  | 46 | 1300 | <b>1</b> <sup>1</sup> / <sub>4</sub> | 31.70        | 7/8 | 22        | 1/2                          | 12   | 37000          | 16783          | 100000      | 45360      |

\*Based on use of solid 304 stainless shafts

## **Narrow Halyard & Steering Sheaves**

Narrow high load sheaves in mastheads improve sail handling, speed sail changes, and allow the use of smaller. lighter halvard winches. Used in steering systems, these sheaves return "feel" to wheel-steered boats.

Sheaves combine sideload-carrying balls with a Teflon® composite bushing for radial loads. These durable sheaves are made of 6061-T6 aluminum and are well-suited for masthead and steering installations.

Installation requires clamping or securing inner race.

Use for: Masthead/halyard sheaves

Steering systems









| Part | Sh | eave<br>Ø | Wi              | dth | We                                   | ight | Cen | ter pin<br>Ø | Li                           | Ma<br>ine | xØ<br>W                      | /ire | Maxi<br>workin | mum<br>Ig load | Brea  | aking<br>ad* |
|------|----|-----------|-----------------|-----|--------------------------------------|------|-----|--------------|------------------------------|-----------|------------------------------|------|----------------|----------------|-------|--------------|
| No.  | in | mm        | in              | mm  | 0Z                                   | g    | in  | mm           | in                           | mm        | in                           | mm   | lb             | kg             | lb    | kg           |
| 691  | 3  | 76        | <sup>5</sup> /8 | 16  | <b>4</b> <sup>1</sup> / <sub>2</sub> | 128  | 1/2 | 12.70        | <sup>3</sup> /8              | 10        | <sup>3</sup> / <sub>16</sub> | 5    | 4000           | 1814           | 16500 | 7484         |
| 692  | 4  | 102       | 3/4             | 19  | 8                                    | 227  | 1/2 | 12.70        | 7/16                         | 12        | <sup>5</sup> / <sub>16</sub> | 8    | 8250           | 3742           | 16500 | 7484         |
| 693  | 5  | 127       | 3/4             | 19  | 12                                   | 340  | 3/4 | 19.10        | <sup>7</sup> / <sub>16</sub> | 12        | <sup>5</sup> / <sub>16</sub> | 8    | 12000          | 5443           | 37100 | 16828        |
| 694  | 6  | 152       | 7/8             | 22  | 19                                   | 539  | 3/4 | 19.10        | 1/2                          | 12        | 3/8                          | 10   | 16000          | 7258           | 37100 | 16828        |
| 695  | 7  | 178       | 1               | 25  | 27                                   | 765  | 1   | 25.42        | <sup>9</sup> / <sub>16</sub> | 14        | <sup>7</sup> / <sub>16</sub> | 12   | 21000          | 9526           | 66000 | 29937        |

\*Based on use of solid 304 stainless shafts



Beneteau 10R — Beneteau USA photo

| Part |                              | She                                  | ave<br>Ø | Len                                   | gth | He                                    | ight | Wei                                   | ight | Мах             | ( line<br>Ø | Maximur<br>load/s | n working<br>heave‡ | Brea<br>loa | king<br>d‡ |
|------|------------------------------|--------------------------------------|----------|---------------------------------------|-----|---------------------------------------|------|---------------------------------------|------|-----------------|-------------|-------------------|---------------------|-------------|------------|
| No.  | Description                  | in                                   | mm       | in                                    | mm  | in                                    | mm   | 0Z                                    | g    | in              | mm          | lb                | kg                  | lb          | kg         |
| 270  | Small Boat/2-sheave*         | <b>1</b> 1/2                         | 38       | 51/16                                 | 129 | 7/8                                   | 22   | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 128  | <sup>3</sup> /8 | 10          | 300               | 136                 | 2000        | 907        |
| 271  | Small Boat/3-sheave*         | <b>1</b> 1/2                         | 38       | 613/16                                | 173 | 7/8                                   | 22   | <b>6</b> <sup>1</sup> / <sub>2</sub>  | 184  | 3/8             | 10          | 300               | 136                 | 2000        | 907        |
| 272  | Small Boat/stacked 2-sheave* | <b>1</b> 1/2                         | 38       | 51/16                                 | 129 | <b>1</b> 9/16                         | 40   | <b>7</b> <sup>1</sup> / <sub>2</sub>  | 191  | 3/8             | 10          | 300               | 136                 | 2000        | 907        |
| 273  | Small Boat/stacked 3-sheave* | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       | 613/16                                | 173 | <b>1</b> <sup>9</sup> / <sub>16</sub> | 40   | <b>12</b> <sup>1</sup> / <sub>2</sub> | 355  | <sup>3</sup> /8 | 10          | 300               | 136                 | 2000        | 907        |
| 1500 | Midrange/2-sheave**          | 2                                    | 51       | 67/8                                  | 175 | <b>1</b> <sup>1</sup> /8              | 29   | <b>9</b> <sup>1</sup> / <sub>2</sub>  | 269  | <sup>5</sup> /8 | 16          | 500               | 227                 | 2500        | 1134       |
| 1501 | Midrange/3-sheave**          | 2                                    | 51       | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233 | <b>1</b> <sup>1</sup> /8              | 29   | <b>13</b> <sup>1</sup> / <sub>2</sub> | 383  | <sup>5</sup> /8 | 16          | 500               | 227                 | 2500        | 1134       |
| 1502 | Midrange/stacked 2-sheave**  | 2                                    | 51       | 67/8                                  | 175 | 2 <sup>1</sup> /8                     | 54   | 16 <sup>1</sup> /2                    | 468  | <sup>5</sup> /8 | 16          | 500               | 227                 | 2500        | 1134       |
| 1503 | Midrange/stacked 3-sheave**  | 2                                    | 51       | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233 | 2 <sup>1</sup> /8                     | 54   | <b>23</b> <sup>1</sup> / <sub>2</sub> | 666  | <sup>5</sup> /8 | 16          | 500               | 227                 | 2500        | 1134       |
| 1590 | Midrange/4-sheave**          | 2                                    | 51       | 12 <sup>3</sup> /4                    | 324 | <b>1</b> <sup>1</sup> /8              | 29   | 16                                    | 454  | <sup>5</sup> /8 | 16          | 500               | 227                 | 3750        | 1700       |
| 1591 | Midrange/5-sheave**          | 2                                    | 51       | 15                                    | 381 | <b>1</b> <sup>1</sup> /8              | 29   | 19                                    | 539  | <sup>5</sup> /8 | 16          | 500               | 227                 | 3750        | 1700       |

DO NOT use Harken equipment for human suspension. \*#10 (5 mm) FH fasteners \*\*'/4" (6 mm) FH fasteners ‡If double stacked, upper block/organizer is two-thirds of listed MWL and breaking load

#### **Cruising ESP Deck** Full-saturation, Hardkote anodizing for durability **Organizers** Excellent for halvards NEW: 6102, 6103, 6104 Aluminum and plastic Deck organizers lead halyards and control lines aft, allowing sleeve bearing for high crew to sail from the security of the cockpit. They lead a static loads large number of lines through a small space. Harken<sup>®</sup> deck organizers feature ball bearing sheaves and are available in double, triple, and stacked double and triple configurations. The ESP Deck Organizer features aluminum Hardkoteanodized side plates for strength and corrosion resistance. Ball bearings handle loads from unfair leads keeping Mount organizers with large fasteners directly through the sheave turning freely the sheaves. If you need an additional sheave, use the same holes and simply drill another hole 35/32" (80 mm) to mount the longer organizer. 6054 6052/6053 6052 Match Cruising ESP mastbase blocks 6101 with organizers for a complete system. 6102 is pre-assembled as a double and shares a common center plate. 21/4" (57 mm) 6055 6054/6055 6053 6075 Available in (80 mm) 35/32" (80 mm) 6071 stainless steel 35/32" 6102 21/4" (57 mm)-35/32" (80 mm) 6066 6066 6067 6067



| Part |                          | She                                  | ave<br>J | Len                                    | gth | Wei  | ight | He                                    | ight | Ma              | x line<br>Ø | Maxi<br>worl<br>load/s | mum<br>king<br>heave | Maxi<br>working | mum<br>j load* | Brea<br>Ioa | king<br>d* | Faste<br>(R      | eners<br>H) |
|------|--------------------------|--------------------------------------|----------|----------------------------------------|-----|------|------|---------------------------------------|------|-----------------|-------------|------------------------|----------------------|-----------------|----------------|-------------|------------|------------------|-------------|
| No.  | Description              | in                                   | mm       | in                                     | mm  | 0Z   | g    | in                                    | mm   | in              | mm          | lb                     | kg                   | lb              | kg             | lb          | kg         | in               | mm          |
| 6052 | Aluminum 2-sheave        | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>6</b> <sup>3</sup> / <sub>4</sub>   | 172 | 7.5  | 213  | <b>1</b> 1/16                         | 27   | 5/8             | 16          | 2500                   | 1134                 | 4000            | 1814           | 8000        | 3628       | 3/8              | 10          |
| 6053 | Aluminum 3-sheave        | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>9</b> <sup>15</sup> / <sub>16</sub> | 252 | 11.5 | 326  | <b>1</b> 1/16                         | 27   | 5/8             | 16          | 2500                   | 1134                 | 6000            | 2721           | 12000       | 5442       | 3/8              | 10          |
| 6054 | Aluminum 2-sheave        | <b>1</b> 9/16                        | 40       | 413/16                                 | 122 | 3.5  | 99   | <sup>15</sup> / <sub>16</sub>         | 24   | 1/2             | 12          | 1250                   | 567                  | 2000            | 907            | 4000        | 1814       | <sup>5</sup> /16 | 8           |
| 6055 | Aluminum 3-sheave        | <b>1</b> 9/16                        | 40       | 711/16                                 | 179 | 5.5  | 156  | <sup>15</sup> / <sub>16</sub>         | 24   | 1/2             | 12          | 1250                   | 567                  | 3000            | 1361           | 6000        | 2721       | <sup>5</sup> /16 | 8           |
| 6066 | Aluminum 4-sheave        | <b>1</b> 9/16                        | 40       | <b>9</b> <sup>5</sup> / <sub>16</sub>  | 237 | 7.5  | 213  | <sup>15</sup> / <sub>16</sub>         | 24   | 1/2             | 12          | 1250                   | 567                  | 4000            | 1814           | 8000        | 3628       | <sup>5</sup> /16 | 8           |
| 6067 | Aluminum 4-sheave        | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>13</b> <sup>1</sup> / <sub>16</sub> | 332 | 15.5 | 439  | <b>1</b> 1/16                         | 27   | <sup>5</sup> /8 | 16          | 2500                   | 1134                 | 8000            | 3628           | 16000       | 7256       | <sup>3</sup> /8  | 10          |
| 6071 | Stainless Steel 3-sheave | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>9</b> <sup>15</sup> / <sub>16</sub> | 252 | 21   | 595  | —                                     | —    | <sup>5</sup> /8 | 16          | 2500                   | 1134                 | 6000            | 2721           | 12000       | 5442       | <sup>3</sup> /8  | 10          |
| 6075 | Stainless Steel 3-sheave | <b>1</b> 9/16                        | 40       | 711/16                                 | 179 | 10   | 284  | —                                     | —    | 1/2             | 12          | 1250                   | 567                  | 3000            | 1361           | 6000        | 2721       | <sup>5</sup> /16 | 8           |
| 6101 | Aluminum 5-sheave        | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 167/32                                 | 412 | 18.4 | 522  | —                                     | —    | 5/8             | 16          | 2500                   | 1134                 | 10000           | 4535           | 20000       | 9070       | 3/8              | 10          |
| 6102 | Aluminum 6-sheave        | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>9</b> <sup>15</sup> / <sub>16</sub> | 252 | 20.7 | 588  | <b>2</b> <sup>1</sup> / <sub>32</sub> | 52   | 5/8             | 16          | 2500                   | 1134                 | 6000            | 2721           | 12000       | 5442       | 3/8              | 10          |
| 6103 | Aluminum 6-sheave        | <b>1</b> 9/16                        | 40       | <b>13</b> <sup>3</sup> / <sub>4</sub>  | 348 | 11.5 | 326  | <sup>15</sup> / <sub>16</sub>         | 24   | 1/2             | 12          | 1250                   | 567                  | 6000            | 2721           | 12000       | 5442       | <sup>5</sup> /16 | 8           |
| 6104 | Aluminum 6-sheave        | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | <b>19</b> <sup>5</sup> / <sub>16</sub> | 490 | 21.3 | 604  | <b>1</b> 1/16                         | 27   | 5/8             | 16          | 2500                   | 1134                 | 12000           | 5442           | 24000       | 10884      | 3/8              | 10          |

DO NOT use Harken equipment for human suspension. \*If double stacked, upper block/organizer is two-thirds of listed MWL and breaking load



1868

Big Boat Deck Organizers are available with up to 10 sheaves by custom order.

| Dort                       |                                                                                      | She                                                                         | eave<br>Ø            | Len                                                                                                                                       | ath                      | Hei                                                                              | inht                 | We                                               | iaht                       |                          | Ma                   | x Ø<br>W                                                                                                                     | ire              | Maxi<br>workin<br>she        | imum<br>1g load/<br>2ave     | Breakir                      | ng load/<br>ave              | Maxi                           | mum<br>a load                | Brea                             | ıking<br>ad |
|----------------------------|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------------------------------------------------------------------|----------------------|--------------------------------------------------|----------------------------|--------------------------|----------------------|------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------|------------------------------|------------------------------|------------------------------|--------------------------------|------------------------------|----------------------------------|-------------|
| No.                        | Description                                                                          | in                                                                          | mm                   | in                                                                                                                                        | mm                       | in                                                                               | mm                   | oz                                               | g                          | in                       | mm                   | in                                                                                                                           | mm               | lb                           | kg                           | lb                           | kg                           | lb                             | kg                           | lb                               | kg          |
| 724                        | Big Boat/2-Sheave*                                                                   | <b>2</b> <sup>1</sup> / <sub>4</sub>                                        | 57                   | 79/16                                                                                                                                     | 192                      | <b>1</b> 1/8                                                                     | 29                   | <b>19</b> <sup>1</sup> / <sub>2</sub>            | 553                        | 1/2                      | 12                   | <sup>5</sup> / <sub>16</sub>                                                                                                 | 8                | 4950                         | 2245                         | 9900                         | 4491                         | 4950                           | 2245                         | 9900                             | 4491        |
| 725                        | Big Boat/3-Sheave*                                                                   | <b>2</b> <sup>1</sup> / <sub>4</sub>                                        | 57                   | <b>10</b> <sup>5</sup> / <sub>16</sub>                                                                                                    | 262                      | <b>1</b> <sup>1</sup> /8                                                         | 29                   | <b>27</b> <sup>1</sup> / <sub>2</sub>            | 780                        | 1/2                      | 12                   | <sup>5</sup> / <sub>16</sub>                                                                                                 | 8                | 4950                         | 2245                         | 9900                         | 4491                         | 7425                           | 3368                         | 14850                            | 6736        |
| 726                        | Big Boat/4-Sheave*                                                                   | <b>2</b> <sup>1</sup> / <sub>4</sub>                                        | 57                   | <b>13</b> <sup>1</sup> / <sub>16</sub>                                                                                                    | 332                      | <b>1</b> <sup>1</sup> /8                                                         | 29                   | 35                                               | 992                        | 1/2                      | 12                   | <sup>5</sup> / <sub>16</sub>                                                                                                 | 8                | 4950                         | 2245                         | 9900                         | 4491                         | 9900                           | 4491                         | 19800                            | 8981        |
| 1867                       | Big Boat/5-Sheave*                                                                   | <b>2</b> <sup>1</sup> / <sub>4</sub>                                        | 57                   | <b>15</b> <sup>13</sup> / <sub>16</sub>                                                                                                   | 402                      | <b>1</b> <sup>1</sup> /8                                                         | 29                   | 44                                               | 1247                       | 1/2                      | 12                   | <sup>5</sup> / <sub>16</sub>                                                                                                 | 8                | 4950                         | 2245                         | 9900                         | 4491                         | 12375                          | 5613                         | 24750                            | 11227       |
| 1868                       | Big Boat/6-Sheave*                                                                   | <b>2</b> <sup>1</sup> / <sub>4</sub>                                        | 57                   | <b>18</b> <sup>9</sup> / <sub>16</sub>                                                                                                    | 471                      | <b>1</b> <sup>1</sup> /8                                                         | 29                   | 45                                               | 1276                       | 1/2                      | 12                   | <sup>5</sup> / <sub>16</sub>                                                                                                 | 8                | 4950                         | 2245                         | 9900                         | 4491                         | 14850                          | 6736                         | 29700                            | 13472       |
| 725<br>726<br>1867<br>1868 | Big Boat/3-Sheave*<br>Big Boat/4-Sheave*<br>Big Boat/5-Sheave*<br>Big Boat/6-Sheave* | $ \frac{2^{1/4}}{2^{1/4}} \frac{2^{1/4}}{2^{1/4}} \frac{2^{1/4}}{2^{1/4}} $ | 57<br>57<br>57<br>57 | 10 <sup>5</sup> / <sub>16</sub><br>13 <sup>1</sup> / <sub>16</sub><br>15 <sup>13</sup> / <sub>16</sub><br>18 <sup>9</sup> / <sub>16</sub> | 262<br>332<br>402<br>471 | 1 <sup>1</sup> /8<br>1 <sup>1</sup> /8<br>1 <sup>1</sup> /8<br>1 <sup>1</sup> /8 | 29<br>29<br>29<br>29 | 27 <sup>1</sup> / <sub>2</sub><br>35<br>44<br>45 | 780<br>992<br>1247<br>1276 | 1/2<br>1/2<br>1/2<br>1/2 | 12<br>12<br>12<br>12 | <sup>5</sup> / <sub>16</sub><br><sup>5</sup> / <sub>16</sub><br><sup>5</sup> / <sub>16</sub><br><sup>5</sup> / <sub>16</sub> | 8<br>8<br>8<br>8 | 4950<br>4950<br>4950<br>4950 | 2245<br>2245<br>2245<br>2245 | 9900<br>9900<br>9900<br>9900 | 4491<br>4491<br>4491<br>4491 | 7425<br>9900<br>12375<br>14850 | 3368<br>4491<br>5613<br>6736 | 14850<br>19800<br>24750<br>29700 | {<br>1<br>1 |

DO NOT use Harken equipment for human suspension. \*Fasteners included — 3/8" (10 mm) x 3" (75 mm) HH

# Spinnaker Pole Cars

Harken spinnaker pole cars feature recirculating ball bearings to permit adjustment under any load. They roll freely on low-beam traveler track to allow crew to adjust for optimal sail shape. Machined aluminum Hardkote-anodized races permit Torlon<sup>®</sup> bearings to transition smoothly from active to return race for smooth trimming or easing.

Small Boat 3188 and Midrange 3189 cars feature captive ball bearings making them easy to load and maintain. The one-piece solid aluminum construction is lightweight and strong. Stainless steel wire guides keep the balls captive when the car is off the track. Their ring fittings accept piston pole ends for end-for-end jibing. Midrange and Big Boat cars accept two popular toggle studs and Harken<sup>®</sup> bell end fittings. Cars are also available from the Harken<sup>®</sup> Custom Division.

**Use for:** Spinnaker poles Whisker poles Captive balls on Small Boat and Midrange ring cars make cars easy to load and maintain. Wire guides circulate bearings smoothly CB cars feature tough one-piece aluminum construction Recirculating ball bearings Cars fit low-beam track

782

783

784

1578

1579

1580



Rancho Deluxe, Swan 45, Rolex Big Boat Series - J.H. Peterson photo

### Cars

| vais |                     |      |      |                                      |      |      |       |       |      |                                      |    |                                      |    |        |        |       |                               |
|------|---------------------|------|------|--------------------------------------|------|------|-------|-------|------|--------------------------------------|----|--------------------------------------|----|--------|--------|-------|-------------------------------|
|      |                     | Max  | spin |                                      |      |      |       | P     | 'n   |                                      |    |                                      |    | Maxi   | mum    |       |                               |
| Part |                     | are  | ea   | Ler                                  | igth | We   | ight  |       | Ø    | H                                    | н  |                                      | I  | workin | g load |       |                               |
| No.  | Description         | ft²  | m²   | in                                   | mm   | 0Z   | g     | in    | mm   | in                                   | mm | in                                   | mm | lb     | kg     | Track | Pole end                      |
| 782  | Big Boat/bell*      | 2000 | 186  | <b>7</b> <sup>1</sup> / <sub>4</sub> | 184  | 46.4 | 1315  | 15/32 | 12   | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | _                                    | _  | 4050   | 1837   | 3154  | B120/B130 bell end            |
| 783  | Big Boat/toggle*    | 2000 | 186  | 71/4                                 | 184  | 47.2 | 1338  | 5/8   | 16   | <b>1</b> 3/16                        | 30 | <b>2</b> <sup>1</sup> / <sub>2</sub> | 63 | 4050   | 1837   | 3154  | Sparcraft® toggle             |
| 784  | Big Boat/toggle*    | 2000 | 186  | 71/4                                 | 184  | 45.6 | 1293  | 1/2   | 12.7 | 1                                    | 25 | 25/16                                | 59 | 4050   | 1837   | 3154  | Forespar® toggle              |
| 1578 | Midrange/bell*      | 1500 | 140  | 5 <sup>1</sup> /4                    | 133  | 23.2 | 658   | 15/32 | 12   | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | —                                    | _  | 2300   | 1043   | 1616  | B120/B130 bell end            |
| 1579 | Midrange/toggle*    | 1500 | 140  | 5 <sup>1</sup> /4                    | 133  | 24   | 680   | 5/8   | 16   | <b>1</b> 3/16                        | 30 | <b>2</b> <sup>1</sup> /8             | 54 | 2300   | 1043   | 1616  | Sparcraft <sup>®</sup> toggle |
| 1580 | Midrange/toggle*    | 1500 | 140  | 5 <sup>1</sup> /4                    | 133  | 22.4 | 635   | 1/2   | 12.7 | 1                                    | 25 | 2                                    | 51 | 2300   | 1043   | 1616  | Forespar® toggle              |
| 3188 | Small Boat CB/ring* | 900  | 85   | 4 <sup>63</sup> / <sub>64</sub>      | 126  | 12   | 340   | —     | —    | _                                    | —  | —                                    | _  | 1125   | 510    | 2720  | Piston                        |
| 3189 | Midrange CB/ring*   | 1350 | 125  | 5 <sup>61</sup> / <sub>64</sub>      | 151  | 23.2 | 657.7 | _     | _    | _                                    | _  | _                                    | _  | 2100   | 953    | 1616  | Piston                        |
| 3189 | Midrange CB/ring*   | 1350 | 125  | 5 <sup>61</sup> /64                  | 151  | 23.2 | 657.7 | _     |      | _                                    |    | _                                    | _  | 2100   | 953    | 1616  | Piston                        |

\*See page 26 for replacement balls

## **Spinnaker Pole End Fittings**

Spinnaker pole end fittings are strong, simple to operate, and reliable. All pole ends are hard-anodized aluminum with stainless steel pistons and pins.

Piston-type ends offer internal and external release levers. Use on outboard and inboard ends of poles for small and mid-sized offshore boats.

Use bell fittings on medium and large boats that dip pole jibe. The bell and socket arrangement is strong, easy to engage, and allows the pole to articulate properly in all conditions.

Toggle track slides accept bells and come with or without pinstops.

Use for: Spinnaker poles Whisker poles



В

B131/70 B145/70 B131/80 (Spinnaker pole) B145/80 50 B130 1578 B121/70 B145/70 1579 (accepts Sparcraft<sup>®</sup> toggle) B121/80 B145/80 1580 (accepts Forespar® toggle) 50 783 (accepts Sparcraft<sup>®</sup> toggle) (Spinnaker pole) 784 (accepts Forespar<sup>®</sup> toggle)



### **End Fittings**

782

| Part     |                         | Α  | В   | C  | D   | E  | F   | G  | We   | ight |      |
|----------|-------------------------|----|-----|----|-----|----|-----|----|------|------|------|
| No.      | Description             | mm | mm  | mm | mm  | mm | mm  | mm | 0Z   | g    | Fits |
| B120     | Large bell socket**     | 82 | 168 | 85 | —   | —  | —   | —  | 24.7 | 700  | B121 |
| B121/70  | Pole end for bell       | _  | —   | —  | 70  | 65 | 110 | —  | 17.6 | 500  | B120 |
| B121/80  | Pole end for bell       | _  | _   | _  | 80  | 75 | 110 | _  | 21.2 | 600  | B120 |
| B121/100 | Pole end for bell       | _  | _   | _  | 100 | 94 | 110 | _  | 21.2 | 600  | B120 |
| B130     | Small bell socket**     | 66 | 154 | 80 | —   | _  | —   | _  | 17.6 | 500  | B131 |
| B131/60  | Pole end for bell       | —  | —   | —  | 60  | 55 | 85  | _  | 8.8  | 250  | B130 |
| B131/70  | Pole end for bell       | —  | —   | —  | 70  | 65 | 85  |    | 10.6 | 300  | B130 |
| B131/80  | Pole end for bell       | —  | —   | —  | 80  | 75 | 85  | —  | 15.9 | 450  | B130 |
| B141/50  | Piston pole end         | _  | _   | _  | 50  | 46 | 93  | 20 | 14.1 | 400  |      |
| B145/60  | Piston pole end         | _  | _   | _  | 60  | 55 | 146 | 28 | 35.3 | 1000 |      |
| B145/70  | Piston pole end         | _  | _   | _  | 70  | 65 | 175 | 30 | 56.4 | 1600 |      |
| B145/80  | Piston pole end         | _  | _   | _  | 80  | 75 | 175 | 30 | 63.5 | 1800 |      |
| B147/100 | Piston pole end/trigger | _  | _   | _  | 100 | 94 | 134 | 36 | 52.9 | 1500 |      |

\*See page 26 for replacement balls

\*\*Do not use B120/B130 bell sockets for vertical spinnaker/whisker pole storage

## Stainless Steel Shackles

## Forged

The stainless steel shackles we use on Harken<sup>®</sup> blocks are available separately. We have increased the range in both configurations and sizes.

## Stamped Shackles

The 072, 138, and 246 shackles are used on most of the Small Boat blocks. They are also useful for a wide range of other applications.

## **Snap Shackles**

The 111, 112, and 1584 snap shackles fit a wide variety of blocks and make them removable. Many use a snap shackle on the lower vang block so that it can be moved from the mastbase to the toerail to use it as a preventer.

## **U-Adaptor**

The 093 U-adaptor allows blocks with  $\frac{1}{9}$  in (10 mm) posts to be attached to swivel bases or to other blocks with  $\frac{3}{9}$  in (10 mm) posts.

The 1598 U-adaptor allows blocks with  $^{9/_{16}}$  in (14 mm) posts to be attached to swivel bases or to other blocks with  $^{9/_{16}}$  in (14 mm) posts.

The 463 U-Adaptor adapts 75 mm Carbo singles to swivel bases.

C & C 115 — Bob Grieser photo

Shackles are electro-polished and tumbled to a high luster

Number on shackle denotes screw diameter in millimeters

Bow

— B

Harken® shackles are electric forged from 316 and 17-4 PH stainless steel

High-resistance shackles are marked "HR"





The breaking strengths shown are derived from tests that supported 80% of the length of the screw pin that is unsupported, which is similar to the area of a post in a block. Safe working loads are no more than half the minimum breaking strength.

## Forged Shackles



2122, 2126

2109, 2116 2123, 2127

|          |                  | Shack                         | de pin |      |       |                                       |    |                               |    |                                      | _  | Maxi   | mum     | Brea  | iking |
|----------|------------------|-------------------------------|--------|------|-------|---------------------------------------|----|-------------------------------|----|--------------------------------------|----|--------|---------|-------|-------|
| Part     |                  | ļ                             | Ø      | We   | ight  | 1                                     | A  |                               | В  |                                      | C  | workin | ig load | lo    | ad    |
| No.      | Description      | in                            | mm     | 0Z   | g     | in                                    | mm | in                            | mm | in                                   | mm | lb     | kg      | lb    | kg    |
| Bow      |                  |                               |        |      |       |                                       |    |                               |    |                                      |    |        |         |       |       |
| 2103     | 5 mm             | <sup>3</sup> / <sub>16</sub>  | 5      | .64  | 18    | 1                                     | 25 | 3/8                           | 10 | 11/16                                | 17 | 1190   | 540     | 2380  | 1080  |
| 2110     | 6 mm             | 1/4                           | 6      | 1.04 | 29.5  | <b>1</b> <sup>1</sup> / <sub>16</sub> | 27 | <sup>9</sup> /16              | 14 | 3/4                                  | 19 | 1650   | 750     | 3300  | 1500  |
| 2117     | 8 mm             | <sup>5</sup> / <sub>16</sub>  | 8      | 2.48 | 70.5  | <b>1</b> <sup>1</sup> / <sub>2</sub>  | 38 | 11/16                         | 17 | <b>1</b> 1/8                         | 29 | 3040   | 1380    | 6080  | 2760  |
| 2124     | 10 mm            | <sup>13</sup> / <sub>32</sub> | 10     | 4.88 | 138.5 | 17/8                                  | 48 | 7/8                           | 22 | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32 | 4870   | 2210    | 9740  | 4420  |
| Shallow  | Bow              |                               |        |      |       |                                       |    |                               |    |                                      |    |        |         |       |       |
| 2131     | 4 mm             | 5/ <sub>32</sub>              | 4      | .3   | 8.5   | 5/8                                   | 16 | <sup>5</sup> / <sub>16</sub>  | 8  | <sup>7</sup> / <sub>16</sub>         | 11 | 810    | 367     | 1620  | 735   |
| 2132     | 5 mm             | 3/ <sub>16</sub>              | 5      | .51  | 14.5  | 11/16                                 | 17 | 7/ <sub>16</sub>              | 11 | <sup>9</sup> /16                     | 14 | 1190   | 540     | 2380  | 1080  |
| Forged " | 'D"              |                               |        |      |       |                                       |    |                               |    |                                      |    |        |         |       |       |
| 2108     | 6 mm             | 1/4                           | 6      | .88  | 25    | 3/4                                   | 19 | <sup>9</sup> / <sub>16</sub>  | 14 | _                                    | _  | 1650   | 750     | 3300  | 1500  |
| 2115     | 8 mm             | <sup>5</sup> / <sub>16</sub>  | 8      | 2.08 | 59    | 1                                     | 25 | 11/16                         | 17 | _                                    | _  | 3040   | 1380    | 6080  | 2760  |
| 2122     | 10 mm            | <sup>13</sup> / <sub>32</sub> | 10     | 4.22 | 120   | <b>1</b> <sup>1</sup> / <sub>4</sub>  | 32 | <sup>13</sup> / <sub>16</sub> | 20 | —                                    | —  | 4870   | 2210    | 9740  | 4420  |
| 2126     | 12 mm            | 1/2                           | 12     | 6.70 | 190   | <b>1</b> 1/2                          | 38 | <sup>15</sup> / <sub>16</sub> | 24 | _                                    | _  | 7120   | 3230    | 14240 | 6460  |
| High-Res | sistance (HR) "D | )"                            |        |      |       |                                       |    |                               |    |                                      |    |        |         |       |       |
| 2109     | 6 mm             | 1/4                           | 6      | .80  | 22.5  | 3/4                                   | 19 | <sup>9</sup> / <sub>16</sub>  | 14 | _                                    | _  | 2770   | 1260    | 5540  | 2510  |
| 2116     | 8 mm             | <sup>5</sup> / <sub>16</sub>  | 8      | 2    | 56.5  | 1                                     | 25 | 5/8                           | 16 |                                      | _  | 5130   | 2330    | 10260 | 4650  |
| 2123     | 10 mm            | 13/32                         | 10     | 3.92 | 111   | <b>1</b> <sup>1</sup> / <sub>4</sub>  | 32 | 13/16                         | 20 | _                                    | _  | 8210   | 3720    | 16420 | 7450  |
| 2127     | 12 mm            | 1/2                           | 12     | 6.8  | 193   | 1 <sup>3</sup> /4                     | 44 | 1                             | 25 | _                                    | _  | 12000  | 5440    | 24000 | 10880 |

2103, 2110

2117, 2124

## **Stainless Steel Shackles**

**Forged Shackles** 



Fusion 40 — Fusion Catamarans photo

| Part           |                               | Shack                        | le pin<br>I | We   | ight  |                                       | 4  |                               | В  |                              | C  | Maxi<br>workir | mum<br>1g load | Brea<br>Io | aking<br>ad |
|----------------|-------------------------------|------------------------------|-------------|------|-------|---------------------------------------|----|-------------------------------|----|------------------------------|----|----------------|----------------|------------|-------------|
| No.            | Description                   | in                           | mm          | 0Z   | g     | in                                    | mm | in                            | mm | in                           | mm | lb             | kg             | lb         | kg          |
| Long           |                               |                              |             |      |       |                                       |    |                               |    |                              |    |                |                |            |             |
| 2104           | 5 mm                          | 3/16                         | 5           | .78  | 22    | <b>1</b> 1/2                          | 38 | <sup>3</sup> /8               | 10 | _                            | _  | 1190           | 540            | 2380       | 1080        |
| 2111           | 6 mm                          | 1/4                          | 6           | 1.34 | 38    | 1 <sup>3</sup> /4                     | 44 | 1/2                           | 13 | _                            | —  | 1650           | 750            | 3300       | 1500        |
| 2118           | 8 mm                          | <sup>5</sup> /16             | 8           | 3.01 | 85.5  | <b>2</b> <sup>1</sup> / <sub>4</sub>  | 57 | 5/8                           | 16 | _                            | —  | 3040           | 1380           | 6080       | 2760        |
| Twist          |                               |                              |             |      |       |                                       |    |                               |    |                              |    |                |                |            |             |
| 2105           | 5 mm                          | <sup>3</sup> /16             | 5           | .78  | 22    | <b>1</b> 7/16                         | 37 | 3/8                           | 10 | _                            | _  | 1190           | 540            | 2380       | 1080        |
| 2112           | 6 mm                          | 1/4                          | 6           | 1.12 | 32    | <b>1</b> 1/8                          | 29 | 1/2                           | 12 | _                            | —  | 1650           | 750            | 3300       | 1500        |
| 2119           | 8 mm                          | <sup>5</sup> /16             | 8           | 1.84 | 52    | 15/8                                  | 41 | 11/16                         | 17 | —                            | _  | 3040           | 1380           | 6080       | 2760        |
| 2125           | 10 mm                         | 13/32                        | 10          | 4.96 | 140.5 | 17/8                                  | 48 | 3/4                           | 19 | _                            | _  | 4870           | 2210           | 9740       | 4420        |
| Large O        | pen                           |                              |             |      |       |                                       |    |                               |    |                              |    |                |                |            |             |
| 2106           | 5 mm                          | 3/16                         | 5           | .88  | 25    | <b>1</b> <sup>5</sup> / <sub>16</sub> | 33 | <sup>13</sup> / <sub>16</sub> | 20 | _                            | _  | 770            | 350            | 2200       | 1000        |
| Captive        | Halyard                       |                              |             |      |       |                                       |    |                               |    |                              |    |                |                |            |             |
| 2107           | 5 mm                          | <sup>3</sup> / <sub>16</sub> | 5           | 1.12 | 32    | <b>1</b> ³/8                          | 35 | <sup>9</sup> /16              | 14 | <sup>9</sup> / <sub>16</sub> | 14 | 1190           | 540            | 2380       | 1080        |
| Stampe         | d Shackles                    |                              |             |      |       |                                       |    |                               |    |                              |    |                |                |            |             |
| 072            | Small                         | <sup>3</sup> / <sub>16</sub> | 5           | .29  | 8     | 1/2                                   | 12 | <sup>7</sup> / <sub>16</sub>  | 11 | _                            | —  | 1250           | 567            | 2500       | 1134        |
| 138            | Large                         | 1/4                          | 6           | .54  | 15.5  | <sup>11</sup> / <sub>16</sub>         | 17 | <sup>5</sup> /8               | 16 | —                            | —  | 1500           | 680            | 3000       | 1360        |
| 246            | Micro                         | <sup>5</sup> / <sub>32</sub> | 4           | .18  | 5     | <sup>7</sup> / <sub>16</sub>          | 11 | 3/8                           | 9  | _                            | _  | 600            | 270            | 1200       | 545         |
| Snap S         | hackles                       |                              |             |      |       |                                       |    |                               |    |                              |    |                |                |            |             |
| 111            | Snap shackle                  | <sup>3/</sup> 16             | 5           | 3    | 85    | 2%16                                  | 65 | —                             | _  | _                            | _  | 1000           | 454            | 2000       | 907         |
| 112            | Large Snap shackle            | 1/4                          | 6           | 4.5  | 128   | 3∛ଃ                                   | 86 | _                             | _  | _                            | _  | 1500           | 680            | 3000       | 1361        |
| 1584           | Midrange Snap shackle         | 5/16                         | 8           | 4    | 113   | <b>3</b> <sup>1</sup> / <sub>16</sub> | 78 | _                             | _  | _                            | _  | 1800           | 816            | 3600       | 1633        |
| <b>U-adapt</b> | ors                           |                              |             |      |       |                                       |    |                               |    |                              |    |                |                |            |             |
| 093            | U-adaptor                     | <sup>3</sup> / <sub>16</sub> | 5           | .48  | 13.6  | 1/2                                   | 12 | <sup>7</sup> / <sub>16</sub>  | 11 | _                            | _  | 1250           | 567            | 2500       | 1134        |
| 463            | U-adaptor                     | 3/16/1/4                     | 5/6         | .58  | 16.3  | 9/ <sub>16</sub>                      | 14 | 13/32                         | 10 | _                            |    | 1250           | 567            | 2500       | 1134        |
| 1598           | Midrange U-adaptor            | 5/16                         | 8           | 1.57 | 44.4  | 1/2                                   | 12 | 7/8                           | 22 | _                            | _  | 1800           | 817            | 3600       | 1633        |
| DO NOT         | use Herken squipment for huma | n auananaian                 |             |      |       |                                       |    |                               |    |                              |    |                |                |            |             |

## LOUPS<sup>TM</sup> NEW: 3202, 3203

LOUPS<sup>™</sup> are ready-made soft attachments that replace heavy stainless steel shackles on racing and cruising boats. Weight savings on large offshore boats can be as much as 200 lb (91 kg).

Strong and lightweight, LOUPS<sup>™</sup> are constructed using multiple coils of tough Dyneema<sup>®</sup> covered with Spectra<sup>®</sup>—one of the most durable materials made. An annealing process ensures loads are equal on all coils. Colored tracers on the cover specify LOUPS<sup>™</sup> strength by indicating the number of Dyneema<sup>®</sup> coils.

Most LOUPS<sup>TM</sup> configurations are made by taking the block apart. If the block can't be opened a pin called a "Dogbone" joins the LOUPS<sup>TM</sup> to itself.

When fitting hardware, choose the LOUPS<sup>TM</sup> that matches the attachment method shown in the chart. Custom length LOUPS<sup>TM</sup> are also available.





| Part | Ø  | Ler | ngth | We  | ight | Vertical r<br>workin | naximum<br>Ig load | Fits       | Choker n<br>workin | naximum<br>Ig load | With do<br>maxi<br>workin | ogbone<br>mum<br>g load | Fits   | Bas<br>maxi<br>workin | ket<br>mum<br>g load | Fits           |
|------|----|-----|------|-----|------|----------------------|--------------------|------------|--------------------|--------------------|---------------------------|-------------------------|--------|-----------------------|----------------------|----------------|
| No.  | mm | in  | mm   | 0Z  | g    | lb                   | kg                 | blocks     | lb                 | kg                 | lb                        | kg                      | blocks | lb                    | kg                   | blocks         |
| 3202 | 5  | 8   | 203  | .3  | 9    | 1275                 | 578                | —          | 1000               | 453                | —                         | —                       | —      | 2550                  | 1156                 | 3195           |
| 3203 | 7  | 10  | 254  | .49 | 14   | 2550                 | 1155               | _          | 2040               | 920                | —                         | —                       | _      | 5100                  | 2310                 | 3196           |
| 3139 | 9  | 4   | 100  | 0.7 | 20   | 3600                 | 1630               | _          | 2880               | 1305               | _                         | _                       | _      | 7200                  | 3265                 | _              |
| 3140 | 9  | 8   | 200  | 1.4 | 40   | 3600                 | 1630               | _          | 2880               | 1305               | _                         | _                       | _      | 7200                  | 3265                 | 3088           |
| 3141 | 9  | 11  | 280  | 2   | 55   | 3600                 | 1630               | _          | 2880               | 1305               | _                         | _                       | _      | 7200                  | 3265                 | 3088           |
| 3142 | 10 | 5   | 125  | 1.1 | 30   | 5400                 | 2445               | _          | 4325               | 1960               | _                         | _                       | _      | 10810                 | 4900                 | —              |
| 3143 | 10 | 9   | 230  | 2   | 55   | 5400                 | 2445               | _          | 4325               | 1960               | _                         | _                       | _      | 10810                 | 4900                 | 3089/3095      |
| 3144 | 10 | 15  | 380  | 3.3 | 94   | 5400                 | 2445               | _          | 4325               | 1960               | 5645                      | 2560                    | 3088   | 10810                 | 4900                 | 3089/3095/3199 |
| 3145 | 11 | 5   | 125  | 1.7 | 50   | 7200                 | 3265               | 3088       | 5765               | 2610               | —                         | _                       | _      | 14415                 | 6535                 | —              |
| 3146 | 11 | 9   | 230  | 3.1 | 88   | 7200                 | 3265               | 3088       | 5765               | 2610               | _                         | _                       | _      | 14415                 | 6535                 | _              |
| 3147 | 11 | 16  | 400  | 5.4 | 154  | 7200                 | 3265               | 3088       | 5765               | 2610               | _                         | _                       | _      | 14415                 | 6535                 | 3201           |
| 3148 | 12 | 6   | 150  | 2.3 | 65   | 9010                 | 4085               | 3089       | 7200               | 3265               | _                         | _                       | _      | 18020                 | 8170                 | _              |
| 3149 | 12 | 11  | 280  | 4.2 | 120  | 9010                 | 4085               | 3089       | 7200               | 3265               | _                         | _                       | _      | 18020                 | 8170                 | _              |
| 3150 | 12 | 17  | 430  | 6.5 | 180  | 9010                 | 4085               | 3089       | 7200               | 3265               | _                         | _                       | _      | 18020                 | 8170                 | _              |
| 3151 | _  | _   | 35   | 0.8 | 23   |                      | Doabon             | e fits 314 | 14 LOUP            |                    |                           |                         |        |                       |                      |                |

# Eyestraps

Eyestraps are useful accessories. They form light-duty mounting bases for blocks, serve as lash-down points, and can be used for fairleads.

Forged eyestraps are extremely strong and their smooth shape won't chafe line.





| Part | Wei | ght | Faste<br>(RI | ners<br>H) | A                                      |    |                               | B    | (                                      | ;  | [                            | )  | I                | E  |                              | F  | (                                    | 3  |                 | н  | Fits    | Brea<br>loa | king<br>ad |
|------|-----|-----|--------------|------------|----------------------------------------|----|-------------------------------|------|----------------------------------------|----|------------------------------|----|------------------|----|------------------------------|----|--------------------------------------|----|-----------------|----|---------|-------------|------------|
| No.  | OZ  | g   | in           | mm         | in                                     | mm | in                            | mm   | in                                     | mm | in                           | mm | in               | mm | in                           | mm | in                                   | mm | in              | mm | cam     | lb          | kg         |
| 073  | .16 | 4.5 | #10          | 5          | <b>1</b> <sup>11</sup> / <sub>16</sub> | 43 | 1/2                           | 12   | <b>1</b> <sup>1</sup> / <sub>4</sub>   | 32 | <sup>7</sup> / <sub>16</sub> | 11 | <sup>3</sup> /8  | 10 | <sup>7</sup> / <sub>16</sub> | 11 | —                                    | —  | —               | —  | —       | 1600        | 726        |
| 074  | .64 | 18  | 1/4"         | 6          | <b>3</b> <sup>1</sup> / <sub>4</sub>   | 83 | 3/4                           | 19   | <b>1</b> <sup>1</sup> / <sub>2</sub>   | 38 | <sup>5</sup> /8              | 16 | <sup>5</sup> /8  | 16 | <sup>9</sup> /16             | 14 | <b>2</b> <sup>3</sup> / <sub>4</sub> | 70 | _               | _  | —       | 4000        | 1814       |
| 137  | .32 | 9   | 1/4"         | 6          | 2                                      | 51 | 3/4                           | 19   | <b>1</b> <sup>1</sup> / <sub>2</sub>   | 38 | <sup>5</sup> /8              | 16 | <sup>5</sup> /8  | 16 | <sup>9</sup> /16             | 14 | —                                    | _  | _               | _  | 150/365 | 3000        | 1361       |
| 201  | .16 | 4.5 | #10          | 5          | <b>1</b> <sup>7</sup> /8               | 48 | <sup>3</sup> /8               | 10   | <b>1</b> <sup>1</sup> / <sub>2</sub>   | 38 | <sup>9</sup> /16             | 14 | 1/4              | 6  | <sup>7</sup> / <sub>16</sub> | 11 | —                                    | _  | —               | _  | 150/365 | 1600        | 726        |
| 281  | .16 | 4.5 | #8           | 4          | <b>1</b> 7/ <sub>16</sub>              | 36 | 1/2                           | 12   | <b>1</b> 1/16                          | 27 | 7/ <sub>16</sub>             | 11 | 3/8              | 10 | 7/ <sub>16</sub>             | 11 | —                                    | —  | —               | _  | 338/423 | 1000        | 454        |
| 282  | .8  | 23  | 1/4"         | 6          | <b>2</b> <sup>13</sup> / <sub>16</sub> | 71 | <sup>15</sup> / <sub>16</sub> | 23   | <b>2</b> <sup>1</sup> / <sub>16</sub>  | 52 | 7/8                          | 22 | 3/4              | 19 | 3/4                          | 19 | —                                    | _  | _               | _  | 280     | 3000        | 1361       |
| 419  | .5  | 14  | #10          | 5          | <b>2</b> <sup>1</sup> / <sub>2</sub>   | 64 | 3/4                           | 19   | 2                                      | 51 | 3/4                          | 19 | 5/8              | 16 | 1/2                          | 12 | —                                    | —  | _               | _  | 418     | 1600        | 726        |
| 445  | .09 | 2.5 | #8           | 4          | <b>1</b> <sup>1</sup> / <sub>2</sub>   | 38 | 3/8                           | 10   | <b>1</b> 1/16                          | 27 | 7/ <sub>16</sub>             | 11 | 3/8              | 10 | 7/ <sub>16</sub>             | 11 | —                                    | _  | _               | _  | —       | 1000        | 454        |
| 1558 | 1   | 28  | 1/4"         | 6          | <b>2</b> <sup>1</sup> / <sub>4</sub>   | 57 | <sup>5</sup> /8               | 16   | <b>1</b> <sup>3</sup> / <sub>4</sub>   | 45 | <sup>5</sup> /8              | 16 | <sup>7</sup> /16 | 11 | <b>1</b> <sup>1</sup> /8     | 29 | —                                    | _  | <sup>5</sup> /8 | 16 | —       | 6000        | 2722       |
| 2129 | .35 | 10  | #10          | 5          | 2 <sup>1</sup> / <sub>16</sub>         | 53 | <sup>9</sup> /16              | 14.5 | <b>1</b> <sup>11</sup> / <sub>16</sub> | 43 | 1/2                          | 13 | 3/8              | 10 | 3/8                          | 10 | _                                    | _  | _               | _  | _       | 2500        | 1130       |
| 2130 | .57 | 14  | 1/4"         | 6          | <b>2</b> <sup>5</sup> / <sub>16</sub>  | 59 | 3/4                           | 19   | 17/8                                   | 47 | <sup>5</sup> /8              | 16 | 1/2              | 12 | 1/2                          | 12 | —                                    | _  | _               | _  | —       | 3500        | 1588       |

DO NOT use Harken equipment for human suspension.

# **Padeyes**

Padeyes are great for mounting blocks and are also used as attachment points for staysails, reefing blocks, and hundreds of other items.

Harken<sup>®</sup> offers a range of stainless steel padeyes. The diamond-shaped padeyes, 688 and 689, are 316 stainless and often used at mastbases where the diamond shape allows them to be mounted very close together. The 627, 629, and 648 padeyes are 17-4 PH stainless.

For maximum strength always align padeye bails to the load.











|      |       | Max  | kimum v | vorking | j load |      |       |       | Breakin | g load |       |       | Fast                         | eners |
|------|-------|------|---------|---------|--------|------|-------|-------|---------|--------|-------|-------|------------------------------|-------|
| Part | 1     |      | 2       | 2       | 3      | 1    | 1     |       | 2       | 2      | ;     | 3     | (F                           | H)    |
| No.  | lb    | kg   | lb      | kg      | lb     | kg   | lb    | kg    | lb      | kg     | lb    | kg    | in                           | mm    |
| 627  | 5000  | 2270 | 4500    | 2040    | 4300   | 1950 | 10000 | 4535  | 9000    | 4080   | 8600  | 3900  | 1/4                          | 6     |
| 629  | 20000 | 9070 | 12000   | 5440    | 14000  | 6350 | 40000 | 18140 | 24000   | 10890  | 28000 | 12700 | 1/2                          | 12    |
| 648  | 11800 | 5358 | 10375   | 4705    | 8500   | 3855 | 23600 | 10716 | 20750   | 9430   | 17000 | 7710  | 3/8                          | 10    |
| 688  | 3800  | 1770 | 5000    | 2270    | 4300   | 1950 | 7800  | 3540  | 10000   | 4535   | 8600  | 3900  | 1/4                          | 6     |
| 689  | 8500  | 3855 | 8000    | 3628    | 7800   | 3540 | 19000 | 8618  | 17200   | 7800   | 15600 | 7075  | <sup>5</sup> / <sub>16</sub> | 8     |



| Part |                  |                                      | A  |       | B  |                                       | C  | [                                    | )  | 1                                      | -  |                              | F  | (                                     | ì  | We                                   | eight |
|------|------------------|--------------------------------------|----|-------|----|---------------------------------------|----|--------------------------------------|----|----------------------------------------|----|------------------------------|----|---------------------------------------|----|--------------------------------------|-------|
| No.  | Description      | in                                   | mm | in    | mm | in                                    | mm | in                                   | mm | in                                     | mm | in                           | mm | in                                    | mm | 0Z                                   | g     |
| 627  | Small round      | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57 | —     | —  | <b>1</b> 1/16                         | 27 | <b>1</b> 3/16                        | 30 | <b>1</b> 3/16                          | 30 | 5/8                          | 16 | <b>1</b> 5/16                         | 24 | <b>4</b> <sup>1</sup> / <sub>4</sub> | 118   |
| 629  | Large round      | 33/4                                 | 95 | —     | _  | 13/4                                  | 44 | 17/8                                 | 48 | 2                                      | 51 | <b>1</b> 1/16                | 27 | <b>1</b> <sup>3</sup> / <sub>4</sub>  | 44 | 23                                   | 652   |
| 648  | High-load medium | 3                                    | 76 | —     | _  | <b>1</b> <sup>5</sup> / <sub>16</sub> | 33 | <b>19/</b> 16                        | 40 | <b>1</b> <sup>15</sup> / <sub>16</sub> | 50 | <b>1</b> <sup>1</sup> /8     | 29 | <b>1</b> <sup>7</sup> / <sub>16</sub> | 37 | 11                                   | 312   |
| 688  | Small diamond    | 31/8                                 | 79 | 2     | 51 | <b>2</b> <sup>3</sup> / <sub>8</sub>  | 60 | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32 | <b>1</b> <sup>3</sup> / <sub>16</sub>  | 30 | <sup>9</sup> / <sub>16</sub> | 14 | 7/8                                   | 22 | 43/4                                 | 135   |
| 689  | Large diamond    | 37/8                                 | 98 | 25/16 | 59 | 27/8                                  | 73 | <b>1</b> <sup>3</sup> /8             | 35 | <b>1</b> 9/16                          | 40 | 7/8                          | 22 | <b>1</b> <sup>1</sup> / <sub>16</sub> | 27 | <b>7</b> <sup>1</sup> / <sub>2</sub> | 213   |

## Grand Prix Padeyes, Fairleads & Jib Leads

Soft padeyes have a deck-mounted aluminum housing that incorporates a soft attachment Loop for TTR or Black Magic<sup>®</sup> Loop blocks. A stainless steel pin holds the load.

High-load aluminum fairlead deflects control lines and highlyloaded guys, halyards, and sheets.

Strong aluminum jib lead deflects jib sheets to winches preventing over-rides. Lead has two small drilled holes through which a loop can be spliced to attach the "hobble".



|           |                       |     | Deck th | ickness                               |    | Max                           | line   |                                       |       |                                       |     |      |      | Maxi   | mum    |
|-----------|-----------------------|-----|---------|---------------------------------------|----|-------------------------------|--------|---------------------------------------|-------|---------------------------------------|-----|------|------|--------|--------|
| Part      |                       | N   | lin     | M                                     | ах | 1                             | ð      | Hei                                   | ght   | Wi                                    | dth | We   | ight | workin | g load |
| No.       | Description           | in  | mm      | in                                    | mm | in                            | mm     | in                                    | mm    | in                                    | mm  | 0Z   | g    | lb     | kg     |
| Padeyes   |                       |     |         |                                       |    |                               |        |                                       |       |                                       |     |      |      |        |        |
| C6395     | High-load loop padeye | 1   | 25      | <b>1</b> 9/16                         | 40 | —                             | _      | _                                     | _     | _                                     | —   | 12.3 | 350  | 14994  | 6800   |
| C6398     | Low-load loop padeye  | 1   | 25      | <b>1</b> 9/16                         | 40 | —                             | _      | _                                     | _     | _                                     | —   | 7.9  | 223  | 5000   | 2268   |
| Fairleads | 5                     |     |         |                                       |    |                               |        |                                       |       |                                       |     |      |      |        |        |
| C8153     | Big Boat fairlead     | —   | _       | <b>1</b> <sup>5</sup> / <sub>16</sub> | 34 | <sup>11</sup> / <sub>16</sub> | 18     | <b>1</b> <sup>7</sup> / <sub>16</sub> | 36.5  | 1 <sup>21</sup> /32                   | 42  | 5.5  | 155  | 5512   | 2500   |
| C8155     | Midrange fairlead     | —   | —       | <b>1</b> <sup>5</sup> / <sub>16</sub> | 34 | <sup>9</sup> / <sub>16</sub>  | 14     | <b>1</b> <sup>7</sup> / <sub>32</sub> | 30.5  | <b>1</b> <sup>5</sup> / <sub>16</sub> | 34  | 3.5  | 99   | 3968   | 1800   |
| Jib leads | 5                     |     |         |                                       |    |                               |        |                                       |       |                                       |     |      |      |        |        |
| C8154     | Big Boat jib lead     | —   | _       | _                                     | _  | —                             | _      | <b>2</b> <sup>9</sup> / <sub>32</sub> | 58    | 43/4                                  | 120 | 9.6  | 272  | 4248   | 1927   |
| C8541     | Midrange jib lead     | _   | _       | _                                     | _  | _                             | _      | <b>1</b> <sup>5</sup> / <sub>16</sub> | 34    | <b>2</b> <sup>3</sup> / <sub>4</sub>  | 70  | 3.2  | 91   | 1499   | 680    |
| DO NOT    |                       | 0 1 |         |                                       |    |                               | L 12 E | C 11                                  | 1 1 1 |                                       | 1 1 |      |      |        |        |

DO NOT use Harken equipment for human suspension. Contact Harken to request quote and lead time. For full product line, visit www.harkencustom.com

## **Custom Yacht Removable Padeyes**

Harken<sup>®</sup> offers a variety of removable padeyes for blocks from 57 mm Black Magic<sup>®</sup>, to custom blocks with maximum working loads of 26,000 lbs (11,794 kgs). Bases swivel so padeyes align to the load. This prevents the reduction of the block's maximum working load. This unique swivel feature is a Harken<sup>®</sup> exclusive.

## Assembly



| Assembly | Part   | No.    | J                                    | Ø   | Asse  | mbly | To    | op   | Ci    | ıp   |           | workin | g load | Use with | rau<br>(                             | eye<br>J | Use with stand-up |
|----------|--------|--------|--------------------------------------|-----|-------|------|-------|------|-------|------|-----------|--------|--------|----------|--------------------------------------|----------|-------------------|
| Part No. | Тор    | Cup    | in                                   | mm  | 0Z    | g    | 0Z    | g    | 0Z    | g    | Fasteners | lb     | kg     | padeye   | in                                   | mm       | block             |
| C2569    | C6400  | C6401  | 5 <sup>1</sup> / <sub>2</sub>        | 139 | 158.7 | 4500 | 92.52 | 2765 | 63.74 | 1807 | 6 x 1/2"  | 26000  | 11794  | —        | —                                    | —        | 150 mm            |
| HC6107   | HC7388 | HC7389 | 31/4                                 | 83  | 34.6  | 980  | 22    | 635  | 13    | 362  | 4 x M10   | 11800* | 5358*  | 648      | 3                                    | 76       | 100/125 mm        |
| C7343    | C7327  | C7340  | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 14    | 396  | 10    | 272  | 5     | 127  | 4 x M6    | 5000*  | 2270*  | 627      | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | 75 mm             |
| HC8224   | HC7224 | HC7403 | 41/4                                 | 108 | 70.1  | 1987 | 28.5  | 807  | 41.6  | 1179 | 4 x M12   | 20000* | 9070*  | 629      | <b>3</b> <sup>3</sup> /4             | 95       | 150 mm            |
| C7852    | C8207  | C7340  | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 12    | 340  | 7.36  | 209  | 5     | 127  | 4 x M6    | 4400   | 2000   | —        | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57       | —                 |
|          |        |        |                                      |     |       |      |       |      |       |      |           |        |        |          |                                      |          |                   |

DO NOT use Harken equipment for human suspension. Contact Harken to request quote and lead time. For full product line, visit www.harkencustom.com \*See page 97 for padeye loads



Melges 24 2007 Worlds — Eric Simonson photo

|      |             |      |     | Stay Ø |     |       |              |
|------|-------------|------|-----|--------|-----|-------|--------------|
| Part |             |      | Min | -      | Max | Max S | Stay Tension |
| No.  | Description | in   | mm  | in     | mm  | lb    | kg           |
| 7850 | RigTune Pro | 3/32 | 2.5 | 3/16   | 5   | 1102  | 500          |

Till a

## Aluminum Tiller Extension

The rigid anodized body of this tiller extension transmits subtle boat and rudder movements, allowing you to steer by the feel of the helm. The elegantly simple and lightweight design has no unnecessary frills—every aspect contributes to its strength, stiffness, or comfort. Its universal joint is reinforced by a rope core for extra durability and the thick UV-protected grip is perfect for full dagger-grip and fingertip steering.





Base cover snaps off to remove tiller extension



Universal joint rotates 360°

7100.24 7100.30 7100.33

7100.36 7100.42 7100.48



Non-slip foam rubber grip

| Part    |                        | Len  | gth  | Ti              | ube<br>Ø | We  | ight | Fast<br>spa | tener<br>cing | Fast                         | eners | Joint     | Tube     |
|---------|------------------------|------|------|-----------------|----------|-----|------|-------------|---------------|------------------------------|-------|-----------|----------|
| No.     | Description            | in   | mm   | in              | mm       | 0Z  | g    | in          | mm            | in                           | mm    | type      | material |
| 7100.24 | Tiller extension       | 24   | 600  | <sup>5</sup> /8 | 16       | 4.1 | 117  | 1.25        | 31.8          | <sup>3</sup> / <sub>16</sub> | 5     | universal | aluminum |
| 7100.30 | Tiller extension       | 30   | 760  | <sup>5</sup> /8 | 16       | 4.9 | 138  | 1.25        | 31.8          | <sup>3</sup> / <sub>16</sub> | 5     | universal | aluminum |
| 7100.33 | Tiller extension       | 33   | 840  | <sup>5</sup> /8 | 16       | 5.2 | 149  | 1.25        | 31.8          | <sup>3</sup> / <sub>16</sub> | 5     | universal | aluminum |
| 7100.36 | Tiller extension       | 36   | 915  | <sup>5</sup> /8 | 16       | 5.6 | 160  | 1.25        | 31.8          | <sup>3</sup> / <sub>16</sub> | 5     | universal | aluminum |
| 7100.42 | Tiller extension       | 42   | 1070 | <sup>5</sup> /8 | 16       | 6.3 | 178  | 1.25        | 31.8          | <sup>3</sup> / <sub>16</sub> | 5     | universal | aluminum |
| 7100.48 | Tiller extension       | 48   | 1220 | <sup>5</sup> /8 | 16       | 7.1 | 203  | 1.25        | 31.8          | <sup>3</sup> / <sub>16</sub> | 5     | universal | aluminum |
| 7101    | Tiller extension base* | 1.75 | 44   | _               | _        | .18 | 5    | 1.25        | 31.8          | <sup>3</sup> / <sub>16</sub> | 5     | _         | _        |

\*Fasteners not included

# **TRAVELERS & GENOA LEADS**

6

Club Swan 42 — Billy Black Photo

# **Ordering Mainsail Travelers**

## 1. Determine system size

The **Mainsail Traveler System Selection** table shows the appropriate cars for different boat types and sail areas. Contact Harken if sail area is larger than those listed.

## 2. Choose car options

**Type:** Most systems include options such as car-mounted cleats or high-load coupled cars. Racers should consider windward sheeting cars and ultra-lightweight Ti-Lite cars. Use page 17 for common mainsheet traveler configurations.

**Purchase:** See the **Control Purchase Recommendations** charts on the traveler control pages. Higher purchases are more powerful and easier to adjust under load. Lower purchases are lighter and use less line.

**Block attachments:** Cars with standup toggles and ears hold the block upright while providing fair control line leads. Cars with shackles and car-mounted sheaves cost less and are slightly lighter.

## 3. Choose controls

**Control Block Selection Guides** on the traveler control pages specify blocks and end controls based on system purchase. Use the **Index** in the back of the catalog to find control block details.

## 4. Determine track and track accessories

High-beam track will span unsupported areas. Metric, English, and variable hole spacing available. The rightmost columns in the track specification charts list compatible accessories. For curved track, see page 102.

## 5. Contact

If you have any questions, please contact Harken.

## **Mainsail Traveler System Selection**



Actual size track chart available at www.harken.com

|                                                   |          |            |          | Maximum ma | insail area |            |          |            |
|---------------------------------------------------|----------|------------|----------|------------|-------------|------------|----------|------------|
|                                                   |          | Mono       | hulls    |            |             | Multi      | hulls    |            |
|                                                   | End-boon | ı sheeting | Mid-boon | n sheeting | End-boon    | n sheeting | Mid-boon | n sheeting |
| Cars                                              | ft²      | m²         | ft²      | m²         | ft²         | m²         | ft²      | m²         |
| Dinghies/Light Daysailers                         |          |            |          |            |             |            |          |            |
| Micro CB: 2700/2701/2702/2703                     | 110      | 10.2       | 85       | 8          | 85          | 8          | 70       | 6.5        |
| Small Boat CB: 2726/2728/2730/2732/2744/2753      | 125      | 11.6       | 100      | 9.3        | 100         | 9.3        | 80       | 7.5        |
| Small Boat CB: 2727/2729/2731/2733/2734/2745/2754 | 160      | 14.9       | 135      | 12.5       | 135         | 12.5       | 110      | 10.2       |
| Small Boat CB: 2735/2736/2737/2738/2746/382       | 200      | 18.6       | 160      | 14.9       | 160         | 14.9       | 135      | 12.5       |
| Midrange CB: 1624/1626/1635/1640                  | 350      | 32.5       | 285      | 26.5       | 275         | 25.5       | 215      | 20         |
| Small Offshore Boats/Heavy Daysailers             |          |            |          |            |             |            |          |            |
| Small Boat CB: 2727/2729/2731/2733/2734/2745      | 150      | 14         | 125      | 11.5       | 135         | 12.5       | 110      | 10.2       |
| Small Boat CB: 2735/2736/2737/2738/2746           | 190      | 17.5       | 150      | 14         | 160         | 14.9       | 125      | 11.5       |
| Midrange CB: 1624/1626/1628/1635/1640             | 260      | 24         | 215      | 20         | 215         | 20         | 160      | 14.9       |
| Midrange CB: 1625/1627/1629/1636/1641             | 300      | 28         | 240      | 22         | 240         | 22         | 190      | 17.5       |
| Large Offshore Boats                              |          |            |          |            |             |            |          |            |
| Big Boat CB: 3160/3163/3164/3176/3177             | 425      | 39.5       | 350      | 32.5       | 350         | 32.5       | 300      | 28         |
| Big Boat CB: 3161/3165/3166/3178/3179             | 550      | 51         | 450      | 42         | 450         | 42         | 350      | 32.5       |
| Big Boat CB: 3167, CRX Roller: 3074               | 575      | 53.4       | 500      | 46.5       | 500         | 46.5       | 425      | 39.5       |
| Big Boat CB: 2 - 3163s joined by 580 or 584       | 700      | 65         | 525      | 49         | 525         | 49         | 450      | 42         |
| Big Boat CB: 3172, 2 - 3165s joined by 752        | 800      | 74         | 650      | 60.5       | 650         | 60.5       | 550      | 51         |
| Mini-Maxi: 3068, CRX Roller: 3075                 | 1100     | 102        | 900      | 83.6       | 900         | 83.6       | 750      | 69.7       |
| Maxi: 3070, CRX Roller: 3084/3085                 | 1400     | 130        | 1100     | 102        | 1100        | 102        | 900      | 83.6       |

## **Ordering Genoa Lead Cars**

The chart below sizes lead cars for the #1, #2, and #3 genoas based on typical loads for these sails. See **Block Loading vs Angle of Deflection** and **Genoa System Loading** on page 28 to size for different deflection angles and wind speeds. Visit www.harken.com or see page 19 for common configurations.

|                 |                   |    |     | Μ  | aximum | sail a       | rea  |      |      |            |                                                                |
|-----------------|-------------------|----|-----|----|--------|--------------|------|------|------|------------|----------------------------------------------------------------|
| Adiustable      | ble Small<br>Boat |    |     |    |        | 3000<br>3000 |      | 4500 |      | ni-<br>Ixi |                                                                |
| Genoa Lead Cars | ft²               | m² | ft² | m² | ft²    | m²           | ft²  | m²   | ft²  | m²         |                                                                |
| #1 & #2 Genoa   | 450 41 750 70     |    |     |    |        | 139          | 2700 | 251  | 4400 | 409        | Assumes 155% Genoa/25 knots apparent wind/45° sheet lead angle |
| #3 Genoa        | 175               | 16 | 330 | 31 | 435    | 40           | 650  | 60   | 1300 | 121        | Assumes 100% Genoa/40 knots apparent wind/60° sheet lead angle |

# **Curved Track**

Track is often bent to follow the cabin house curve or boom radius. Sometimes track is bent vertically, ends up, to relieve tension on the sail's leech as the traveler car moves off the boat's centerline.

To perform smoothly and carry the correct load, the traveler car's length must suit track radius. Each traveler car page has a chart which shows the minimum radius on which each car will ride. If the load requires a long car, but the radius will be too tight, consider using two short cars joined by a coupler.

Minor bends can often be made when the track is installed. If the track requires more bend, Harken<sup>®</sup> can provide horizontal, vertical or compound curves to specification for a modest charge. If the bend is continuous, add 2 to 4 inches (50 to 100 mm) to each end because track cannot be bent to its ends. Standard Harken<sup>®</sup> Mini-Maxi and Maxi traveler cars cannot ride on vertical bends with a radius under 50 ft (15.25 m).

### **1. Vertical Bend: Ends Down**

This bend is used for mainsheet travelers mounted over the cabin house. The curve matches the crown of the cabin house and allows the track to clear the companionway hatch, but minimizes the height of the track risers.

#### 2. Vertical Bend: Ends Up

Some boats use this bend to relieve leech tension when the traveler car moves off centerline. Ends-up bends are also used for staysails. Tracks angled forward to face the clew of the sail mount on risers.

### 3. Horizontal Bend

Horizontal bends allow the traveler to follow the radius of the boom as it swings across the boat. The track stays flat and the ends curve to the boat's bow or stern. Sometimes horizontal bends are used for boom vangs and occasionally for staysails, especially those with booms.

### 4. Compound Bend

Compound bends are a combination of a vertical and horizontal bend. An example is when the track curves in the horizontal plane to follow the radius of the boom, but mounts to a deck that has a slight crown.



|                                                            |                           |                        | Compound bends     |                   |  |  |  |  |  |  |
|------------------------------------------------------------|---------------------------|------------------------|--------------------|-------------------|--|--|--|--|--|--|
| Track                                                      | Simple bend<br>Part No.   | Major bend<br>Part No. | Simple<br>Part No. | Major<br>Part No. |  |  |  |  |  |  |
| 373/374/2707/2709/2720/2721/2725/2751                      | 274                       | 275                    | 276                | 286               |  |  |  |  |  |  |
| 1602/1616/1617                                             | 1527                      | 1528                   | 1529               | 1581              |  |  |  |  |  |  |
| 1618                                                       | 1530                      | 1531                   | 1532               | 1582              |  |  |  |  |  |  |
| 3154/3155/3159/3162                                        | 789                       | 790                    | 791                | 576               |  |  |  |  |  |  |
| 3156/1701/1706/1848                                        | 792                       | 793                    | 794                | 577               |  |  |  |  |  |  |
| 660/661                                                    | 795                       | 795                    | 795                | 795               |  |  |  |  |  |  |
| Simple Bend-Track length of 2 m (6'63/4") o                | r less <b>and</b> chore   | d depth less th        | ian 200 mm         | (8").             |  |  |  |  |  |  |
| Major Bend-Track length of 2.1 m (6'1011/16'               | ") or greater <b>or</b> ( | chord depth of         | f 200 mm (8"       | ) or greater.     |  |  |  |  |  |  |
| Compound Bend—Bend in both horizontal and vertical planes. |                           |                        |                    |                   |  |  |  |  |  |  |
| Compound Simple Bend—Both bends are simple bends.          |                           |                        |                    |                   |  |  |  |  |  |  |
| Compound Major Bend—One or both bends are major bends.     |                           |                        |                    |                   |  |  |  |  |  |  |

| <b>Ordering Information</b><br>To order curved traveler track, please specify th | ne following information: | Ch | eck One:                             |
|----------------------------------------------------------------------------------|---------------------------|----|--------------------------------------|
| Boat Model                                                                       | -                         |    | Vertical Bend: Ends Down             |
| Track Part Number                                                                |                           |    | Vertical Bend: Ends Up               |
| Bend Part Number                                                                 |                           |    | Horizontal Bend: Ends Forward or Aft |
| Chord Length                                                                     |                           |    | Compound Bend:                       |
| Chord Depth: Horizontal                                                          | or Radius: Horizontal     |    | Horizontal and Vertical (ends down)  |
| Chord Depth: Vertical                                                            | or Radius: Vertical       |    | Compound Bend:                       |
|                                                                                  |                           |    | Horizontal and Vertical (ends up)    |

## **CB Captive Ball Bearing Travelers**

## EASILY ADJUST LEADS UNDER LOAD

Whether racing or cruising, a free-running ball bearing traveler system makes the difference in sail control. Wind light? Adjust the traveler to power up the main. Is it blowing? Depower by easing the car to reduce heel and maintain speed—faster and safer than releasing the sheet, then struggling to retrim.

Systems tailored for end-boom and mid-boom configurations. Use risers and high-profile track to raise the traveler out of the cockpit.



## DETAILS MAKE THE DIFFERENCE

## STRONG, LIGHT CAR BODY

One-piece solid 6061-T6 aluminum construction for strength and durability. CNC sculpted to remove excess weight.

## **CAPTIVE BEARINGS**

Wire guides keep balls captive making cars easy to load and maintain.

Guides circulate free-rolling  $\mbox{Torlon}^{\mbox{\tiny $\ensuremath{\$}$}}$  bearings smoothly under both high and low loads.

## LONG-LASTING PROTECTIVE FINISH

Car body and bearing races are deep-saturation Hardkote-anodized and Teflon<sup>®</sup>-impregnated for durability. UV-stabilized with black additive for maximum protection.

1. Bind-Free Stand-Up Toggle Stand-up toggle holds mainsheet

block upright off deck. Toggle attaches low inside car so

off-angle mainsheet loads apply less leverage on balls, allowing cars to roll freely. Cars accept loads to 40-degrees from vertical without binding.

Carbo or Black Magic<sup>®</sup> control blocks attach directly to toggle ears to reduce load on car so bearings don't bind.

# Micro CB Cars

Micro Captive Ball Traveler Cars are used on small dinghies and catamarans. The one-piece solid aluminum construction is lightweight and strong. Machined aluminum Hardkote-anodized races permit Torlon® balls to transition smoothly from the active to the return race for smooth trimming or easing. Stainless steel wire guides keep the balls captive when the car is off the track. Pivoting shackle cars have low pivot points to handle non-vertical loads.

2703 Ti-Lite cars matched with 29 or 40mm Carbo Ti-Lite blocks provide the ultimate, lightweight, low-profile system. High-tech line replaces shackles and spring. Control lines attach with a loop splice or clove hitch. Consult Use Chart on page 101 to size traveler-to-mainsail area.

### Use for:

Mainsheet cars Jib sheet cars Vangs on small dinghies Controls on small keelboats 

 Weighs only 45

 Captive balls make cars

 Bit content

 Bit conten

 Bit conte



Star (Hamish Pepper/Carl Williams) - J.H. Peterson photo

| Part |                                     | Len                                   | gth | Width        |    |     | body<br>ight | Weight |    | Maximum<br>working load |     | Breaking<br>load |     |
|------|-------------------------------------|---------------------------------------|-----|--------------|----|-----|--------------|--------|----|-------------------------|-----|------------------|-----|
| No.  | Description                         | in                                    | mm  | in           | mm | in  | mm           | 0Z     | g  | lb                      | kg  | lb               | kg  |
| 2700 | Car/pivoting shackle                | <b>2</b> <sup>3</sup> / <sub>16</sub> | 56  | <b>1</b> %16 | 40 | 3/4 | 19           | 1.76   | 50 | 310                     | 140 | 1500             | 680 |
| 2701 | Car/pivoting shackle/control blocks | 37/16                                 | 87  | <b>1</b> %16 | 40 | 3/4 | 19           | 2.56   | 73 | 310                     | 140 | 1500             | 680 |
| 2702 | Car/pivoting shackle/tangs          | <b>2</b> ³/8                          | 61  | <b>1</b> %16 | 40 | 3/4 | 19           | 2.08   | 59 | 310                     | 140 | 1500             | 680 |
| 2703 | Ti-Lite car                         | <b>2</b> <sup>3</sup> / <sub>16</sub> | 56  | <b>1</b> %16 | 40 | 3/4 | 19           | 1.6    | 45 | 310                     | 140 | 1500             | 680 |

See page 26 for replacement balls

## Micro CB Track & Accessories

Micro track comes in low and high-beam configurations. The wide track base adds stability and protects cored decks. A channel on the track bottom makes it easy to install on unfair decks and eliminates rocking on curved surfaces like booms or masts. Fastener holes fit both metric and imperial screws.

16 mm control blocks spin on stainless steel balls that roll freely under high loads. The step-down design keeps the controls low and clear of the mainsheet block.

Super-tough plastic endstops absorb sudden shock loads that can occur during unintentional jibes. Track Spanning Chart 929 (subarty) (subarty)

**High-Beam Slide Bolt** 

Track is Hardkoteanodized for strength and durability

2704

1/2" (13 mm)<sup>-</sup>

\_11/16" (17 mm)

2707

Track

2707

2709

Low-profile, line-shedding endstop with built-in groove deadends 2:1 control line

2706



2710

| (13 mm) |  |
|---------|--|
| Sic     |  |
|         |  |

\_<sup>11</sup>/<sub>16</sub>" (17 mm)

m

1.07

1.52

2709

<sup>13</sup>/<sub>16</sub>" (20 mm)

Track Bending Minimum Radius

in

42

60

2711

2705

High-strength 16 mm

ball bearing control

blocks provide 2:1

purchase





| - |    |     |    |   |      |
|---|----|-----|----|---|------|
| A | CC | -85 | SI | r | es - |

Mercury — UnderTheSunPhotos.com

| Part |                          | Len                                   | gth | Wei<br>ea | ght<br>ch | He<br>above | ight<br>e track | Max  | c line<br>Ø | Maxi<br>workir | mum<br>1g load | Brea<br>Io | king<br>ad |          |
|------|--------------------------|---------------------------------------|-----|-----------|-----------|-------------|-----------------|------|-------------|----------------|----------------|------------|------------|----------|
| No.  | Description              | in                                    | mm  | 0Z        | g         | in          | mm              | in   | mm          | lb             | kg             | lb         | kg         | Purchase |
| 2704 | Control block (pair)     | <b>1</b> <sup>5</sup> / <sub>16</sub> | 33  | .39       | 11        | 3/4         | 19              | 7/32 | 5           | 250            | 113            | 750        | 339        | 2:1      |
| 2705 | Control tang (pair)      | <sup>13</sup> / <sub>16</sub>         | 21  | .11       | 3         | 11/16       | 17              | _    | _           | 250            | 113            | 750        | 339        | 1:1      |
| 2706 | Micro endstop (pair)     | <b>1</b> <sup>1</sup> / <sub>16</sub> | 27  | .11       | 3         | 1/8         | 3               | _    | _           | 250            | 113            | 750        | 339        | _        |
| 2710 | High-beam endstop (pair) | <b>1</b> 1/16                         | 27  | .32       | 9         | 1/8         | 3               | _    | _           | 250            | 113            | 750        | 339        | _        |

<sup>3</sup>/<sub>8</sub>" (9 mm)

Track

| Part       |             | I    | .ength | Hole                                   | spacing |      | Weight |     |             |             |
|------------|-------------|------|--------|----------------------------------------|---------|------|--------|-----|-------------|-------------|
| No.        | Description | ft   | m      | in                                     | mm      | 0Z   | g      | Fas | teners (FH) | Splice link |
| 2707.600mm | Low-beam*   | 1.97 | .6     | <b>1</b> <sup>31</sup> / <sub>32</sub> | 50      | 4.6  | 129    | #8  | 4 mm        | 2711        |
| 2707.1m    | Low-beam*   | 3.28 | 1      | <b>1</b> <sup>31</sup> / <sub>32</sub> | 50      | 7.6  | 214    | #8  | 4 mm        | 2711        |
| 2707.1.2m  | Low-beam*   | 3.93 | 1.2    | <b>1</b> <sup>31</sup> / <sub>32</sub> | 50      | 9    | 257    | #8  | 4 mm        | 2711        |
| 2707.2m    | Low-beam*   | 6.56 | 2      | <b>1</b> <sup>31</sup> / <sub>32</sub> | 50      | 15.1 | 429    | #8  | 4 mm        | 2711        |
| 2707.2.5m  | Low-beam*   | 8.20 | 2.5    | <b>1</b> <sup>31</sup> / <sub>32</sub> | 50      | 18.9 | 536    | #8  | 4 mm        | 2711        |
| 2709.1m    | High-beam** | 3.28 | 1      | <b>3</b> <sup>15</sup> / <sub>16</sub> | 100     | 13.2 | 375    | #8  | 4 mm        | —           |
| 2709.1.2m  | High-beam** | 3.93 | 1.2    | 315/16                                 | 100     | 15.8 | 449    | #8  | 4 mm        | _           |
| 2709.2m    | High-beam** | 6.56 | 2      | 315/16                                 | 100     | 26.4 | 749    | #8  | 4 mm        | _           |

Actual size track chart available at www.harken.com \*1st hole 1" (25 mm) \*\*1st hole 1<sup>31</sup>/2" (50 mm)

# Small Boat CB Cars

Small Boat Captive Ball Traveler Cars are used on large dinghies, keelboats, beach cats and offshore boats to 27 ft (8 m). The one-piece solid aluminum construction is lightweight and strong. Ball bearings run on machined aluminum Hardkoteanodized races for smooth trimming and easing. Stainless steel wire guides keep the balls captive when the car is off the track.

Cars with a 500 lb (227 kg) safe working load use Delrin<sup>®</sup> balls. Cars with a higher safe working load use high-strength Torlon<sup>®</sup> balls.

Ti-Lite cars matched with Ti-Lite blocks provide the ultimate lightweight, low-profile system. High-tech line replaces shackles and spring.

Consult chart on page 101 to size traveler to mainsail area.

**Use for:** Mainsheet Systems Genoa Leads Blocks attach directly to the toggle for a lowprofile, compact system

> Pivoting shackle and toggle cars have low pivot points to handle non-vertical loads

> > Tough onepiece aluminum construction

> > > Captive balls make cars easy to load and maintain. Wire guides circulate bearings smoothly

2730

2731

The Radial Traveler car has a curved ball race to fit curved track-perfect for radial vangs on boats like the Star 2728 2729 382 2753 2726 2734 2732 2754 2727 2733 2738 2736 2737 2735

## CB Cars only fit Small Boat CB track 2720, 2721, 373, 374, 2725, 2751. Non-captive cars available upon request.

|      |                                             |                   |      |                                      |     | Car                           | body |       |     | Maxi   | mum    | Brea | king |
|------|---------------------------------------------|-------------------|------|--------------------------------------|-----|-------------------------------|------|-------|-----|--------|--------|------|------|
| Part |                                             | Ler               | ngth | Wi                                   | dth | He                            | ight | Wei   | ght | workin | g load | lo   | ad   |
| No.  | Description                                 | in                | mm   | in                                   | mm  | in                            | mm   | 0Z    | g   | lb     | kg     | lb   | kg   |
| 382  | 1250/Radial/shackle‡                        | 41/8              | 105  | 21/4                                 | 57  | <sup>15</sup> / <sub>16</sub> | 24   | 6.24  | 177 | 1250   | 567    | 2500 | 1134 |
| 2726 | Pivoting shackle                            | 27/8              | 73   | 21/4                                 | 57  | <sup>15/</sup> 16             | 24   | 4.64  | 132 | 500    | 227    | 2500 | 1134 |
| 2727 | High-load/pivoting shackle                  | 27/8              | 73   | 21/4                                 | 57  | <sup>15/</sup> 16             | 24   | 4.64  | 132 | 850    | 386    | 2500 | 1134 |
| 2728 | Fixed sheaves/eyestrap                      | 27/8              | 73   | 21/4                                 | 57  | <sup>15/</sup> 16             | 24   | 5.6   | 159 | 500    | 227    | 2500 | 1134 |
| 2729 | High-load/fixed sheaves/eyestrap            | 27/8              | 73   | 21/4                                 | 57  | <sup>15</sup> / <sub>16</sub> | 24   | 5.6   | 159 | 850    | 386    | 2500 | 1134 |
| 2730 | Stand-up toggle                             | 27/8              | 73   | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | <sup>15</sup> / <sub>16</sub> | 24   | 5.12  | 145 | 500    | 227    | 2500 | 1134 |
| 2731 | High-load/stand-up toggle                   | 27/8              | 73   | 21/4                                 | 57  | <sup>15</sup> / <sub>16</sub> | 24   | 5.12  | 145 | 850    | 386    | 2500 | 1134 |
| 2732 | Ti-Lite                                     | 27/8              | 73   | 21/4                                 | 57  | <sup>15/</sup> 16             | 24   | 4     | 113 | 500    | 227    | 2500 | 1134 |
| 2733 | High-load/Ti-Lite                           | 27/8              | 73   | 21/4                                 | 57  | <sup>15</sup> / <sub>16</sub> | 24   | 4     | 113 | 850    | 386    | 2500 | 1134 |
| 2734 | High-load/fixed sheaves/adjustable cam arms | 63/4              | 171  | 31/8                                 | 80  | <sup>15</sup> / <sub>16</sub> | 24   | 14.88 | 422 | 850    | 386    | 2500 | 1134 |
| 2735 | 1250/Pivoting toggle                        | 41/8              | 105  | 21/4                                 | 57  | <sup>15/</sup> 16             | 24   | 6.72  | 191 | 1250   | 567    | 2500 | 1134 |
| 2736 | 1250/Fixed sheaves/eyestrap                 | 41/8              | 105  | 21/4                                 | 57  | <sup>15/</sup> 16             | 24   | 7.04  | 200 | 1250   | 567    | 2500 | 1134 |
| 2737 | 1250/Pivoting sheaves/eyestrap              | 41/8              | 105  | 21/4                                 | 57  | <sup>15/</sup> 16             | 24   | 9.6   | 272 | 1250   | 567    | 2500 | 1134 |
| 2738 | 1250/Pivoting sheaves/swivel cam            | 4 <sup>1</sup> /8 | 105  | 61/8                                 | 156 | <sup>15</sup> / <sub>16</sub> | 24   | 19.84 | 562 | 1250   | 567    | 2500 | 1134 |
| 2753 | Pivoting shackle/control tangs              | 27/8              | 73   | 21/4                                 | 57  | <sup>15</sup> / <sub>16</sub> | 24   | 5.28  | 150 | 500    | 227    | 2500 | 1134 |
| 2754 | High-load/pivoting shackle/control tangs    | 27/8              | 73   | 21/4                                 | 57  | <sup>15</sup> / <sub>16</sub> | 24   | 5.28  | 150 | 850    | 386    | 2500 | 1134 |

## Small Boat CB Track & Accessories

Small boat track comes in low or high-beam configurations. Use low-beam track when it's supported at each fastener hole. Use high-beam track when it must span a cockpit or other unsupported area. Choose between variable hole spacing and drilled track.

## **Endstops and Trim Caps**

Use 173 and 174 endstops for small dinghies and low-load situations. The 446 line-shedding endstop is low-profile and snag-free. The 263 and 264 heavy duty endstops absorb the shock loads of unintentional jibes and are used on larger dinghies and small keelboats. Use 2722 and 2723 trim caps to finish track ends when using control block assemblies. Sold in pairs. Fasteners not included.

## **Splice Links**

Splice links join track and keep it aligned during installation.

## **Curved Track**

 $Harken^{\ensuremath{\circledast}}$  will bend track to your specifications. See page 102.

Fast in 1<sup>15/16</sup>

## High-Beam Track Spanning Chart



<sup>7/8"</sup> 22 mm

374/2725

1'

25 mm

1'

25 mm

²/₀" 22 mm

2721





374

2751 (see page 126)

| nei             | r Hole Distar | nce from Tra | ack End | Track Bending            |                |      |  |  |  |  |  |  |
|-----------------|---------------|--------------|---------|--------------------------|----------------|------|--|--|--|--|--|--|
| Metric Retrofit |               |              |         |                          | Minimum radius |      |  |  |  |  |  |  |
|                 | mm            | in           | m       | Car                      | in             | m    |  |  |  |  |  |  |
|                 | 50            | 2            | 51      | 2726 - 2734, 2744 - 2745 | 42             | 1.07 |  |  |  |  |  |  |
|                 |               |              |         | 2735 - 2738, 2746        | 80             | 2.03 |  |  |  |  |  |  |

| Part            |                 | Len                                  | qth  | Hc<br>spa                              | ole<br>cing | We   | ight | Faste | eners | Fndston*±/    | Splice link/<br>line-shedding |
|-----------------|-----------------|--------------------------------------|------|----------------------------------------|-------------|------|------|-------|-------|---------------|-------------------------------|
| No.             | Description     | ft/in                                | m    | in .                                   | mm          | 0Z   | g    | in    | mm    | trim cap‡     | endstop‡                      |
| Metric Track    |                 |                                      |      |                                        |             |      |      |       |       |               |                               |
| 2720.600mm      | Low-beam        | 1'115/8"                             | 0.6  | <b>3</b> <sup>15</sup> / <sub>16</sub> | 100         | 9.1  | 258  | 10FH  | 5FH   | 173, 263/2722 | 2724/446**                    |
| 2720.1m         | Low-beam        | 3'3%"                                | 1    | 315/16                                 | 100         | 15.2 | 430  | 10FH  | 5FH   | 173, 263/2722 | 2724/446**                    |
| 2720.1.2m       | Low-beam        | 3'11'/4"                             | 1.2  | 315/16                                 | 100         | 18.2 | 516  | 10FH  | 5FH   | 173, 263/2722 | 2724/446**                    |
| 2720.1.5m       | Low-beam        | 4'11'/16"                            | 1.5  | 315/16                                 | 100         | 22.8 | 645  | 10FH  | 5FH   | 173, 263/2722 | 2724/446**                    |
| 2720.1.8m       | Low-beam        | 5'10 <sup>13</sup> /16"              | 1.8  | 315/16                                 | 100         | 27.3 | 775  | 10FH  | 5FH   | 173, 263/2722 | 2724/446**                    |
| 2720.2.1m       | Low-beam        | 6'10 <sup>11</sup> / <sub>16</sub> " | 2.1  | 315/16                                 | 100         | 31.9 | 904  | 10FH  | 5FH   | 173, 263/2722 | 2724/446**                    |
| 2720.2.5m       | Low-beam        | 8'27/16"                             | 2.5  | <b>3</b> <sup>15</sup> / <sub>16</sub> | 100         | 38   | 1077 | 10FH  | 5FH   | 173, 263/2722 | 2724/446**                    |
| 2720.3m         | Low-beam        | 9'10 <sup>1</sup> /16"               | 3    | <b>3</b> <sup>15</sup> / <sub>16</sub> | 100         | 45.5 | 1291 | 10FH  | 5FH   | 173, 263/2722 | 2724/446**                    |
| 2720.3.6m       | Low-beam        | 11'9¾"                               | 3.6  | <b>3</b> <sup>15</sup> / <sub>16</sub> | 100         | 54.6 | 1549 | 10FH  | 5FH   | 173, 263/2722 | 2724/446**                    |
| 2720.6m         | Low-beam        | 19'81/4"                             | 6    | <b>3</b> <sup>15</sup> / <sub>16</sub> | 100         | 91.1 | 2582 | 10FH  | 5FH   | 173, 263/2722 | 2724/446**                    |
| 2725.1m         | High-beam       | 3'3%"                                | 1    | 315/16                                 | 100         | 21   | 586  | 10FH  | 5FH   | 174, 264/2723 | _                             |
| 2725.1.2m       | High-beam       | 3'111/4"                             | 1.2  | 315/16                                 | 100         | 24.5 | 695  | 10FH  | 5FH   | 174, 264/2723 | _                             |
| 2725.1.5m       | High-beam       | 4'11'/ <sub>16</sub> "               | 1.5  | 315/16                                 | 100         | 31   | 879  | 10FH  | 5FH   | 174, 264/2723 | _                             |
| 2725.1.8m       | High-beam       | 5'10 <sup>13</sup> /16"              | 1.8  | 315/16                                 | 100         | 37   | 1055 | 10FH  | 5FH   | 174, 264/2723 |                               |
| 2725.3.6m       | High-beam       | 11'9¾"                               | 3.6  | <b>3</b> <sup>15</sup> / <sub>16</sub> | 100         | 74   | 2110 | 10FH  | 5FH   | 174, 264/2723 | —                             |
| Variable Hole   | Spacing Track   |                                      |      |                                        |             |      |      |       |       |               |                               |
| 2721.1m         | High-beam       | 3'3%"                                | 1    | Slide                                  | e bolt      | 25   | 709  | _     | 5HH   | 174, 264/2723 | _                             |
| 2721.1.2m       | High-beam       | 3'11'/4"                             | 1.2  | Slide                                  | e bolt      | 30   | 851  | _     | 5HH   | 174, 264/2723 | _                             |
| 2721.1.5m       | High-beam       | 4'11 <sup>1</sup> /16"               | 1.5  | Slide                                  | e bolt      | 37.5 | 1064 | —     | 5HH   | 174, 264/2723 | _                             |
| 2721.1.8m       | High-beam       | 5'10 <sup>13</sup> /16"              | 1.8  | Slide                                  | e bolt      | 45   | 1277 | —     | 5HH   | 174, 264/2723 | —                             |
| 2721.3.6m       | High-beam       | 11'9¾"                               | 3.6  | Slide                                  | e bolt      | 90.1 | 2554 | _     | 5HH   | 174, 264/2723 | _                             |
| Retrofit 4" Hol | e Spacing Track |                                      |      |                                        |             |      |      |       |       |               |                               |
| 373.6           | Low-beam        | 6                                    | 1.83 | 4                                      | 102         | 28   | 787  | 10FH  | 5FH   | 173, 263/2722 | 2724/446**                    |
| 373.12          | Low-beam        | 12                                   | 3.66 | 4                                      | 102         | 56   | 1574 | 10FH  | 5FH   | 173, 263/2722 | 2724/446**                    |
| 374.4           | High-beam       | 4                                    | 1.22 | 4                                      | 102         | 25   | 709  | 10FH  | 5FH   | 174, 264/2723 |                               |
| 374.6           | High-beam       | 6                                    | 1.83 | 4                                      | 102         | 38   | 1077 | 10FH  | 5FH   | 174, 264/2723 |                               |
| 374 12          | High-beam       | 12                                   | 3.66 | 4                                      | 102         | 76   | 2143 | 10FH  | 5EH   | 174 264/2723  | _                             |











# **Small Boat Controls**

Harken® Small Boat traveler controls allow installation of 2:1 to 4:1 purchases. Compact, high-strength Carbo AirBlock® components combined with Micro Carbo-Cam® cleats keep traveler weight minimal.

The 2755 features an easy-to-grab, spring-loaded knob for ease of adjustment on the water.

Color code cleats using 424 Fairleads. For cleating and releasing at angles up to 45°, use the 372 X-Treme Angle Fairlead.

The 384 traveler block features high-load composite bearings to handle wire and high-strength line. Use with the 382 Radial Traveler car and other Small Boat cars to configure a Radial vang. Do not use as mainsheet traveler.

Use for:

2:1 to 4:1 purchases





2739



Easy to grab, spring-loaded knob

## **End Controls**

| Part      |                                                  | She<br>( | ave<br>Ø  | Len    | igth  | Wi                       | dth    | Wei<br>(pa | ght<br>ir) | Max              | iline<br>Ø | He<br>above  | ight<br>e track | Maxi<br>workir | mum<br>1g load | Brea<br>Io | aking<br>ad |          |
|-----------|--------------------------------------------------|----------|-----------|--------|-------|--------------------------|--------|------------|------------|------------------|------------|--------------|-----------------|----------------|----------------|------------|-------------|----------|
| No.       | Description                                      | in       | mm        | in     | mm    | in                       | mm     | 0Z         | g          | in               | mm         | in           | mm              | lb             | kg             | lb         | kg          | Purchase |
| 2740      | Single sheave (pair)*                            | 11/8     | 29        | 37/16  | 87    | 1%                       | 35     | 8          | 228        | <sup>5/</sup> 16 | 8          | 1            | 26              | 300            | 136            | 600        | 272         | 2:1      |
| 2741      | Single sheave/423 Carbo-Cam® (pair)*             | 11/8     | 29        | 37/16  | 87    | 31/8                     | 80     | 10.8       | 306        | 1/4              | 6          | <b>1</b> 1/8 | 28              | 300            | 136            | 600        | 272         | 2:1      |
| 2742      | Double sheave (pair)*                            | 11/8     | 29        | 37/16  | 87    | 1¾                       | 35     | 10.3       | 292        | 5∕ <sub>16</sub> | 8          | <b>1</b> %   | 41              | 600            | 272            | 1200       | 544         | 3:1/4:1  |
| 2743      | Double sheave/423 Carbo-Cam <sup>®</sup> (pair)* | 11/8     | 29        | 37/16  | 87    | 31/8                     | 80     | 13         | 370        | 1/4              | 6          | <b>1</b> %   | 41              | 600            | 272            | 1200       | 544         | 3:1/4:1  |
| 2755      | Pinstop‡                                         | _        | _         | 15/8   | 42    | <b>1</b> <sup>3</sup> /8 | 35     | 1.6**      | 45**       | _                | _          | 13/16        | 21              | _              | _              | _          | _           | _        |
| 1/4" (6 m | m) BH fasteners *Fits all Small Boat trac        | k t      | l Ise wit | h 2751 | Small | Roat n                   | inston | track (s   | ee nade    | 126)             | **         | Neiaht       | each            |                |                |            |             |          |

3:1

4:1

340\*/341/348\*/2609

2636\*/2637/2650\*

342/2638/2642

\*Dead-end line through center of sheave

2742/2743

2742/2743

3:1

4:1

13-16

16-18

*‡Use* uat pi

140-175

175-190

Accessories

|      |                            | Shea    | ve      |         |           |                                       |           |                   |          | Max      | line       | Max              | wire   | Maxi   | mum    | Brea | aking |
|------|----------------------------|---------|---------|---------|-----------|---------------------------------------|-----------|-------------------|----------|----------|------------|------------------|--------|--------|--------|------|-------|
| Part |                            | Ø       |         | Len     | gth       | Wi                                    | dth       | We                | ight     | 1        | Ø          | 1                | Ø      | workin | g load | lo   | ad    |
| No.  | Description                | in      | mm      | in      | mm        | in                                    | mm        | 0Z                | g        | in       | mm         | in               | mm     | lb     | kg     | lb   | kg    |
| 175  | Coupler                    | —       | —       | 311/16  | 94        | <b>2</b> <sup>3</sup> / <sub>16</sub> | 56        | 4.5               | 128      | —        | —          | —                | —      | 1500   | 680    | 2500 | 1134  |
| 384  | Wire high-load vang block‡ | 2       | 51      | 23/4    | 70        | —                                     | —         | 3.3               | 93       | 1/4      | 6          | <sup>3</sup> /16 | 5      | 1250   | 567    | 2500 | 1134  |
| 2739 | Traveler kit/3:1 purchase  | Kit Inc | ludes 2 | 735/274 | 3/(2) 34  | 8. Purch                              | nase trac | ck, trim          | caps, an | d contro | ol lines s | eparate          | ely.   |        |        |      |       |
| 2747 | Small stand-up toggle      | Ассер   | ts 40 m | m doubl | e & tripl | e Carbo                               | AirBlock  | ks®, 57 i         | mm sing  | le & fid | dle Carb   | o AirBlo         | ocks®. |        |        |      |       |
| 2748 | Large stand-up toggle      | Ассер   | ts 57 m | m doubl | e & tripl | e Carbo                               | AirBlock  | ⟨S <sup>®</sup> . |          |          |            |                  |        |        |        |      |       |
| 2749 | Control tangs (pair)       | —       | —       | 7/8     | 23        | —                                     | _         | .8                | 21       | —        | —          | —                | —      | 600    | 272    | 1200 | 544   |

‡Fits 382 for radial vang system. Do not use with controls if radius is tight

# Midrange CB Cars

Midrange Captive Ball Traveler Cars are built to handle high loads on boats from 27 ft to 34 ft (8 m to 10 m).

The one-piece solid aluminum construction is lightweight and strong. Machined aluminum Hardkoteanodized races permit Torlon<sup>®</sup> bearings to transition smoothly from the active to return race. Stainless steel wire guides keep the balls captive.

Shackle/toggle cars have low pivot points to handle non-vertical loads. On 1626 and 1627 cars, blocks attach directly to the toggle ears for a low-profile, compact system. 1640 and 1641 cars use carmounted control blocks. See chart on page 101 to size traveler to mainsail area.

### **Traveler Kits**

Use the 1630 kit for boats to 34 ft (10 m) with maximum mainsail area of 275 ft<sup>2</sup> (25 m<sup>2</sup>) for endboom, or 225 ft<sup>2</sup> (21 m<sup>2</sup>) for mid-boom sheeting.

Use for: Mainsheet systems Captive balls make cars easy to load and maintain. Wire guides circulate

bearings smoothly

Stand-up toggle holds block off deck

Toggle ears accept

Control blocks

attach to ears to

reduce load on car

Carbo control blocks

1630

1627



### CB Cars only fit Midrange CB track 1602, 1616, 1617, 1618. Non-captive cars available upon request.

| Part |                                 | Length Width                           |            |                                      |           | Car<br>hei               | body<br>ght | Wei        | ght         | Maxi<br>workin | mum<br>Ig load | Breaking<br>load |      |
|------|---------------------------------|----------------------------------------|------------|--------------------------------------|-----------|--------------------------|-------------|------------|-------------|----------------|----------------|------------------|------|
| No.  | Description                     | in                                     | mm         | in                                   | mm        | in                       | mm          | 0Z         | g           | lb             | kg             | lb               | kg   |
| 1624 | Car/shackle                     | <b>4</b> <sup>1</sup> / <sub>4</sub>   | 108        | 23/4                                 | 70        | <b>1</b> <sup>1</sup> /8 | 28          | 11.04      | 313         | 1800           | 816            | 5000             | 2268 |
| 1625 | Long car/shackle                | 53/16                                  | 132        | 23/4                                 | 70        | <b>1</b> 1/8             | 28          | 12.48      | 354         | 2300           | 1043           | 5000             | 2268 |
| 1626 | Car/stand-up toggle/ears        | 41/4                                   | 108        | 23/4                                 | 70        | <b>1</b> 1/8             | 28          | 14.4       | 408         | 1800           | 816            | 5000             | 2268 |
| 1627 | Long car/stand-up toggle/ears   | 53/16                                  | 132        | 23/4                                 | 70        | <b>1</b> 1/8             | 28          | 15.84      | 449         | 2300           | 1043           | 5000             | 2268 |
| 1628 | Car/shackle/365 Carbo-Cam®      | <b>9</b> 1/8*                          | 232*       | 43/8                                 | 111       | <b>1</b> 1/8             | 28          | 25.76      | 730         | 1800           | 816            | 5000             | 2268 |
| 1629 | Long car/shackle/365 Carbo-Cam® | <b>9</b> <sup>1</sup> / <sub>8</sub> * | 232*       | 43/8                                 | 111       | <b>1</b> <sup>1</sup> /8 | 28          | 27.2       | 771         | 2300           | 1043           | 5000             | 2268 |
| 1630 | Traveler kit/4:1                | Kit Inc                                | ludes 1627 | /1633/(2)                            | 2638. Pui | rchase tra               | ck, trim c  | aps and co | ntrol lines | separately     |                |                  |      |
| 1640 | Car/stand-up toggle             | <b>4</b> <sup>1</sup> / <sub>4</sub>   | 108        | 23/4                                 | 70        | <b>1</b> <sup>1</sup> /8 | 28          | 13.6       | 386         | 1800           | 816            | 5000             | 2268 |
| 1641 | Long car/stand-up toggle        | 53/16                                  | 132        | <b>2</b> <sup>3</sup> / <sub>4</sub> | 70        | <b>1</b> <sup>1</sup> /8 | 28          | 15.04      | 426         | 2300           | 1043           | 5000             | 2268 |

See page 26 for replacement balls \*Length is measured to outer edge of cam plates

## **Midrange CB Track & Accessories**

Midrange track comes in low- or high-beam configurations. Use low-beam track when it's supported at each fastener hole. Use high-beam track when it must span a cockpit or other unsupported area. Choose between variable hole spacing and drilled track.

## **Pinstop Track**

1617 track has 3/8 in (10 mm) pinstop holes spaced on 15/16 in (34 mm) centers to accept Midrange adjustable pinstop cars.

## **Endstops/Trim Caps**

When end controls are not used, add 1522 or 1523 endstops to absorb shock loads. When end control assemblies are used, trim caps finish track ends. Sold in pairs. Fasteners not included.

## **Splice Links**

Splice links join track and keep it aligned during installation.

## **Curved Track**

Harken<sup>®</sup> will bend track to your specifications. See page 102.

| Track Be            | nding  |          |
|---------------------|--------|----------|
|                     | Minimu | m radius |
| Car                 | ft     | m        |
| 1624/1626/1628/1635 | 8      | 2.44     |
| 1625/1627/1629/1636 | 9      | 2.73     |





1618

Mountina Lenath hole spacing\* Weight Fasteners Endstop\*\*/ Splice link/ trim cap\*\* track riser\*\* Part Description ft/in m in mm 07 mm No. α in **Metric Track** 6FH 1616.1.2m Low-beam 3'111/4" 12 315/16 100 27 772 1/4FH 1522/1621 1619/-1522/1621 1616.1.5m Low-beam 4'11'/16" 1.5 315/16 100 34 965 1/4FH 6FH 1619/----41 1522/1621 1616.1.8m Low-beam 5'10<sup>13</sup>/16" 1.8 315/16 100 1158 1/4FH 6FH 1619/— 1616.2.1m Low-beam 6'1011/16" 2.1 315/16 100 48 1351 1/4FH 6FH 1522/1621 1619/— 1616.2.4m 7'101/2" 2.4 315/16 100 54 1544 1/4FH 6FH 1522/1621 1619/— Low-beam Low-beam 1616.3m 9'101/8" 3 315/16 100 68 1930 1/4FH 6FH 1522/1621 1619/-1616.3.6m Low-beam 11'9¾" 3.6 315/16 100 82 2317 1/4FH 6FH 1522/1621 1619/-19'8<sup>1</sup>/4" 100 136 3860 1/4FH 1522/1621 1619/-1616.6m Low-beam 6 315/16 6FH 1617.1.2m Low-beam/pinstop holes 3'111/4" 1.2 3<sup>15</sup>/16 100 26 740 1/4FH 6FH 1522/1621 1619/-1617.1.5m Low-beam/pinstop holes 4'11<sup>1</sup>/16" 924 1/4FH 1522/1621 1.5 315/16 100 33 6FH 1619/-1617.1.8m Low-beam/pinstop holes 5'10<sup>13</sup>/16 1.8 315/16 100 39 1108 1/4FH 6FH 1522/1621 1619/-6'1011/16" 1522/1621 1617.2.1m Low-beam/pinstop holes 2.1 315/16 100 46 1293 1/4FH 6FH 1619/-7'101/2" 52 1522/1621 1617.2.4m Low-beam/pinstop holes 24 315/16 100 1474 1/4FH 6FH 1619/-1617.3m Low-beam/pinstop holes 9'101/8" 3 315/16 100 65 1845 1/4FH 6FH 1522/1621 1619/-1617.3.6m Low-beam/pinstop holes 11'93/4" 3.6 100 78 2215 1/4FH 1522/1621 1619/-315/16 6FH 1617.6m Low-beam/pinstop holes 19'81/4" 6 315/16 100 130 3688 1/4FH 6FH 1522/1621 1619/-Variable Hole Spacing Track 1618.1.2m High-beam 3'111/4" 1.2 Slide bolt 69 1956 1/4HH 6HH 1523/1622 -/1849± 1618.1.5m High-beam 4'11'/16" 1.5 Slide bolt 86 2445 1/4HH 6HH 1523/1622 -/1849‡ 5'10<sup>13</sup>/16 2934 6HH 1.8 Slide bolt 104 1/4HH 1523/1622 -/1849‡ 1618.1.8m High-beam 6'10<sup>11</sup>/16" 2.1 1618.2.1m High-beam Slide bolt 121 3424 1/4HH 6HH 1523/1622 -/1849‡ 11'9¾" 1523/1622 1618.3.6m High-beam 3.6 Slide bolt 207 5869 1/4HH 6HH -/1849‡ **Retrofit 4" Hole Spacing Track** 42 1177 1/4FH 6FH 1522/1621 1619/— 6 1.83 4 102 1602.6 Low-beam 1522/1621 8 2.44 4 102 56 1588 1/4FH 6FH 1619/-1602.8 Low-beam 1602.12 12 3.66 4 102 83 2354 1/4FH 6FH 1522/1621 1619/-I ow-beam

1602 1616

1617

1619



Actual size track chart available at www.harken.com \*1st hole 50 mm (2") \*Sold in pairs ‡Track riser 1849 shown on page 112



## Midrange **Stand-Up Toggles**

The 1561 holds blocks upright on travelers. The 1638 holds blocks upright and allows attachment of control blocks.

Toggles include 1/4" (6 mm) and 5/16" (8 mm) mainsheet block pins. They accept 57 mm and 75 mm Carbo doubles and triples, 75 mm Carbo singles, 3.00" Small Boat single, Fiddle, Midrange blocks and 57 mm AirBlocks®.

To attach Carbo control blocks to the stand-up toggle, choose 1626, 1627 cars or 1638 toggles. Refer to chart for block compatibility.



Low pivot point handles non-vertical loads

|      |                               |                                       |     |                                      |      | Maxi   | imum    | (        | Control Block Selectio | n Guide     |
|------|-------------------------------|---------------------------------------|-----|--------------------------------------|------|--------|---------|----------|------------------------|-------------|
| Part |                               | Ler                                   | gth | We                                   | ight | workin | ng load | Purchase | Block                  | End control |
| No.  | Description                   | in                                    | mm  | OZ                                   | g    | lb     | kg      | 2:1      | 2650                   | 1631        |
| 1561 | Stand-up toggle               | <b>2</b> <sup>5</sup> / <sub>16</sub> | 59  | <b>3</b> <sup>1</sup> / <sub>2</sub> | 99   | 2500   | 1134    | 3:1      | 2650*                  | 1632/1633   |
| 1638 | Stand-up toggle/control tangs | 25/16                                 | 59  | 43/8                                 | 124  | 2500   | 1134    | 4:1      | 2638                   | 1632/1633   |

\*Dead-end line through center of sheave

## **Midrange Car Controls**

### Blocks

Car-mounted control blocks feature ball bearing sheaves and mount to 1624 and 1625 cars.

## Couplers

1557 and 1614 couplers connect cars to allow higher mainsheet loads. Short coupled cars can roll on a tighter radius than one long car.



1514





Akilaria 9,50, Marc Lombard, MC-TEC — Kervilor-Vanek photo

|      |                                     | _                                     |      | Wei   | ight | He            | ight    | Max             | line | Maxi   | mum     | Brea | aking |          |                  |
|------|-------------------------------------|---------------------------------------|------|-------|------|---------------|---------|-----------------|------|--------|---------|------|-------|----------|------------------|
| Part |                                     | Ler                                   | ıgth | ea    | ch   | above         | e track |                 | Ø    | workin | ig load | lo   | ad    |          |                  |
| No.  | Description                         | in                                    | mm   | 0Z    | g    | in            | mm      | in              | mm   | lb     | kg      | lb   | kg    | Purchase | Joins            |
| 1512 | Control tangs (pair)                | <b>1</b> <sup>3</sup> / <sub>16</sub> | 30   | .625  | 18.2 | <b>1</b> 1/16 | 27      | —               | _    | 1000   | 454     | 2000 | 907   | 1:1      |                  |
| 1513 | Single control blocks (pair)        | 2 <sup>5</sup> /8                     | 67   | 2.5   | 71   | 1³/8          | 35      | <sup>3</sup> /8 | 10   | 300    | 136     | 2000 | 907   | 2:1      |                  |
| 1514 | Single control blocks/becket (pair) | <b>2</b> <sup>5</sup> /8              | 67   | 3     | 87   | 17/8          | 48      | 3/8             | 10   | 300    | 136     | 2000 | 907   | 3:1      |                  |
| 1515 | Double control blocks (pair)        | <b>2</b> <sup>5</sup> /8              | 67   | 4     | 113  | 2             | 51      | 3/8             | 10   | 600    | 272     | 2000 | 907   | 4:1      |                  |
| 1557 | Car coupler∻                        | 5½                                    | 130  | 7.625 | 194  | —             | _       | —               | —    | 2000   | 907     | 4000 | 1816  | _        | 2 1624 cars      |
| 1614 | Flat plate coupler∻                 | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 114  | 2.5   | 71   | _             | _       | _               | _    | 2760   | 1250    | 6000 | 2722  | _        | 2 1624/1625 cars |
| 1623 | ESP control block*                  | <b>4</b> <sup>3</sup> / <sub>4</sub>  | 120  | 7.4   | 211  | 17/16         | 37      | 3/8             | 10   | 600    | 272     | 2000 | 907   | 3:1      |                  |

1557

1512

1513

\*Fits 1624, 1625 cars 



1515

# **Midrange End Controls**

Harken® Midrange traveler controls allow installation of 2:1 to 4:1 purchases. Assemblies secure to the track, eliminating additional holes. Tough one-piece bases and cam arms are machined from a single piece of aluminum. Compact, high-strength Carbo AirBlock<sup>®</sup> components combined with a Carbo-Cam<sup>®</sup> cleats keep traveler weight minimal. For angled cleating, install the 380 X-Treme Angle Fairlead.

Use 1620 double-sheave ESP end controls for cabintop travelers where lines lead to the aft edge of the cabintop. Use the 1623 car control for a 3:1 purchase, the 1845 (see page 116) for a 4:1 purchase. Contact Harken $^{\circ}$  to order special length 1618 track with mounting holes for 1620 end controls.







|           | Control Pu | irchase Recomm | endations  |          |
|-----------|------------|----------------|------------|----------|
|           | Sail       | area           |            |          |
| End-boom  | sheeting   | Mid-boom       | sheeting   |          |
| ft²       | m²         | ft²            | <b>m</b> ² | Purchase |
| Under 140 | Under 13   | Under 125      | Under 12   | 2:1      |
| 140-235   | 13–22      | 125-200        | 12–19      | 3:1      |
| 235-275   | 22–25      | 200-250        | 19–23      | 4:1      |
|           |            |                |            |          |

3720

| Part     |                                                     | She<br>Ø     | ave<br>I | Len                      | igth    | Wi                         | ith    | We  | ight          | Max | iline<br>Ø | Height<br>tra | above<br>ck | Maxi<br>workin | mum<br>g load | Breal<br>Ioa | king<br>Id |          |
|----------|-----------------------------------------------------|--------------|----------|--------------------------|---------|----------------------------|--------|-----|---------------|-----|------------|---------------|-------------|----------------|---------------|--------------|------------|----------|
| No.      | Description                                         | in           | mm       | in                       | mm      | in                         | mm     | 0Z  | g             | in  | mm         | in            | mm          | lb             | kg            | lb           | kg         | Purchase |
| 1620     | ESP Double sheave (pair)‡‡                          | <b>1</b> %16 | 40       | 51/2                     | 140     | <b>1</b> 9/16              | 40     | 16  | 454           | 3/8 | 10         | <b>1</b> %16  | 40          | 600            | 272           | 1500         | 680        | 3:1/4:1  |
| 1631     | Single sheave (pair)***                             | <b>1</b> %16 | 40       | <b>4</b> 1/ <sub>2</sub> | 114     | <b>1</b> 15/16             | 49     | 20  | 574           | 3/8 | 10         | <b>1</b> 5/16 | 33          | 350            | 159           | 875          | 397        | 2:1/3:1  |
| 1632     | Double sheave (pair)***                             | <b>1</b> %16 | 40       | <b>4</b> 1/2             | 114     | <b>1</b> 15/16             | 49     | 26  | 730           | 3/8 | 10         | 2             | 50          | 700            | 318           | 1750         | 794        | 3:1/4:1  |
| 1633     | Double sheave/365 Carbo-Cam <sup>®</sup> (pair)***  | <b>1</b> %16 | 40       | <b>4</b> 1/2             | 114     | 315/16                     | 100    | 36  | 1020          | 3/8 | 10         | 2             | 50          | 600            | 272           | 1500         | 680        | 3:1/4:1  |
| 1642     | Pinstop‡                                            | —            | —        | 25/16                    | 59      | <b>1</b> <sup>15</sup> /16 | 49     | 4.8 | 136           | _   | —          | <b>1</b> 5/16 | 33          | _              | —             | —            | —          | —        |
| Cite M/i | duan a tua ali *** In aliudaa 5/ " (0 mana) Dil faa | +            | +D.      |                          | 1017 +- | ام م                       | LLDeau |     | a a la la tra | بام |            |               |             |                |               |              |            |          |

1632

Fits Midrange track \*Includes 5/16" (8 mm) RH fasteners #Requires 1617 track ‡‡Requires special track

# **Track Risers**

Use 1849 risers for mid-boom travelers that must clear companionway hatches. Risers fit most cabintops and articulate for use with either straight or curved track. Sold in pairs.



| Part |                    |           | weig  |
|------|--------------------|-----------|-------|
| No.  | Description        | Fits      | 0Z    |
| 1849 | Track riser (pair) | 1618/3156 | 131.2 |

# **Big Boat CB Cars**

Big Boat Captive Ball Traveler Cars are built to handle high loads on boats from 32 to 50 ft (9.5 to 15 m) and up to 70 ft (21 m) with coupled cars.

The one-piece solid aluminum construction is lightweight and strong. Machined aluminum Hardkote-anodized races permit Torlon<sup>®</sup> bearings to transition smoothly from the active to return race for smooth trimming or easing. Stainless steel wire guides keep the balls captive when the car is off the track.

Shackle/toggle cars have low pivot points to handle non-vertical loads. On 3164 and 3166 cars, blocks attach directly to the toggle ears for a low-profile, compact system. 3160 and 3161 cars use car-mounted control blocks. The 3172 high-load coupled traveler features two cars joined by a recessed stainless steel coupler that adjusts to fit curved track. See chart on page 101 to size traveler to mainsail area.

### **Traveler Kits**

Use the 3175 kit for boats to 45 ft (13.5 m) with maximum mainsail area of 425 ft<sup>2</sup> (39.5 m<sup>2</sup>) for endboom, or 350 ft<sup>2</sup> (32.5 m<sup>2</sup>) for mid-boom sheeting.

Control blocks attach to ears to reduce load on car

Captive balls make cars easy to

load and maintain. Wire guides

circulate bearings smoothly

Toggle ears accept Carbo control blocks

3164



#### CB Cars only fit Big Boat CB track 3154, 3155, 3156, 3159, 3162. Non-captive cars available upon request.

| Part |                                  | Len                                  | igth      | Width     |          | Height       |           | Weight     |           | Maximum<br>working load |             | Breaking<br>load |      |
|------|----------------------------------|--------------------------------------|-----------|-----------|----------|--------------|-----------|------------|-----------|-------------------------|-------------|------------------|------|
| No.  | Description                      | in                                   | mm        | in        | mm       | in           | mm        | 0Z         | g         | lb                      | kg          | lb               | kg   |
| 3160 | 3000 Series/stand-up toggle      | <b>5</b> ∛ଃ                          | 136       | 33/8      | 85       | 13/8         | 35        | 24.32      | 689       | 3000                    | 1361        | 7000             | 3175 |
| 3161 | 4500 Series/stand-up toggle      | 77/16                                | 188       | 33/8      | 85       | 13/8         | 35        | 28.64      | 812       | 4500                    | 2041        | 9000             | 4081 |
| 3163 | 3000 Series/shackle              | <b>5</b> ¾                           | 136       | 33/8      | 85       | 13/8         | 35        | 20         | 567       | 3000                    | 1361        | 7000             | 3175 |
| 3164 | 3000 Series/stand-up toggle/ears | <b>5</b> ∛ଃ                          | 136       | 33/8      | 85       | 13/8         | 35        | 25.28      | 717       | 3000                    | 1361        | 7000             | 3175 |
| 3165 | 4500 Series/shackle              | <b>7</b> <sup>7</sup> /16            | 188       | 33/8      | 85       | 13/8         | 35        | 24         | 680       | 4500                    | 2041        | 9000             | 4081 |
| 3166 | 4500 Series/stand-up toggle/ears | <b>7</b> <sup>7</sup> /16            | 188       | 33/8      | 85       | 13/8         | 35        | 29.44      | 835       | 4500                    | 2041        | 9000             | 4081 |
| 3167 | 5000 Series/2 toggles            | <b>9</b> <sup>1</sup> / <sub>8</sub> | 231       | 33/8      | 85       | <b>1</b> ¾   | 35        | 41.12      | 1166      | 5000                    | 2268        | 10000            | 4536 |
| 3172 | 4500 Series/coupled              | 15                                   | 381       | 33/8      | 85       | <b>1</b> 3/7 | 35        | 66.4       | 1882      | 9000                    | 4082        | 18000            | 8163 |
| 3175 | Traveler kit/4:1 purchase        | Kit ind                              | cludes 31 | 64, (2) 2 | 642, 317 | 0. Purch     | ase tracl | k, trim ca | os and co | ntrol lines :           | separately. |                  |      |

See page 26 for replacement balls

# **Big Boat CB Track & Accessories**

Big Boat track comes in low- or high-beam configurations. Use low-beam track when it's supported at each fastener hole. Use high-beam track when it must span a cockpit or other unsupported area. Choose between variable hole spacing and drilled track.

## **Pinstop Track**

3155 track has  $7_{16}$  in (12 mm) pinstop holes spaced on  $1^{5}/_{16}$  in (34 mm) centers to accept 3124 and 3125 pinstop cars.

## **Endstops/Trim Caps**

When end controls are not used, add 548 or 562 endstops to absorb shock loads. When end controls assemblies are used, trim caps finish track ends. Sold in pairs. Fasteners not included.

## **Splice Links**

Splice links join track and keep it aligned during installation.

### **Curved Track**

Part

No.

Metric Track

3154.1.2m Low-beam

3154.1.5m Low-beam

3154.1.8m Low-beam

3154.2.1m Low-beam

3154.2.4m Low-beam

3154.3m Low-beam

3154.3.6m Low-beam

3154.6m Low-beam

3162.1.5m Air Track®

3162.2.4m Air Track®

3162.3.6m Air Track

3162.6m Air Track<sup>®</sup>

3156.1.5m High-beam

3156.1.8m High-beam

3156.2.1m High-beam

3156.2.4m High-beam

3156.3.6m High-beam

**Retrofit 4" Hole Spacing Track** 

Variable Hole Spacing Track 3156.1.2m High-beam

Description

3155.1.2m Low-beam/pinstop holes

3155.1.5m Low-beam/pinstop holes

3155.1.8m Low-beam/pinstop holes

3155.2.1m Low-beam/pinstop holes

3155.2.4m Low-beam/pinstop holes

3155.3.6m Low-beam/pinstop holes

3155.6m Low-beam/pinstop holes

3155.3m Low-beam/pinstop holes

Harken® will bend track to your specifications. See page 102.



Length

m

1.2

1.5

1.8

2.1

2.4

3

3.6

6

1.2

1.5

1.8

2.1

2.4

3

36

6

1.5

24

36

6

1.2

1.5

1.8

2.1

2.4

3.6

ft/in

3'111/4"

4'111/16"

5'107/8"

6'1011/16'

7'101/2'

9'101/8

11'9¾

19'81/4

3'111/4"

4'11'/16"

5'107/8"

6'10<sup>11</sup>/<sub>16</sub>

7'101/2

9'101/8"

11'9¾

19'8¼

4'11<sup>1</sup>/16

7'10<sup>1</sup>/2'

11'9¾

19'81/4"

3'111/4"

4'111/16

5'107/8'

6'10<sup>11</sup>/16'

7'10<sup>1</sup>/2'

11'9<sup>3</sup>/4'

Mounting

hole spacing

mm

100\*\*

100\*

100\*

100\*\*

100\*\*

100\*\*

100\*\*

100\*\*

100\*\*

100\*\*

100\*\*

100\*\*

100\*\*

100\*\*

100\*\*

100\*\*

100\*\*

100\*

100\*

100\*

Slide bolt

Slide bolt

Slide bolt

Slide bolt

Slide bolt

Slide bolt

in

315/16

315/16

315/16

315/16

315/16

315/16

315/16

315/16

315/16

315/16

315/16

315/16

315/16

315/16

315/16

315/16

315/16

315/16

315/16

315/16

Weight

kg

1.22

1.52

1.83

2.13

2.44

3.04

3.65

6.09

1.15

1.44

1.73

2.01

2.3

2 86

3 4 5

5.74

1 2 9

2 06

3.1

5.16

3.79

4.74

5.69

6.64

7.59

11.38

0Z

43

54

65

75

86

107

129

215

41

51

61

71

81

101

122

203

45

73

109

182

134

167

201

234

268

402

Fasteners

mm

8FH

8HH

8HH

8HH

8HH

8HH

8HH

in

5∕16FH

5∕16**FH** 

5∕16FH

5∕16FH

5∕16FH

5∕16FH

5/16FH

5/16FH

5/16FH

5∕16FH

5∕16HH

5∕16HH

⁵∕16HH

5∕16HH

5∕16HH

5∕16HH







trim cap‡

548/3157

548/3157

548/3157

548/3157

548/3157

548/3157

548/3157

548/3157

548/3157

548/3157

548/3157

548/3157

548/3157

548/3157

548/3157

548/3157

562/3158

562/3158

562/3158

562/3158

Endstop‡/ Splice link/

track riser‡

3153/-

3153/-

3153/-

3153/-

3153/-

3153/-

3153/-

3153/-

3153/-

3153/-

3153/-

3153/-

3153/-

3153/-

3153/-

3153/-

3158

3157





3156

3155



6 1 83 4 102\*\* 66 1.86 5∕16FH 8FH 548/3157 3153/-3159.6 Low-beam 3159.8 Low-beam 8 2.44 4 102\*\* 89 2.48 5∕16FH 8FH 548/3157 3153/-3159.12 12 3.66 4 102\*\* 131 3.71 5∕16FH 8FH 548/3157 3153/-Low-beam Actual size track chart available at www.harken.com \*\*1st hole 50 mm (2") ±Sold in pairs ‡‡Track riser 1849 shown on page 115 \*Contact Harken®



—/1849‡‡

-/1849‡‡

-/1849‡‡

-/1849±±

## Big Boat Car Couplers

Often found on curved track, couplers join two cars to form high-load assemblies.

Use high-load 580 and 752 couplers for single-point attachments. Use 1799 control block with 580 or 1770 couplers. Use single, double or triple Black Magic<sup>®</sup> AirBlocks<sup>®</sup> with the 752 coupler.









| Part |                     | Length            |     | We | eight | Maxi<br>workin | mum<br>Ig load | num Breakii<br>  load load |      |                |
|------|---------------------|-------------------|-----|----|-------|----------------|----------------|----------------------------|------|----------------|
| No.  | Description         | in                | mm  | 0Z | g     | lb             | kg             | lb                         | kg   | Fits           |
| 580  | Coupler             | 71/4              | 184 | 21 | 595   | 6000           | 2722           | 12000                      | 5443 | 3163           |
| 584  | Mainsheet carrier   | 10                | 254 | 44 | 1247  | 6000           | 2722           | 12000                      | 5443 | 3163           |
| 752  | Coupler             | 103/4             | 273 | 28 | 794   | 9000           | 4082           | 18000                      | 8165 | 3165           |
| 1770 | Flat plate coupler* | 4 <sup>3</sup> /8 | 111 | 3  | 84    | 3600           | 1630           | 8400                       | 3810 | 3160/3163/3164 |

\*Custom flat plate coupler & modified 3165 & 3166 car assemblies available upon request

## Track Risers & Dodger Blocks

## **Track Risers**

Use 1849 risers for mid-boom travelers that must clear companionway hatches. Risers fit most cabintops and articulate for use with either straight or curved track. Sold in pairs.

## **Dodger Blocks**

These blocks route control lines to the deck from bridge-mounted travelers and pass under the dodger to cam cleats mounted within reach of the crew.





| Part |                                        |                              | Weig  | lht  |
|------|----------------------------------------|------------------------------|-------|------|
| No.  | Description                            | Fits                         | 0Z    | g    |
| 1849 | Track riser (pair)                     | 1618/3156                    | 131.2 | 3720 |
| 1985 | 6:1 Dodger block conversion kit (pair) | 3185 Traveler control blocks | 8     | 227  |

## **Big Boat Stand-Up Toggles**

The 1896 and 1994 hold blocks upright. The 598 and 669 hold blocks upright and allow attachment of control blocks.

Toggles include a 5/16" (8 mm) mainsheet block pin that accepts Midrange blocks, 57 mm double and triple AirBlocks® and 75 mm single Black Magic<sup>®</sup> AirBlocks<sup>®</sup>.

To attach Carbo control blocks to the stand-up toggle, choose 3163, 3165 cars or 598, 669 toggles. Refer to chart for block compatibility.

Holds mainsheet block in upright position



Control blocks attach to ears to reduce load on car



Attach low-weight. high-strength Carbo and Black Magic® blocks

> Low pivot point handles nonvertical loads

> > Purchase

 $2 \cdot 1$ 2:1 High-load

3:1

3:1 High-load

4:1

| Part |                                          | Length                                |    | We   | ight  | Maximum<br>working load |      |  |  |
|------|------------------------------------------|---------------------------------------|----|------|-------|-------------------------|------|--|--|
| No.  | Description                              | in                                    | mm | 0Z   | g     | lb                      | kg   |  |  |
| 598  | Stand-up toggle/control tangs            | <b>2</b> <sup>3</sup> / <sub>16</sub> | 56 | 8.2  | 231.3 | 4500                    | 2041 |  |  |
| 669  | Stand-up toggle/high load/control tangs* | <b>2</b> <sup>3</sup> / <sub>16</sub> | 56 | 10.9 | 308.4 | 7500                    | 3401 |  |  |
| 1896 | Stand-up toggle                          | <b>1</b> 5/8                          | 41 | 5.8  | 163.3 | 4500                    | 2041 |  |  |
| 1994 | Stand-up toggle/high load*               | <b>1</b> <sup>5</sup> /8              | 41 | 9.1  | 258.6 | 7500                    | 3401 |  |  |

\*Includes a replacement headpost for 1971 75 mm Black Magic® AirBlocks® and 1993, 3007 and 3008 100 mm Black Magic<sup>®</sup> AirBlocks<sup>®</sup>

2642 4:1 High-load 2602 3174

**Control Block Selection Guide** 

Block

2600

1950

2601

1951

\*Stop knot required to keep block from hitting end control

**Big Boat Car Controls** 

Car mounted control blocks feature ball bearing sheaves and mount to the car clear of track and end controls. 1514 single/ becket and 1515 doubles are low-load controls for 3163 cars. The strong, lightweight 3187 control block assembly's low-friction 57 mm Black Magic<sup>®</sup> sheaves fit between the toggles of the 3172 coupled traveler car for a compact system with maximum travel. Use on 2:1 and 4:1 mainsheet systems on catamarans and monohulls from 50 ft (15 m) to 70 ft (21 m).

3187

6090







598 669

End control

3168\*

3173 3169/3170

3174\*

3169/3170





\*For 3172 coupled traveler car only \*\*Fits 3163 and 3165 cars

# **Big Boat End Controls**

Big Boat end controls secure to track, eliminating additional holes. Tough one-piece bases and cam arms are machined from a single piece of aluminum.

Ball bearing sheaves let cars adjust under load and release instantly. Compact, high-strength Carbo AirBlock® components keep traveler weight minimal. Cam-Matic® cleats provide precise cleating.

Use 3171 to route control lines to the deck from a bridge-mounted traveler.

### **High-Load Controls**

High-load controls allow 2:1 to 6:1 purchases on offshore boats with mainsails over 400 ft<sup>2</sup> (37 m<sup>2</sup>). The 3185, 3186 and 3193 use multiple rows of ball bearings. The 3173 and 3174 feature 57 mm Black Magic<sup>®</sup> Big Boat ball/roller sheaves and high-load aluminum sideplates.

## **ESP End Controls**

Use 6088 double-sheave ESP end controls for cabintop travelers where lines lead to the aft edge of the cabintop. Use the 6090 control block for a 3:1 purchase or the 1845 (see page 116) for a 4:1 purchase. Contact Harken® to order special length 3156 track with control mounting holes.

End controls feature 40 mm Carbo AirBlock® sheaves with free-running Torlon® ball bearings

Installs with single screw

Dual shock absorbers cushion car impact

Integral bar for dead-ending control line



3169

3170

3171

3125



3124

3173

| Control Purchase Recommendations |          |           |          |             |  |  |  |  |  |  |  |
|----------------------------------|----------|-----------|----------|-------------|--|--|--|--|--|--|--|
|                                  |          |           |          |             |  |  |  |  |  |  |  |
| End-boom                         | sheeting | Mid-boom  |          |             |  |  |  |  |  |  |  |
| ft²                              | m²       | ft²       | m²       | Purchase    |  |  |  |  |  |  |  |
| Under 260                        | Under 24 | Under 240 | Under 22 | 3:1         |  |  |  |  |  |  |  |
| 260-450                          | 24-42    | 240-400   | 22-37    | 4:1         |  |  |  |  |  |  |  |
| 450-600                          | 42-56    | 400-550   | 37-51    | 6:1         |  |  |  |  |  |  |  |
| Over 600                         | Over 56  | Over 550  | Over 51  | 2.1 w/winch |  |  |  |  |  |  |  |

|      | Choavo                                          |                                                                               |       |                                       |     |                          |     |      | Max line Height above |                              |    | Maximum Bro                           |    | Broa         | kina |      |      |          |
|------|-------------------------------------------------|-------------------------------------------------------------------------------|-------|---------------------------------------|-----|--------------------------|-----|------|-----------------------|------------------------------|----|---------------------------------------|----|--------------|------|------|------|----------|
| Part |                                                 | Ø                                                                             |       | Length                                |     | Width V                  |     | We   | Weight Ø              |                              | Ø  | track                                 |    | working load |      | load |      |          |
| No.  | Description                                     | in                                                                            | mm    | in                                    | mm  | in                       | mm  | 0Z   | g                     | in                           | mm | in                                    | mm | lb           | kg   | lb   | kg   | Purchase |
| 3124 | Adjustable pinstop                              | _                                                                             | _     | <b>2</b> <sup>9</sup> / <sub>16</sub> | 65  | 21/4                     | 57  | 8    | 227                   | _                            | _  | <b>1</b> <sup>5</sup> / <sub>16</sub> | 33 | _            | _    | _    | _    |          |
| 3125 | Adjustable pinstop/shackle                      | —                                                                             | —     | 47/16                                 | 113 | 21/4                     | 57  | 15.2 | 431                   | —                            | —  | 1 <sup>27</sup> /32                   | 46 | 3500         | 1588 | —    | —    | _        |
| 3168 | Single sheave (pair)                            | <b>1</b> 9/16                                                                 | 40    | 413/16                                | 122 | 21/4                     | 57  | 27   | 767                   | 3/8                          | 10 | <b>1</b> 7/ <sub>16</sub>             | 36 | 450          | 204  | 1600 | 725  | 1:1/2:1  |
| 3169 | Double sheave (pair)                            | <b>1</b> 9/16                                                                 | 40    | 413/16                                | 122 | 21/4                     | 57  | 31   | 887                   | 3/8                          | 10 | 2                                     | 51 | 900          | 408  | 2300 | 1040 | 3:1/4:1  |
| 3170 | Double sheave/150 Cam-Matic <sup>®</sup> (pair) | <b>1</b> 9/16                                                                 | 40    | 413/16                                | 122 | 41/8                     | 104 | 39   | 1116                  | 3/8                          | 10 | 2                                     | 51 | 900          | 408  | 2300 | 1040 | 3:1/4:1  |
| 3171 | Double sheave for dodger (pair)*                | <b>1</b> <sup>9</sup> / <sub>16</sub>                                         | 40    | 413/16                                | 122 | <b>2</b> <sup>7</sup> /8 | 73  | 29   | 822                   | <sup>3</sup> /8              | 10 | <b>1</b> <sup>7</sup> / <sub>16</sub> | 36 | 900          | 408  | 2300 | 1040 | 3:1/4:1  |
| 3173 | High-load single (pair)                         | <b>2</b> <sup>1</sup> / <sub>4</sub>                                          | 57    | 67/16                                 | 164 | 21/4                     | 57  | 35   | 981                   | <sup>7</sup> / <sub>16</sub> | 12 | <b>1</b> 1/16                         | 28 | 2500         | 1134 | 5000 | 2268 | 1:1/2:1  |
| 3174 | High-load double (pair)                         | <b>2</b> <sup>1</sup> / <sub>4</sub>                                          | 57    | 67/16                                 | 164 | 21/4                     | 57  | 41   | 1169                  | <sup>7</sup> / <sub>16</sub> | 12 | <b>1</b> <sup>15</sup> /16            | 49 | 1650         | 750  | 3300 | 1500 | 3:1/4:1  |
| 3185 | High-load double/becket (pair)                  | <b>1</b> <sup>13</sup> / <sub>16</sub> / <b>1</b> <sup>3</sup> / <sub>8</sub> | 46/35 | 67/16                                 | 164 | 21/4                     | 57  | 51.2 | 1452                  | 3/8                          | 10 | <b>1</b> %/16                         | 39 | 1100         | 499  | 2500 | 1134 | 4:1      |
| 3186 | High-load triple/becket (pair)                  | <b>1</b> <sup>13</sup> / <sub>16</sub> / <b>1</b> <sup>3</sup> / <sub>8</sub> | 46/35 | 67/16                                 | 164 | 21/4                     | 57  | 54.4 | 1542                  | <sup>3</sup> /8              | 10 | 2 <sup>3</sup> /8                     | 60 | 1500         | 680  | 2500 | 1134 | 5:1/6:1  |
| 3193 | High-load triple/becket/150 Cam-Matic® (pair)   | <b>1</b> <sup>13</sup> / <sub>16</sub> / <b>1</b> <sup>3</sup> / <sub>8</sub> | 46/35 | <b>6</b> <sup>1</sup> / <sub>2</sub>  | 165 | 47/8                     | 124 | 32   | 908                   | 3/8                          | 10 | 2 <sup>3</sup> /8                     | 60 | 1500         | 680  | 2500 | 1134 | 5:1/6:1  |
| 6088 | ESP Double sheave (pair)**                      | 21/4                                                                          | 57    | 71/16                                 | 180 | 21/4                     | 57  | 37   | 1050                  | 3/8                          | 10 | <b>1</b> ¾                            | 35 | 700          | 318  | 2000 | 907  | 3:1/4:1  |

3193

3174

3186

Fit all Big Boat track \*Requires high-beam track or fitted support for low-beam track \*\*Requires special track
## Windward Sheeting CB Cars

Race once with the windward sheeting traveler car and you'll never race without one again. Pull the car above the centerline without releasing the leeward control line. Tack, and the car stays in the same position, ready to be pulled to the new windward side.

Cars are one-piece solid aluminum construction with captive balls. Mount track in the cockpit or near deck level. For dinghies to large offshore boats.





Tsunami, NYYC Swan 42 — J.H. Peterson photo

| Part |                                    | Le                                    | ngth | Width |     | We    | Ma:<br>Weight |                  | iline<br>Ø | Maxi<br>workin | mum<br>g load | Brea<br>Io | iking<br>ad |                         |
|------|------------------------------------|---------------------------------------|------|-------|-----|-------|---------------|------------------|------------|----------------|---------------|------------|-------------|-------------------------|
| No.  | Description                        | in                                    | mm   | in    | mm  | 0Z    | g             | in               | mm         | lb             | kg            | lb         | kg          | Purchase/control blocks |
| 1635 | Midrange CB**                      | <b>6</b> <sup>3</sup> / <sub>4</sub>  | 171  | 41/8  | 105 | 35    | 990           | <sup>3</sup> /8  | 10         | 1800           | 816           | 5000       | 2268        | 3:1/1631 4:1/1631       |
| 1636 | Midrange CB/long**                 | <b>6</b> <sup>3</sup> / <sub>4</sub>  | 171  | 41/8  | 105 | 36    | 1020          | <sup>3</sup> /8  | 10         | 2300           | 1043          | 5000       | 2268        | 3:1/1631 4:1/1631       |
| 2744 | Small Boat CB‡                     | 67/8                                  | 175  | 31/16 | 78  | 24.75 | 702           | <sup>5/</sup> 16 | 8          | 500            | 227           | 2500       | 1134        | 2:1/3:1/2740            |
| 2745 | Small Boat CB/high-load‡           | 67/8                                  | 175  | 31/16 | 78  | 24.75 | 702           | 5∕ <sub>16</sub> | 8          | 850            | 386           | 2500       | 1134        | 2:1/3:1/2740            |
| 2746 | 1250 Series Small Boat CB‡         | 67/8                                  | 175  | 31/16 | 78  | 26    | 737           | 5∕ <sub>16</sub> | 8          | 1250           | 567           | 2500       | 1134        | 2:1/3:1/2740            |
| 3176 | 3000 Series Big Boat CB***         | <b>9</b> <sup>9</sup> / <sub>16</sub> | 243  | 5     | 127 | 57    | 1618          | 3∕8              | 10         | 3000           | 1361          | 7000       | 3175        | 4:1/3168 5:1/6:1/3169   |
| 3177 | 3000 Series Big Boat CB/standup*** | <b>9</b> <sup>9</sup> / <sub>16</sub> | 243  | 5     | 127 | 62    | 1747          | 3/8              | 10         | 3000           | 1361          | 7000       | 3175        | 4:1/3168 5:1/6:1/3169   |
| 3178 | 4500 Series Big Boat CB***         | <b>9</b> <sup>9</sup> / <sub>16</sub> | 243  | 5     | 127 | 61    | 1723          | 3/8              | 10         | 4500           | 2041          | 9000       | 4081        | 4:1/3168 5:1/6:1/3169   |
| 3179 | 4500 Series Big Boat CB/standup*** | <b>9</b> <sup>9</sup> / <sub>16</sub> | 243  | 5     | 127 | 65    | 1851          | 3/8              | 10         | 4500           | 2041          | 9000       | 4081        | 4:1/3168 5:1/6:1/3169   |

‡Fits Small Boat CB track \*\*Fits Midrange CB track \*\*\*Fits Big Boat CB track See page 26 for replacement balls

## Mini-Maxi & **Maxi Cars & Controls**

Mini-Maxi and Maxi travelers bring the ease of dinghy traveler adjustment to large offshore boats. Cars ride on two rows of recirculating Torlon<sup>®</sup> ball bearings and roll freely under high, non-vertical loads. Custom configurations or cars for horizontally curved track available on request.

End controls feature energy-absorbing bumpers and come in several configurations.

Use for: Mainsheet systems Self-tacking jibs





Latini 52 Race, Felci Yacht Design, Latini Marine Srl — Latini Marine Srl photo

#### Cars

|        |                            |    |      |                          |     |      |      |     |      | Minimum track radius |        |     | dius   | Maxi   | mum    | Brea  | iking |
|--------|----------------------------|----|------|--------------------------|-----|------|------|-----|------|----------------------|--------|-----|--------|--------|--------|-------|-------|
| Part   |                            | Le | ngth | Wi                       | dth | He   | ight | We  | ight | Horiz                | zontal | Vei | rtical | workin | g load | lo    | ad    |
| No.    | Description                | in | mm   | in                       | mm  | in   | mm   | OZ  | kg   | ft                   | m      | ft  | m      | lb     | kg     | lb    | kg    |
| 3068   | Mini-Maxi                  | 10 | 254  | <b>4</b> ³/ <sub>8</sub> | 111 | 33/4 | 95   | 81  | 2.3  | 50                   | 15.25  | 50  | 15.25  | 8750   | 3969   | 18000 | 8164  |
| 3070   | Maxi                       | 14 | 357  | 51/4                     | 133 | 5    | 127  | 179 | 5.1  | 100                  | 30.5   | 50  | 15.25  | 12000  | 5443   | 25000 | 11340 |
| Coopor | a OG for replacement hallo |    |      |                          |     |      |      |     |      |                      |        |     |        |        |        |       |       |

See page 26 for replacement balls

#### Controls

| Part |                                        | Maximum<br>Length Width Height Weight working load |     |              |    |                                      |    |    |      | mum<br>1a load |      |                |
|------|----------------------------------------|----------------------------------------------------|-----|--------------|----|--------------------------------------|----|----|------|----------------|------|----------------|
| No.  | Description                            | in                                                 | mm  | in           | mm | in                                   | mm | OZ | g    | lb             | kg   | Track          |
| 1707 | Mini-Maxi end control/padeye           | 51/4                                               | 133 | 25/8         | 67 | 31/8                                 | 79 | 29 | 822  | 7800           | 3540 | 1701/1706/1848 |
| 3069 | Mini-Maxi end control/footblock/becket | 55/8                                               | 143 | <b>2</b> 5/8 | 67 | <b>2</b> <sup>3</sup> / <sub>4</sub> | 70 | 25 | 710  | 2500           | 1134 | 1701/1706/1848 |
| 3071 | Maxi end control/footblock/becket      | 71/8                                               | 181 | 33/4         | 95 | 33/8                                 | 86 | 56 | 1596 | 5250           | 2380 | 660/661        |
| 3071 | Maxi enu control/looldiock/deckel      | 1 78                                               | 101 | 3%4          | 95 | 378                                  | 00 | 00 | 1090 | 5250           | 2300 | 000/001        |

## Mini-Maxi & Maxi **Track & Accessories**

Use 1701 and 660 track for mainsheets on large yachts. 1706 and 661 track with pinstop holes are ideal for genoa tracks. 1848 Mini-Maxi Air Track® has many applications on racing boats and is a popular choice for custom Battcar systems on large cruisers.

Harken<sup>®</sup> will bend track to your specifications. See page 102.











H<sub>2</sub>O,Vallicelli 78' Sloop, A. Vallicelli & C. Yacht Designers, C.N. Yacht 2000 S.r.l. — Fabio Taccola photo

#### Track

|                   |                                   |                                     |         |           |             | Fast            | eners                 | Ho                              | le  |          |
|-------------------|-----------------------------------|-------------------------------------|---------|-----------|-------------|-----------------|-----------------------|---------------------------------|-----|----------|
| Part              |                                   | Leng                                | th      | We        | ight        | (F              | H)                    | spac                            | ing | Endstop  |
| No.               | Description                       | ft/in                               | m       | 0Z        | kg          | in              | mm                    | in                              | mm  | Part No. |
| Mini-Maxi Tra     | ick                               |                                     |         |           |             |                 |                       |                                 |     |          |
| 1701.1.5m‡        | Low-beam                          | 4'11 <sup>1</sup> / <sub>16</sub> " | 1.5     | 84.3      | 2.39        | 3/8             | 10                    | 2 <sup>15</sup> / <sub>16</sub> | 75  | 1702     |
| 1701.1.8m‡        | Low-beam                          | 5'10%"                              | 1.8     | 100.9     | 2.86        | <sup>3</sup> /8 | 10                    | 2 <sup>15</sup> /16             | 75  | 1702     |
| 1701.2.4m‡        | Low-beam                          | 7'101/2"                            | 2.4     | 134.7     | 3.82        | <sup>3</sup> /8 | 10                    | 2 <sup>15</sup> /16             | 75  | 1702     |
| 1701.3m‡          | Low-beam                          | 9'10 <sup>1</sup> /8"               | 3       | 168.3     | 4.77        | <sup>3</sup> /8 | 10                    | 2 <sup>15</sup> /16             | 75  | 1702     |
| 1701.3.6m‡        | Low-beam                          | 11'9¾"                              | 3.6     | 201.8     | 5.72        | <sup>3</sup> /8 | 10                    | 2 <sup>15</sup> /16             | 75  | 1702     |
| 1701.6m‡          | Low-beam                          | 19'8¼"                              | 6       | 336.5     | 9.54        | <sup>3</sup> /8 | 10                    | 2 <sup>15</sup> /16             | 75  | 1702     |
| 1706.1.5m‡        | Low-beam/pinstops                 | 4'11 <sup>1</sup> /16"              | 1.5     | 81.5      | 2.31        | <sup>3</sup> /8 | 10                    | 2 <sup>15</sup> /16             | 75  | 1702     |
| 1706.1.8m‡        | Low-beam/pinstops                 | 5'10%"                              | 1.8     | 97.7      | 2.77        | 3/8             | 10                    | 2 <sup>15</sup> / <sub>16</sub> | 75  | 1702     |
| 1706.2.4m‡        | Low-beam/pinstops                 | 7'10½"                              | 2.4     | 130.5     | 3.70        | 3/8             | 10                    | 2 <sup>15</sup> / <sub>16</sub> | 75  | 1702     |
| 1706.3m‡          | Low-beam/pinstops                 | 9'101/8"                            | 3       | 163       | 4.62        | 3/8             | 10                    | 2 <sup>15</sup> / <sub>16</sub> | 75  | 1702     |
| 1706.3.6m‡        | Low-beam/pinstops                 | 11'9¾"                              | 3.6     | 195.4     | 5.54        | <sup>3</sup> /8 | 10                    | 2 <sup>15</sup> /16             | 75  | 1702     |
| 1706.6m‡          | Low-beam/pinstops                 | 19'8¼"                              | 6       | 325.9     | 9.24        | <sup>3</sup> /8 | 10                    | 2 <sup>15</sup> /16             | 75  | 1702     |
| 1848.1.5m‡        | Air Track <sup>®</sup>            | 4'11 <sup>1</sup> /16"              | 1.5     | 68.8      | 1.95        | 3/8             | 10                    | 2 <sup>15</sup> /16             | 75  | 1702     |
| 1848.3.6m‡        | Air Track <sup>®</sup>            | 11'9¾"                              | 3.6     | 165.1     | 4.68        | <sup>3</sup> /8 | 10                    | 2 <sup>15</sup> /16             | 75  | 1702     |
| 1848.6m‡          | Air Track <sup>®</sup>            | 19'8 <sup>1</sup> /4"               | 6       | 275.1     | 7.80        | <sup>3</sup> /8 | 10                    | 2 <sup>15</sup> /16             | 75  | 1702     |
| Maxi Track        |                                   |                                     |         |           |             |                 |                       |                                 |     |          |
| 660.2.1m‡‡        | Low-beam                          | 6'1011/16"                          | 2.1     | 229.6     | 6.51        | 1/2             | 12                    | 315/16                          | 100 | 662      |
| 660.3m‡‡          | Low-beam                          | 9'10 <sup>1</sup> /8"               | 3       | 328       | 9.3         | 1/2             | 12                    | 315/16                          | 100 | 662      |
| 660.3.6m‡‡        | Low-beam                          | 11'9¾"                              | 3.6     | 393.7     | 11.16       | 1/2             | 12                    | 3 <sup>15</sup> /16             | 100 | 662      |
| 660.6m‡‡          | Low-beam                          | 19'8 <sup>1</sup> /4"               | 6       | 655.7     | 18.59       | 1/2             | 12                    | 3 <sup>15</sup> /16             | 100 | 662      |
| 661.2.1m‡‡        | Low-beam/pinstops                 | 6'1011/16"                          | 2.1     | 221.5     | 6.28        | 1/2             | 12                    | 3 <sup>15</sup> /16             | 100 | 662      |
| 661.3m‡‡          | Low-beam/pinstops                 | 9'10 <sup>1</sup> /8"               | 3       | 316.4     | 8.97        | 1/2             | 12                    | 3 <sup>15</sup> /16             | 100 | 662      |
| 661.3.6m‡‡        | Low-beam/pinstops                 | 11'9¾"                              | 3.6     | 379.9     | 10.77       | 1/2             | 12                    | 315/16                          | 100 | 662      |
| 661.6m‡‡          | Low-beam/pinstops                 | 19'81/4"                            | 6       | 632.8     | 17.94       | 1/2             | 12                    | 315/16                          | 100 | 662      |
| Actual size track | chart available at www.harken.com | +First hole                         | 37.5 mm | 1 (1½") + | +First hole | 50 mm (         | 1 <sup>15/16</sup> ") |                                 |     |          |





<sup>+</sup><sup>+</sup>First nole 50 mm (1<sup>-9</sup>/<sub>16</sub>)

#### **Accessories**

| Part | Part                      |                                      | Length |      | Width |                                      | ght | We   | ight |                |
|------|---------------------------|--------------------------------------|--------|------|-------|--------------------------------------|-----|------|------|----------------|
| No.  | Description               | in                                   | mm     | in   | mm    | in                                   | mm  | 0Z   | g    | Track          |
| 662  | Maxi endstop*             | 43/4                                 | 121    | 33/4 | 95    | 2                                    | 51  | 28.8 | 816  | 660/661        |
| 664  | Maxi adjustable stop      | 37/8                                 | 98     | 33/4 | 95    | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64  | 26   | 737  | 660/661        |
| 1702 | Mini-Maxi endstop**       | 33/4                                 | 95     | 25/8 | 67    | <b>1</b> ½                           | 38  | 13   | 369  | 1701/1706/1848 |
| 1708 | Mini-Maxi adjustable stop | <b>3</b> <sup>1</sup> / <sub>2</sub> | 89     | 25/8 | 67    | 21/16                                | 52  | 15   | 425  | 1701/1706/1848 |

\*5/8" (16 mm) FH fasteners \*\*1/2" (12 mm) FH fasteners

## **CRX Roller Traveler**

The CRX Roller Traveler carries almost double the load at half the weight of similarly sized traveler cars. Torlon® rollers provide greatly increased bearing contact over balls to provide low friction performance—even after months of extreme loading.

The Roller Traveler made its successful debut at the 2000 America's Cup. Developed by Jack Roeser of Otto Engineering, Harken engineers put on the finishing touches and the company was granted an exclusive patent license.

Toggle cars have low pivot points to handle non-vertical loads. Blocks attach directly to the toggle for a low-profile, compact system. The toggle serves as a stand-up for the mainsheet block.

Mini-Maxi cars available with titanium couplers, toggles and cross pins.

Use Roller Travelers with straight track only. Contact Harken® for curved traveler applications. CRX track uses 548 end stops and 3173 or 3174 end controls (requires custom drilled track). Mini-Maxi cars use custom CRX track and standard Mini-Maxi end controls.

Consult chart on page 101 to size traveler to mainsail area.

Captive rollers for easy loading and maintenance

Rollers carry extreme loads in a compact, lightweight package

3079

1¹/₄" 32 mm



Artemis, TP52, Reichel/Pugh, Cookson Boats - Thierry Martinez photo

#### Cars

| Part  |                                      | Ler                                   | igth | Wi                                   | dth | He                                     | ight | We   | ight | Number<br>of | Maxi<br>workin | mum<br>Ig load | Brea<br>Io | ıking<br>ad |         |
|-------|--------------------------------------|---------------------------------------|------|--------------------------------------|-----|----------------------------------------|------|------|------|--------------|----------------|----------------|------------|-------------|---------|
| No.   | Description                          | in                                    | mm   | in                                   | mm  | in                                     | mm   | 0Z   | g    | rollers      | lb             | kg             | lb         | kg          | Track   |
| 3074  | Big Boat/single block                | 5                                     | 127  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64  | <b>3</b> <sup>13</sup> / <sub>32</sub> | 86   | 22   | 624  | 102          | 5000           | 2268           | 10000      | 4535        | 3079    |
| 3075  | Big Boat/single block‡               | 71/2                                  | 191  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64  | <b>3</b> <sup>13</sup> / <sub>32</sub> | 86   | 39   | 1106 | 152          | 7500           | 3401           | 15000      | 6803        | 3079    |
| 3081  | Mini-Maxi/two-block                  | 12                                    | 305  | 3                                    | 76  | <b>4</b> <sup>1</sup> / <sub>2</sub>   | 114  | 99   | 2808 | 280          | 15000          | 6803           | 30000      | 13605       | Custom* |
| 3083  | Mini-Maxi/two-block/titanium coupler | 12                                    | 305  | 3                                    | 76  | <b>4</b> <sup>1</sup> / <sub>2</sub>   | 114  | 68   | 1928 | 280          | 15000          | 6803           | 30000      | 13605       | Custom* |
| 3084  | Big Boat/single block                | 10                                    | 254  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64  | 311/16                                 | 93   | 48   | 1360 | 204          | 10000          | 4535           | 20000      | 9070        | 3079    |
| 3085  | Big Boat/two-block                   | 10                                    | 254  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64  | 4 <sup>13</sup> / <sub>32</sub>        | 112  | 42   | 1190 | 204          | 10000          | 4535           | 20000      | 9070        | 3079    |
| C8140 | Loop toggle for 3074/3075            | <b>3</b> <sup>3</sup> / <sub>16</sub> | 81   | 3/4                                  | 19  | —                                      | _    | 6.69 | 189  | —            | 7500           | 3400           | 15000      | 6800        | _       |

\*Contact Harken® ‡Includes adapter to fit 100 mm Black Magic® AirBlocks®

#### **Big Boat CRX Track**

|             | Lengt                                           | h                                                                                                                    | Hole s                                                                                                                                           | pacing                                                                                                                                                                             | Wei                                                                                                                                                                                                                   | ight                                                                                                                                                                                                                                                       | Fasten                                                                                                                                                                                                                                                                                        | ers (FH)                                                                                                                                                                                                                                                                                                                                   | Endstop/                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description | ft/in                                           | m                                                                                                                    | in                                                                                                                                               | mm                                                                                                                                                                                 | 0Z                                                                                                                                                                                                                    | g                                                                                                                                                                                                                                                          | in                                                                                                                                                                                                                                                                                            | mm                                                                                                                                                                                                                                                                                                                                         | splice link                                                                                                                                                                                                                                                                                                                                                                 |
| Low-beam    | 6'6¾"                                           | 2                                                                                                                    | 3                                                                                                                                                | 75                                                                                                                                                                                 | 72.8                                                                                                                                                                                                                  | 2064                                                                                                                                                                                                                                                       | <sup>5</sup> /16                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                          | 548/3080                                                                                                                                                                                                                                                                                                                                                                    |
| Low-beam    | 9'10 <sup>1</sup> /16"                          | 3                                                                                                                    | 3                                                                                                                                                | 75                                                                                                                                                                                 | 109.2                                                                                                                                                                                                                 | 3096                                                                                                                                                                                                                                                       | <sup>5</sup> /16                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                          | 548/3080                                                                                                                                                                                                                                                                                                                                                                    |
| Low-beam    | 14'91/8"                                        | 4.5                                                                                                                  | 3                                                                                                                                                | 75                                                                                                                                                                                 | 163.8                                                                                                                                                                                                                 | 4644                                                                                                                                                                                                                                                       | <sup>5/</sup> 16                                                                                                                                                                                                                                                                              | 8                                                                                                                                                                                                                                                                                                                                          | 548/3080                                                                                                                                                                                                                                                                                                                                                                    |
|             | Description<br>Low-beam<br>Low-beam<br>Low-beam | Lengt       Description     ft/in       Low-beam     6'6'¼"       Low-beam     9'10'/16"       Low-beam     14'9'/8" | Length       Description     ft/in     m       Low-beam     6'6'4''     2       Low-beam     9'10'/rs"     3       Low-beam     14'9'/s"     4.5 | Length     Hole s       Description     ft/in     m     in       Low-beam     6'6%4"     2     3       Low-beam     9'10'/16"     3     3       Low-beam     14'91%"     4.5     3 | Length     Hole spacing       Description     ft/in     m     in     mm       Low-beam     6'6'%"     2     3     75       Low-beam     9'10'/16"     3     3     75       Low-beam     14'9'/8"     4.5     3     75 | Length     Hole spacing     We       Description     ft/in     m     in     mm     oz       Low-beam     6'6¾*     2     3     75     72.8       Low-beam     9'10½*     3     3     75     109.2       Low-beam     14'9½*     4.5     3     75     163.8 | Length     Hole spacing     Weight       Description     ft/in     m     in     mm     oz     g       Low-beam     6'6¾     2     3     75     72.8     2064       Low-beam     9'10¼%     3     3     75     109.2     3096       Low-beam     14'9⅛     4.5     3     75     163.8     4644 | Length     Hole spacing     Weight     Fastern       Description     ft/in     m     in     mm     oz     g     in       Low-beam     6'6¾*     2     3     75     72.8     2064     ½/6       Low-beam     9'10½*     3     3     75     109.2     3096     ½/6       Low-beam     14'9½*     4.5     3     75     163.8     4644     ½/6 | Length     Hole spacing     Weight     Fasteners (FH)       Description     ft/in     m     in     mm     oz     g     in     mm       Low-beam     6'6¾"     2     3     75     72.8     2064     ¾6     8       Low-beam     9'10¼16"     3     3     75     109.2     3096     ¾6     8       Low-beam     14'9¼5"     4.5     3     75     163.8     4644     ¾16     8 |

Actual size track chart available at www.harken.com

## Custom Yacht Mainsail Traveler Systems

High-load roller bearing traveler systems are strong and lightweight with free-running control on all points of sail. Captive bearings make cars easy to load and maintain.

The CRX roller bearing traveler handles extreme loads in a compact, lightweight package. Cars range in size from Big Boat to Megayacht, and handle loads from 7200 lb (3265 kg) to 26,504 lb (12,020 kg). CRX travelers can be configured to suit a variety of mainsheet purchases and traveler control set-ups.



Salperton, Dubois Naval Architects Ltd., Fitzroy Yachts Ltd.



| Part  |                                                | Length                                |     | Car body<br>Width height              |     | body<br>ight                         | Weight |       | Maxi<br>workir | mum<br>g load | Brea<br>Io | aking<br>ad |       |
|-------|------------------------------------------------|---------------------------------------|-----|---------------------------------------|-----|--------------------------------------|--------|-------|----------------|---------------|------------|-------------|-------|
| No.   | Description                                    | in                                    | mm  | in                                    | mm  | in                                   | mm     | 0Z    | g              | lb            | kg         | lb          | kg    |
| C5879 | Mini-Maxi CRX traveler                         | 12                                    | 305 | 3                                     | 77  | <b>4</b> <sup>1</sup> / <sub>2</sub> | 115    | 94.5  | 2680           | 15000         | 6818       | 30000       | 13636 |
| C6070 | Big Boat CRX traveler system                   | 139/16                                | 345 | 21/2                                  | 64  | 33/8                                 | 85     | 64.2  | 1820           | 7200          | 3265       | 14400       | 6530  |
| C6924 | Maxi CRX traveler                              | <b>16</b> <sup>1</sup> / <sub>4</sub> | 413 | <b>4</b> <sup>1</sup> / <sub>4</sub>  | 108 | 27/8                                 | 73     | 263   | 7457           | 26504         | 12020      | 24040       | 53008 |
| C7183 | Mini-Maxi titanium traveler                    | <b>20</b> <sup>1</sup> / <sub>2</sub> | 521 | <b>4</b> <sup>3</sup> / <sub>16</sub> | 106 | 2                                    | 52     | 352.7 | 10000          | 17700         | 8028       | 35400       | 16056 |
| C7746 | Mini-Maxi CRX traveler/125 mm Megayacht blocks | 12                                    | 305 | <b>3</b> <sup>1</sup> / <sub>32</sub> | 77  | 2 <sup>1</sup> /8                    | 54     | 140.7 | 3990           | 15000         | 6804       | 30000       | 13608 |
| C8583 | Maxi traveler                                  | 28 <sup>1</sup> /4                    | 718 | 5 <sup>7</sup> / <sub>32</sub>        | 132 | 2 <sup>7</sup> /32                   | 56     | 537.6 | 15241          | 21168         | 9600       | 42336       | 19200 |

Contact Harken to request quote and lead time. For full product line, visit www.harkencustom.com

## Grand Prix Mainsail Traveler Systems

High-load roller traveler systems are strong, lightweight and offer free-running control on all points of sail. Captive bearings make cars easy to load and maintain.

#### **CRX** Cars

The CRX roller bearing traveler system handles extreme loads in a compact, lightweight package. Cars range in size from Big Boat to Megayacht and handle loads from 10,000 lb (4,535 kg) to 33,076 lb (15,000 kg). CRX travelers can be configured to suit a variety of mainsheet purchases and traveler control set-ups.

#### **PCRX System**

The award-winning PCRX mainsheet traveler features a hinged track that pivots as the mainsheet angle changes so the car remains aligned to the load. The result is less friction, more load capacity, and a lighter weight design. The elimination of the toggle also reduces the car's height and weight. Mini-Maxi PCRX traveler systems are used on America's Cup boats and Volvo ocean racers, with Big Boat versions on TP52s and IRC 70s. The Mega PCRX is aboard the 100 ft (30.4 m) Maxi, *Speedboat*.

C7792 Blocks not included

Carbon bobbins are laminated into the deck, eliminating track fasteners to reduce weight



|                                                          | Le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nath                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Car body<br>th Width height Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | iaht                                                   | Maxi<br>workin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mum<br>a load                                          | Breaking<br>load                                       |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description                                              | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mm                                                     | OZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | g                                                      | lb                                                     | kg                                                                                          | lb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CRX traveler/titanium coupler/single block/fixed track** | 10 <sup>1</sup> /4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>2</b> <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>1</b> <sup>11</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43                                                     | 45.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1293                                                   | 10000                                                  | 4536                                                                                        | 20000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CRX traveler/titanium coupler/two-block/fixed track**    | 10 <sup>1</sup> /4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>2</b> <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>1</b> <sup>11</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 43                                                     | 45.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1284                                                   | 9920                                                   | 4500                                                                                        | 19840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CRX low-profile endstop/short/fixed track (pair)**       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>1</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | —                                                      | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 88                                                     | —                                                      | —                                                                                           | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PCRX low-profile endstop/pivoting track (pair)*          | 35/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>1</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | —                                                      | 3.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 93                                                     | —                                                      | —                                                                                           | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| PCRX traveler/titanium coupler/pivoting track*           | 10 <sup>1</sup> /4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 260.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>2</b> <sup>1</sup> / <sub>2</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>1</b> <sup>13</sup> / <sub>16</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 47                                                     | 34.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 989                                                    | 9920                                                   | 4500                                                                                        | 19840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| xi                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CRX low-profile endstop/fixed track*                     | 35/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>1</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>7</sup> /16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                     | 6.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 170.6                                                  | _                                                      | _                                                                                           | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CRX endstop for Loop/fixed track*                        | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27/32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 <sup>7</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48                                                     | 1.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 54                                                     | _                                                      | _                                                                                           | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| CRX traveler/titanium coupler/two-block/fixed track*     | 15 <sup>1</sup> /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>3</b> <sup>1</sup> / <sub>32</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 <sup>7</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 48                                                     | 97.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2759                                                   | 15000                                                  | 6804                                                                                        | 30000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13608                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PCRX traveler/pivoting track*                            | 15 <sup>1</sup> /2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 394                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>3</b> <sup>1</sup> / <sub>32</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>2</b> <sup>7</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 72                                                     | 5.99                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2.72                                                   | 16000                                                  | 7257                                                                                        | 32000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PCRX endstop/pivoting track (pair)*                      | 35/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>1</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>7</sup> /16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                     | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91                                                     | _                                                      | _                                                                                           | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                        |                                                        |                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Mega PCRX low-profile endstop/pivoting track*            | 35/8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 27/16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <sup>7</sup> /16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11                                                     | 3.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 91                                                     | _                                                      | _                                                                                           | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Mega PCRX traveler/pivoting track*                       | 16 <sup>1</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>4</b> <sup>1</sup> / <sub>4</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2 <sup>7</sup> /8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 73                                                     | 157.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4468                                                   | 30000                                                  | 13608                                                                                       | 60000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 27216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                          | Description     CRX traveler/titanium coupler/single block/fixed track**     CRX traveler/titanium coupler/two-block/fixed track**     CRX low-profile endstop/short/fixed track (pair)**     PCRX low-profile endstop/pivoting track (pair)*     PCRX traveler/titanium coupler/pivoting track (pair)*     PCRX traveler/titanium coupler/pivoting track*     Xi     CRX endstop for Loop/fixed track*     CRX traveler/titanium coupler/two-block/fixed track*     CRX traveler/pivoting track     PCRX traveler/pivoting track (pair)*     Mega PCRX low-profile endstop/pivoting track*     Mega PCRX traveler/pivoting track* | Le       Description     in       CRX traveler/titanium coupler/single block/fixed track**     10 <sup>1</sup> /4       CRX traveler/titanium coupler/two-block/fixed track**     10 <sup>1</sup> /4       CRX traveler/titanium coupler/two-block/fixed track**     10 <sup>1</sup> /4       CRX low-profile endstop/short/fixed track (pair)**     2       PCRX low-profile endstop/pivoting track (pair)*     35/8       PCRX traveler/titanium coupler/pivoting track*     10 <sup>1</sup> /4       Xi     CRX low-profile endstop/fixed track*     35/8       CRX low-profile endstop/fixed track*     35/8     35/8       CRX traveler/titanium coupler/two-block/fixed track*     4     10 <sup>1</sup> /4       CRX traveler/pivoting track     15 <sup>1</sup> /2     15 <sup>1</sup> /2       PCRX traveler/pivoting track     15 <sup>1</sup> /2     15 <sup>1</sup> /2       PCRX endstop/pivoting track (pair)*     35 <sup>6</sup> /8       Mega PCRX low-profile endstop/pivoting track*     35 <sup>6</sup> /8       Mega PCRX traveler/pivoting track*     16 <sup>1</sup> /8 | LengthDescriptioninmmCRX traveler/titanium coupler/single block/fixed track** $10^{1/4}$ $260$ CRX traveler/titanium coupler/two-block/fixed track** $10^{1/4}$ $260$ CRX low-profile endstop/short/fixed track (pair)** $2$ $52$ PCRX low-profile endstop/pivoting track (pair)* $3^{5/6}$ $92$ PCRX traveler/titanium coupler/pivoting track* $10^{1/4}$ $260.35$ <b>Xi</b> $3^{5/6}$ $92$ CRX low-profile endstop/fixed track* $3^{5/6}$ $92$ CRX traveler/titanium coupler/two-block/fixed track* $15^{1/2}$ $394$ PCRX traveler/pivoting track (pair)* $3^{5/6}$ $92$ CRX traveler/pivoting track (pair)* $3^{5/6}$ $92$ Mega PCRX low-profile endstop/pivoting track* $3^{5/6}$ $92$ Mega PCRX traveler/pivoting track * $16^{1/6}$ $410$ | $\begin{tabular}{ c c c c } \hline Length & Wi \\ \hline in & mm & in \\ \hline in & mm & in \\ \hline cRX traveler/titanium coupler/single block/fixed track** & 101/4 & 260 & 21/2 \\ \hline CRX traveler/titanium coupler/two-block/fixed track** & 101/4 & 260 & 21/2 \\ \hline CRX traveler/titanium coupler/two-block/fixed track** & 2 & 52 & 11/4 \\ \hline PCRX low-profile endstop/short/fixed track (pair)* & 2 & 52 & 11/4 \\ \hline PCRX traveler/titanium coupler/pivoting track (pair)* & 37/6 & 92 & 11/4 \\ \hline PCRX traveler/titanium coupler/pivoting track* & 101/4 & 260.35 & 21/2 \\ \hline RX traveler/titanium coupler/pivoting track * & 35/6 & 92 & 11/4 \\ \hline CRX endstop for Loop/fixed track* & 4 & 102 & 27/2 \\ \hline CRX traveler/pivoting track * & 151/2 & 394 & 31/32 \\ \hline PCRX traveler/pivoting track (pair)* & 35/6 & 92 & 11/4 \\ \hline Mega PCRX low-profile endstop/pivoting track * & 35/6 & 92 & 11/4 \\ \hline Mega PCRX traveler/pivoting track * & 161/6 & 410 & 41/4 \\ \hline \end{tabular}$ | $\begin{array}{c c c c c c c } & Length & Width \\ \hline \mbox{in} & \mbox{mm} & \mbox{in} & \mbox{mm} \\ \hline \mbox{CRX traveler/titanium coupler/single block/fixed track** & 101/4 & 260 & 21/2 & 64 \\ \hline \mbox{CRX traveler/titanium coupler/two-block/fixed track** & 101/4 & 260 & 21/2 & 64 \\ \hline \mbox{CRX traveler/titanium coupler/two-block/fixed track** & 101/4 & 260 & 21/2 & 64 \\ \hline \mbox{CRX low-profile endstop/short/fixed track (pair)** & 2 & 52 & 11/4 & 32 \\ \hline \mbox{PCRX low-profile endstop/pivoting track (pair)* & 33/8 & 92 & 11/4 & 32 \\ \hline \mbox{PCRX traveler/titanium coupler/pivoting track* & 101/4 & 260.35 & 21/2 & 64 \\ \hline \mbox{Xi} & & & & \\ \hline CRX traveler/titanium coupler/fixed track* & 35/8 & 92 & 11/4 & 32 \\ \hline \mbox{CRX endstop for Loop/fixed track* & 4 & 102 & 21/2 & 56 \\ \hline \mbox{CRX traveler/pivoting track (pair)* & 35/8 & 92 & 11/4 & 32 \\ \hline \mbox{CRX traveler/pivoting track (pair)* & 35/8 & 92 & 11/4 & 32 \\ \hline \mbox{CRX traveler/pivoting track (pair)* & 35/8 & 92 & 11/4 & 32 \\ \hline \mbox{CRX traveler/pivoting track (pair)* & 35/8 & 92 & 11/4 & 32 \\ \hline \mbox{CRX traveler/pivoting track (pair)* & 35/8 & 92 & 11/4 & 32 \\ \hline \mbox{CRX traveler/pivoting track (pair)* & 35/8 & 92 & 11/4 & 32 \\ \hline \mbox{CRX traveler/pivoting track (pair)* & 35/8 & 92 & 11/4 & 32 \\ \hline \mbox{CRX traveler/pivoting track (pair)* & 35/8 & 92 & 11/4 & 32 \\ \hline \mbox{CRX traveler/pivoting track (pair)* & 35/8 & 92 & 21/4 & 32 \\ \hline \mbox{CRX traveler/pivoting track (pair)* & 35/8 & 92 & 21/4 & 32 \\ \hline \mbox{CRX traveler/pivoting track (pair)* & 35/8 & 92 & 21/4 & 32 \\ \hline \mbox{CRX traveler/pivoting track (pair)* & 35/8 & 92 & 21/4 & 32 \\ \hline \mbox{CRX traveler/pivoting track (pair)* & 35/8 & 92 & 21/4 & 32 \\ \hline \mbox{CRX traveler/pivoting track (pair)* & 35/8 & 92 & 21/4 & 32 \\ \hline \mbox{CRX traveler/pivoting track * & 161/8 & 410 & 41/4 & 108 \\ \hline \mbox{CRX traveler/pivoting track * & 161/8 & 410 & 41/4 & 108 \\ \hline \mbox{CRX traveler/pivoting track * & 161/8 & 410 & 41/4 & 108 \\ \hline \mbox{CRX traveler/pivoting track * & 161/8 & 410 & 41/4 & 108 \\ \hline \mbox{CRX traveler/$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c } & Length & Width & Car body height h$ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | $\begin{array}{c c c c c c c c c c c c c c c c c c c $ | Length<br>DescriptionLength<br>inWidth $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | Length<br>DescriptionLength<br>inWidth<br>inCar body<br>heightWeight<br>working loadDescriptioninmmmminmmozglbkgICRX traveler/itanium coupler/single block/fixed track** $10^{1/4}$ 260 $2^{1/2}$ 64 $1^{11}$ /is4345.61293100004536CRX traveler/itanium coupler/two-block/fixed track** $10^{1/4}$ 260 $2^{1/2}$ 64 $1^{11}$ /is4345.3128499204500CRX low-profile endstop/short/fixed track (pair)**252 $1^{1/4}$ 323.188PCRX low-profile endstop/pivoting track (pair)* $3^5/8$ 92 $1^{1/4}$ 323.188999204500PCRX traveler/fitanium coupler/pivoting track (pair)* $3^5/8$ 92 $1^{1/4}$ 323.1888PCRX traveler/fitanium coupler/pivoting track (pair)* $3^5/8$ 92 $1^{1/4}$ 323.1889CRX traveler/fitanium coupler/fixed track* $10^{1/4}$ 260.5 $2^{1/2}$ 64 $1^{13}/16$ 416.0217.06CRX traveler/fitanium coupler/fixed track* $3^{5}/8$ 92 $1^{1/4}$ 32 $7/16$ 116.0217.06CRX traveler/fitanium coupler/fixed track* $3^{5}/8$ 92 $1^{1/4}$ 32 $7^{1/6}$ 11 $3.2$ 91 | Length<br>DescriptionWith<br>heightCar body<br>heightWeightMaximum<br>working loadBream<br>loadDescriptioninmminmminmmozglbkglbCRX traveler/titanium coupler/single block/fixed track** $10^{1/4}$ 260 $2^{1/2}$ 64 $1^{11/16}$ 4345.6129310000453620000CRX traveler/titanium coupler/two-block/fixed track** $10^{1/4}$ 260 $2^{1/2}$ 64 $1^{11/16}$ 4345.612939000453620000CRX traveler/titanium coupler/two-block/fixed track* $10^{1/4}$ 260 $2^{1/2}$ 64 $1^{11/16}$ 4345.612939000453620000CRX traveler/titanium coupler/two-block/fixed track $2^{1/2}$ $5^{1/4}$ $32$ $3.1$ $88$ PCRX traveler/titanium coupler/pivoting track (pair)* $3^{5}/8$ $92$ $1^{1/4}$ $32$ $3.28$ $93$ RX traveler/titanium coupler/pivoting track $5^{1/8}/8$ $92$ $1^{1/4}/8$ $32$ $7^{1/16}$ $11$ $6.02$ $17.6$ CRX traveler/fited track* $5^{1/8}/8$ $92$ $1^{1/4}/8$ $32$ $7^{1/6}116.0217.6CRX traveler/pivoting track5^{1/8}/8921^{1/4}/83^{1/2}/8772^{1/6}/811^{1}/8899.2227$ |

Contact Harken to request quote and lead time. For full product line, visit www.harkencustom.com \*Custom track \*\*3079 Big Boat CRX track: see page 121

### **Pro-Trim Control Systems**

The Harken Pro-Trim (HPT) traveler system is the first of many applications of the award-winning Pro-Trim series. Compact and clean, this belowdeck system provides the trimmer with increased mechanical advantage and fingertip responsiveness simply by pulling the control line. The traveler system's small footprint takes up far less space than other multiple purchase belowdeck systems and eliminates the need for heavy winches on deck.

A drive shaft connects a large diameter drive sheave to the take-up spools via a gear set that increases mechanical advantage and gives the trimmer an increased power ratio, making traveler control easier and smoother. The lines on the take-up spools pull the traveler car on the track with minimal friction, while the continuous loop on the control line creates a slack-free traveler system.

Major components of the Harken Pro-Trim, including the drive sheave, base box and one larger gear, are CNC machined 6061-T6 aluminum, constructed for strength and durability. Spool shaft, small gears and spool shaft bearings are precision cut stainless steel. Plastic roller bearings from Harken's racing winches support the drive shafts, while high-strength Torlon<sup>®</sup> ball bearings handle thrust loads.

Expect to see Pro-Trim systems used for other control line applications such as backstays, athwartship jib systems and fore and aft genoa car systems.

Universal joints on drive shaft allow the spool box to be placed off centerline

> Two free-spinning rollers ensure the control loop stays engaged to the drive sheave. Rollers adjust depending on trimmer's preference

Small footprint makes it ideal for sailors that want to save space belowdeck

Drive unit mounts onto the same base platform as the spool unit for simplified installation and maintenance

C8986

C8440



Drive sheave can be located

and optimized to the main

trimmer's position

at a distance from the traveler

Magic Glove, Ker 50, Ker Associates Limited Design, Latitude Yachting Builder — J.H. Peterson Photo

| Pro-Trim systems are custon | n designed to fit specifi | c applications For question | s or to place an orde | r please contact Harken® |
|-----------------------------|---------------------------|-----------------------------|-----------------------|--------------------------|
|                             |                           |                             |                       |                          |

| Part  |                                                                                                      | Sheav | e/spool | Dimen<br>(L x W      | sions<br>x H)   | We     | ight | Maxiı<br>workin | ng load |      | king<br>ad |  |
|-------|------------------------------------------------------------------------------------------------------|-------|---------|----------------------|-----------------|--------|------|-----------------|---------|------|------------|--|
| No.   | Description                                                                                          | in    | mm      | in                   | n mm            |        | g    | lb              | kg      | lb   | kg         |  |
| C8986 | Drive sheave                                                                                         | 6     | 150     | 3.232 x 6.84 x 8.559 | 82 x 174 x 217  | 39.47  | 1119 | 500             | 227     | 1500 | 680        |  |
| C8440 | Dual spool assembly                                                                                  | 1     | 25.4    | 9.203 x 5.5 x 4.799  | 234 x 140 x 122 | 70.864 | 2009 | 1500            | 680     | 3000 | 1361       |  |
| 0     | Dester to Hardware to a sector and hard these. For full and don't line is the sector to a sector and |       |         |                      |                 |        |      |                 |         |      |            |  |

Contact Harken to request quote and lead time. For full product line, visit www.harkencustom.com

## Ball Bearing Adjustable Genoa Lead Cars

Recirculating Torlon<sup>®</sup> ball bearings allow genoa lead cars to adjust easily under full sheet loads.

Sheaves feature ball/roller bearings with sideload balls for easy trimming and fore/aft adjustment under load. Wide sheaves accommodate two sheets during sail changes. Sheave carriers pivot to accommodate changing lead angles.

1869 and 3072 Mini-Maxi cars come with control blocks for a 2:1 purchase or puller tangs for a 1:1 system.

Low-friction, roller/ball bearing aluminum sheave

Pivoting sheave carrier

Accepts Midrange and Big Boat control blocks

Recirculating ball bearings or Torlon® rods

Dehler 34, Simonis Voogd — Dehler Yachts photo



See the CB Track and Accessories pages to order track

For sheet-loading formulas see page 28.

1537

IARKEN



|          |           |          | Gais      |          |           |           |
|----------|-----------|----------|-----------|----------|-----------|-----------|
| Purchase | Blocks on | 249/323  | 554/1874  | 587/1873 | 1537/1599 | 1869/3072 |
| 1:1      | Track     | 2740     | 3173      | 3173     | 1631      | 3069      |
| 2:1      | Car       | 348/2650 | 1540/1950 | 1797     | 1513      | —         |
| 2:1      | Track     | 2740     | 3173      | 3168     | 1631      | 3069      |
| 3:1      | Car       | 348/2650 | 1541/1951 | 1798     | 1514      | —         |
| 3:1      | Track     | 2742     | 3174      | 3169     | 1632      | —         |
| 4:1      | Car       | —        | 1952      | 1515     | 1515      | —         |
| 4:1      | Track     | —        | 3174      | 3169     | 1632      | —         |
|          |           |          |           |          |           |           |

0-----

| Part |                          | She<br>Ø                             | ave<br>I | Len                                     | gth | Wi                                    | dth | We  | ight | Maxi<br>workin | mum<br>Ig load | Brea<br>loa | king<br>ad |                |
|------|--------------------------|--------------------------------------|----------|-----------------------------------------|-----|---------------------------------------|-----|-----|------|----------------|----------------|-------------|------------|----------------|
| No.  | Description              | in                                   | mm       | in                                      | mm  | in                                    | mm  | 0Z  | g    | lb             | kg             | lb          | kg         | Track          |
| 249  | Small Boat               | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64       | <b>4</b> <sup>3</sup> / <sub>8</sub>    | 111 | <b>2</b> <sup>3</sup> / <sub>16</sub> | 56  | 18  | 510  | 1250           | 567            | 2500        | 1134       | 2720           |
| 554  | Big Boat 4500 Series     | 3                                    | 76       | <b>9</b> <sup>3</sup> / <sub>4</sub>    | 248 | <b>3</b> <sup>1</sup> / <sub>3</sub>  | 85  | 59  | 1673 | 4500           | 2041           | 9000        | 4082       | 3154           |
| 587  | Big Boat 3000 Series     | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64       | 8                                       | 203 | <b>3</b> <sup>1</sup> / <sub>3</sub>  | 85  | 37  | 1049 | 3000           | 1361           | 6000        | 2722       | 3154           |
| 1537 | Midrange                 | <b>21/</b> 2                         | 64       | 5 <sup>1</sup> /4                       | 133 | <b>2</b> <sup>3</sup> / <sub>4</sub>  | 70  | 27  | 765  | 2300           | 1043           | 4600        | 2086       | 1616           |
| 1869 | Mini-Maxi/puller tang    | <b>4</b> <sup>1</sup> / <sub>2</sub> | 114      | 167/16                                  | 417 | 43/8                                  | 111 | 160 | 4536 | 9000           | 4082           | 18000       | 8164       | 1701/1706/1848 |
| 3072 | Mini-Maxi/adjuster block | <b>4</b> <sup>1</sup> / <sub>2</sub> | 114      | <b>13</b> <sup>11</sup> / <sub>16</sub> | 348 | 43/8                                  | 111 | 164 | 4649 | 9000           | 4082           | 18000       | 8164       | 1701/1706/1848 |
| 2    |                          |                                      |          |                                         |     |                                       |     |     |      |                |                |             |            |                |

See page 26 for replacement balls

# Pinstop Jib Leads

#### Dinghy

These easy-to-adjust cars combine a spring-loaded pinstop with precise track spacing. Use on dinghies and small sport boats with jibs up to 140 ft<sup>2</sup> (13 m<sup>2</sup>). Car and track are built of tough 6061-T6 aluminum that is Hardkote-anodized black with Teflon<sup>®</sup> impregnation for durability.

The 450 pinstop jib lead has a removable bail to attach a spring and block. The 452 bullseye lead has a controlled pivot angle so the cleat is always within easy reach. Use 451 bullseye cars when line deflection is small.

#### Small Boat

Spring loaded pinstop cars offer two lead solutions for small keel boats from 22 ft to 27 ft (6 to 8 m).

The 2750 is for racers like the J/80 or Melges 24. Attach lightweight 57 or 75 mm Carbo blocks. Combine with 370 stand-up boot or use the 57 mm Ti-Lite.

The 393 genoa lead uses an axle bearing sheave. The sheave carrier pivots to accept unfair leads. Removable stop limits inboard pivoting so lead can mount near cabin side.

2750



| Part |                                                                   | Len                      | igth | Wi                                    | dth | Hei                                    | ght | Wei  | ight | Maxi<br>workin | mum<br>g load | Brea<br>Io: | king<br>ad |       |
|------|-------------------------------------------------------------------|--------------------------|------|---------------------------------------|-----|----------------------------------------|-----|------|------|----------------|---------------|-------------|------------|-------|
| No.  | Description                                                       | in                       | mm   | in                                    | mm  | in                                     | mm  | 0Z   | g    | lb             | kg            | lb          | kg         | Track |
| 450  | Dinghy jib lead/bail/pinstop                                      | <b>2</b> <sup>5</sup> /8 | 67   | <sup>15</sup> / <sub>16</sub>         | 23  | <b>1</b> 1/16                          | 27  | 2    | 55   | 350            | 159           | 700         | 318        | 453   |
| 451  | Dinghy jib lead/bullseye/pinstop                                  | <b>2</b> <sup>5</sup> /8 | 67   | <sup>15</sup> / <sub>16</sub>         | 23  | <b>1</b> <sup>13</sup> / <sub>16</sub> | 46  | 3    | 77   | 250            | 113           | 500         | 227        | 453   |
| 452P | Dinghy jib lead/bullseye/swivel/365 Carbo-Cam <sup>®</sup> (Port) | 31/8                     | 79   | 37/16                                 | 87  | 27/16                                  | 62  | 7    | 194  | 250            | 113           | 500         | 227        | 453   |
| 452S | Dinghy jib lead/bullseye/swivel/365 Carbo-Cam® (Stbd)             | 31/8                     | 79   | 37/16                                 | 87  | 27/16                                  | 62  | 7    | 194  | 250            | 113           | 500         | 227        | 453   |
| 393P | Small Boat jib lead/tang (Port)                                   | 33/4                     | 95   | <b>2</b> <sup>1</sup> / <sub>16</sub> | 52  | 4                                      | 102 | 18.4 | 522  | 1250           | 567           | 2500        | 1134       | 2751  |
| 393S | Small Boat jib lead/tang (Stbd)                                   | 33/4                     | 95   | <b>2</b> <sup>1</sup> / <sub>16</sub> | 52  | 4                                      | 102 | 18.4 | 522  | 1250           | 567           | 2500        | 1134       | 2751  |
| 2750 | Small Boat jib lead/pinstop                                       | 37/16                    | 87.5 | <b>1</b> <sup>5</sup> / <sub>16</sub> | 33  | <b>1</b> <sup>3</sup> /8               | 34  | 4.6  | 130  | 1100           | 500           | 2200        | 1000       | 2751  |

#### Track

Cars

| Part       |                                     | Lenç                                      | jth | Mou<br>hole s | nting<br>Dacing | Wei  | ight | Fasto<br>(F | eners<br>H) |             |          |
|------------|-------------------------------------|-------------------------------------------|-----|---------------|-----------------|------|------|-------------|-------------|-------------|----------|
| No.        | Description                         | ft/in                                     | m   | in            | mm              | 0Z   | g    | in          | mm          | Endstop     | Trim cap |
| 453.9.5    | Dinghy low-beam/pinstop holes*      | <b>9</b> <sup>1</sup> / <sub>2</sub> "    | .24 | 3             | 76              | 1.22 | 35   | #10         | 5           | —           | —        |
| 453.12     | Dinghy low-beam/pinstop holes*      | <b>11</b> <sup>11</sup> / <sub>16</sub> " | .3  | 3             | 76              | 1.5  | 43   | #10         | 5           | —           | —        |
| 453.15     | Dinghy low-beam/pinstop holes*      | <b>14</b> <sup>11</sup> / <sub>16</sub> " | .37 | 3             | 76              | 1.8  | 52   | #10         | 5           | —           | —        |
| 453.18     | Dinghy low-beam/pinstop holes*      | 1711/16"                                  | .45 | 3             | 76              | 2.3  | 65   | #10         | 5           | —           | —        |
| 453.24     | Dinghy low-beam/pinstop holes*      | 2311/16"                                  | .6  | 3             | 76              | 3.1  | 87   | #10         | 5           | —           | —        |
| 2751.600mm | Small Boat low-beam/pinstop holes** | 1'115/8"                                  | .6  | 315/16        | 100             | 8.9  | 252  | #10         | 5           | 173/263/446 | 2722     |
| 2751.1m    | Small Boat low-beam/pinstop holes** | 3'33/8"                                   | 1   | 315/16        | 100             | 14.8 | 420  | #10         | 5           | 173/263/446 | 2722     |
| 2751.1.5m  | Small Boat low-beam/pinstop holes** | 4'11 <sup>1</sup> /16"                    | 1.5 | 315/16        | 100             | 22.2 | 629  | #10         | 5           | 173/263/446 | 2722     |
| 2751.2m    | Small Boat low-beam/pinstop holes** | 6'63/4"                                   | 2   | 315/16        | 100             | 29.6 | 838  | #10         | 5           | 173/263/446 | 2722     |
| 2751.3.6m  | Small Boat low-beam/pinstop holes** | 11'9 <sup>3</sup> /4"                     | 3.6 | 315/16        | 100             | 53.3 | 1510 | #10         | 5           | 173/263/446 | 2722     |

Actual size track chart available at www.harken.com \*1st hole 13g" (34 mm) \*\*1st hole 50 mm (115/16")

## Slider Genoa Lead Cars

Slider cars run on ball bearing track. Roller/ball bearing sheaves pivot 60 degrees for easy trimming.

The 323, 1599, 1873 and 1874 have inner-race slider rods to help lower friction. Slider rods can be replaced with ball bearings to make the car adjustable under load. The 1663 car uses Polyslide material to help slide car. Car can be towed or used as a pinstop car.

Choose pinstop genoa lead cars for applications where lead positions change infrequently. Select Harken<sup>®</sup> pinstop track.

The 1995 and 1996 sheaves have roller bearings, while the 1613 and 1639 have axle bearings. Cars remove easily from the track to clean up deck.

**Use for:** Genoa leads Caprail leads Sheave carrier pivots to accept unfair leads

Removable stop limits

inboard pivoting so lead can mount near cabin side

Easy-to-operate lever pinstop

> 1639P 1639S

.....

p deck.





|       |                                  |                                      |     |                                      |      |                                       |     |      |      |     |      |                                      |        | FOT S  | neet-ioal | ang ion | nuias se | e page za  | ö. |
|-------|----------------------------------|--------------------------------------|-----|--------------------------------------|------|---------------------------------------|-----|------|------|-----|------|--------------------------------------|--------|--------|-----------|---------|----------|------------|----|
|       |                                  | She                                  | ave | Lor                                  | ath  | w:                                    | dth | Wa   | iaht | Max | line | Sheet                                | height | Maxi   | mum       | Brea    | king     |            |    |
| Part  |                                  | . '                                  | 9   | Lei                                  | iyui |                                       | uui | we   | iyin | . ' | 0    | auuve                                | ITAUK  | WURKIN | iy ioau   |         | au       | <b>-</b> . |    |
| NO.   | Description                      | IN                                   | mm  | in                                   | mm   | in                                    | mm  | OZ   | g    | IN  | mm   | in                                   | mm     | Ib     | Kg        | Ib      | Kg       | Irack      | _  |
| 323   | Small Boat/slider rods           | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64  | <b>4</b> <sup>1</sup> / <sub>2</sub> | 114  | <b>2</b> <sup>3</sup> / <sub>16</sub> | 56  | 19   | 539  | 1/2 | 12   | <b>1</b> <sup>3</sup> / <sub>4</sub> | 45     | 1250   | 567       | 2500    | 1134     | 2720       |    |
| 1599  | Midrange/slider rods             | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64  | 51/4                                 | 133  | <b>2</b> <sup>3</sup> / <sub>4</sub>  | 70  | 28   | 804  | 1/2 | 12   | <b>2³/</b> 16                        | 56     | 2300   | 1043      | 4600    | 2086     | 1616       |    |
| 1613  | Midrange/pinstop                 | 2                                    | 51  | 41/2                                 | 114  | 21/4                                  | 57  | 18   | 510  | 1/2 | 12   | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57     | 3000   | 1361      | 6000    | 2722     | 1617       |    |
| 1639P | Midrange/pinstop (port)          | 2                                    | 51  | 41/2                                 | 114  | 21/4                                  | 57  | 18.4 | 522  | 1/2 | 12   | 21/4                                 | 57     | 3000   | 1361      | 6000    | 2722     | 1617       |    |
| 1639S | Midrange/pinstop (stbd)          | 2                                    | 51  | 41/2                                 | 114  | 21/4                                  | 57  | 18.4 | 522  | 1/2 | 12   | 21/4                                 | 57     | 3000   | 1361      | 6000    | 2722     | 1617       |    |
| 1663  | Midrange Polyslide/pinstop       | 21/2                                 | 64  | 5                                    | 127  | 21/4                                  | 57  | 22   | 620  | 1/2 | 12   | 21/4                                 | 57     | 3000   | 1361      | 6000    | 2722     | 1617       |    |
| 1873  | Big Boat 3000 Series/slider rods | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64  | 8                                    | 203  | <b>3</b> 1/3                          | 85  | 37   | 1049 | 1/2 | 12   | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57     | 3000   | 1361      | 6000    | 2722     | 3154       |    |
| 1874  | Big Boat 4500 Series/slider rods | 3                                    | 76  | <b>9</b> ¾                           | 248  | <b>3</b> 1/3                          | 85  | 59   | 1673 | 3/4 | 19   | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64     | 4500   | 2041      | 9000    | 4082     | 3154       |    |
| 1995  | Big Boat 3000 Series/pinstop     | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64  | 6                                    | 152  | <b>2</b> <sup>1</sup> / <sub>4</sub>  | 57  | 31   | 879  | 1/2 | 12   | 21/8                                 | 54     | 3000   | 1361      | 6000    | 2722     | 3155       |    |
| 1996  | Big Boat 4500 Series/pinstop     | 3                                    | 76  | 71/2                                 | 191  | 2 <sup>1</sup> /4                     | 57  | 46   | 1304 | 3/4 | 19   | 25/16                                | 59     | 4500   | 2041      | 9000    | 4082     | 3155       |    |

## T-Track Genoa Lead Cars

1997 and 1998 cars have roller/ball bearing sheaves for easy trimming. The sheave carrier pivots 45-degrees side-to-side, swivels and articulates fore and aft to handle changing lead angles. Cars ride on low-friction plastic slides.

The 1997 pinstop lever locks open to move car along the track. The 1998's car-mounted highload sheave makes a 2:1 adjuster tackle when paired with the B1877 or 1844.

#### **Use for:** Genoa leads Caprail leads



| <b>F</b> | abaat 1 | a a din a | formaulaa |     |      | 00  |
|----------|---------|-----------|-----------|-----|------|-----|
| FUT      | SHeet-I | oaung     | ionnulas  | see | page | 2ŏ. |

| Part  |                          | She<br>Ø                               | ave<br>J | Ler                                  | igth | Wi   | dth | We  | ight | Max             | c line<br>Ø | Sheet<br>above                       | height<br>track | Maxi<br>workin | mum<br>g load | Brea<br>lo: | king<br>ad |           |
|-------|--------------------------|----------------------------------------|----------|--------------------------------------|------|------|-----|-----|------|-----------------|-------------|--------------------------------------|-----------------|----------------|---------------|-------------|------------|-----------|
| No.   | Description              | in                                     | mm       | in                                   | mm   | in   | mm  | 0Z  | g    | in              | mm          | in                                   | mm              | lb             | kg            | lb          | kg         | Track     |
| 1844  | End control/2:1/Retrofit | <b>2</b> <sup>1</sup> / <sub>2</sub>   | 64       | <b>4</b> <sup>1</sup> / <sub>2</sub> | 114  | 2    | 51  | 8   | 227  | <sup>3</sup> /8 | 10          | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57              | 3000           | 1361          | —           | —          | 1¼"/32 mm |
| B1877 | End control/2:1          | <b>1</b> <sup>13</sup> / <sub>16</sub> | 46       | <b>4</b> 5⁄16                        | 109  | 17/8 | 48  | 9.1 | 258  | 1/2             | 12          | <b>1</b> ½                           | 38              | 1653           | 750           | 3307        | 1500       | 32 mm     |
| 1997  | Lead car/pinstop         | 21/2                                   | 64       | 61/2                                 | 165  | 2    | 51  | 16  | 454  | 1/2             | 12          | 21/4                                 | 57              | 3000           | 1361          | 6000        | 2722       | 32 mm     |
| 1997E | Lead car/pinstop         | 21/2                                   | 64       | 61/2                                 | 165  | 2    | 51  | 16  | 454  | 1/2             | 12          | 21/4                                 | 57              | 3000           | 1361          | 6000        | 2722       | 11/4"     |
| 1998  | Lead car/adjuster sheave | <b>2</b> <sup>1</sup> / <sub>2</sub>   | 64       | <b>6</b> <sup>1</sup> / <sub>2</sub> | 165  | 2    | 51  | 16  | 454  | 1/2             | 12          | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57              | 3000           | 1361          | 6000        | 2722       | 32 mm     |
| 1998E | Lead car/adjuster sheave | <b>2</b> <sup>1</sup> / <sub>2</sub>   | 64       | <b>6</b> <sup>1</sup> / <sub>2</sub> | 165  | 2    | 51  | 16  | 454  | 1/2             | 12          | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57              | 3000           | 1361          | 6000        | 2722       | 11/4"     |

## Tri-Roller Genoa Lead Cars & Slides

The tri-roller car sheets close to the deck to handle low- and high-clewed genoas. They don't flog during tacks. They accept two sheets for easy sail changes. The vertical side rollers protect sheets and reduce friction, even with unfair leads.

The B1872CM, B1873CM, B1875AM and B1875ABB tri-roller cars come with a towing bail for adjustment. The B1875AM, B1875ABB and B1878AM tri-rollers feature an integrated pinstop that can lock in the raised position.

B157M and B158M track slides provide convenient attachment points for snatch blocks or other lead blocks. Plastic sliders reduce friction and protect tracks.

Low profile B2056M and 2057M track stops are easy to open.

**Note:** T-Track genoa lead cars cannot be adjusted under load.



For sheet-loading formulas see page 28.

| Devit       |                            | Fits  | She                                    | ave | Lor                                    | ath | wi                 | dth | Hoi                                   | iaht | Wei   | aht  | Max              | c line<br>ø | Maxi | mum  | Brea  | king     |
|-------------|----------------------------|-------|----------------------------------------|-----|----------------------------------------|-----|--------------------|-----|---------------------------------------|------|-------|------|------------------|-------------|------|------|-------|----------|
| Part<br>No. | Description                | mm    | in                                     | mm  | in                                     | mm  | in                 | mm  | in                                    | mm   | 07    | a    | in               | mm          | lh   | ka   | lh    | au<br>ka |
| B154CM      | Genoa lead car**           | 32    | 2                                      | 52  | 33/4                                   | 95  | 21/8               | 54  | 41/2                                  | 115  | 31.7  | 900  | 9/16             | 14          | 1895 | 860  | 3850  | 1750     |
| B155CM      | Genoa lead car**           | 40    | 211/16                                 | 68  | 5%16                                   | 142 | 23/4               | 70  | 57/8                                  | 150  | 58.2  | 1650 | 7/8              | 22          | 4475 | 2030 | 9920  | 4500     |
| B157M       | Slide**                    | 32    | —                                      | —   | 33/4                                   | 95  | <b>1</b> 11/16     | 46  | <b>2</b> <sup>3</sup> / <sub>16</sub> | 56   | 17.6  | 500  | _                | —           | 3950 | 1800 | 8150  | 3700     |
| B158M       | Slide**                    | 40    | —                                      | —   | <b>5</b> %16                           | 142 | 23/16              | 56  | <b>2</b> <sup>3</sup> / <sub>4</sub>  | 70   | 38.8  | 1100 | _                | —           | 5500 | 2500 | 12300 | 5600     |
| B1872CM     | Tri-roller lead car**      | 32    | <b>1</b> <sup>15</sup> / <sub>16</sub> | 50  | 4 <sup>15</sup> / <sub>16</sub>        | 125 | <b>23/</b> 4       | 70  | 45/16                                 | 110  | 31.5  | 900  | 9/ <sub>16</sub> | 14          | 4950 | 2250 | 9900  | 4500     |
| B1873AM     | Tri-roller lead car*       | 40    | 23/8                                   | 60  | 611/16                                 | 170 | 33/8               | 85  | 51/8                                  | 130  | 56.4  | 1600 | 3/4              | 20          | 4630 | 2100 | 9900  | 4500     |
| B1873CM     | Tri-roller lead car**      | 40    | 23/8                                   | 60  | 611/16                                 | 170 | 33/8               | 85  | 51/8                                  | 130  | 112.9 | 3200 | 3/4              | 20          | 6945 | 3150 | 14300 | 6500     |
| B1875ABB    | Tri-roller/pinstop*        | 3155‡ | <b>1</b> <sup>15</sup> / <sub>16</sub> | 50  | 6                                      | 152 | 23/4               | 70  | <b>4</b> ³/ <sub>16</sub>             | 106  | 32.5  | 923  | 9/ <sub>16</sub> | 14          | 3300 | 1500 | 7050  | 3200     |
| B1875AM     | Tri-roller/pinstop*        | 32    | <b>1</b> <sup>15</sup> / <sub>16</sub> | 50  | 6                                      | 152 | 23/4               | 70  | <b>4</b> ³/ <sub>16</sub>             | 106  | 31.7  | 900  | 9∕ <sub>16</sub> | 14          | 3300 | 1500 | 7050  | 3200     |
| B1876AM     | Tri-roller/control sheave* | 32    | <b>1</b> <sup>15</sup> / <sub>16</sub> | 50  | 6                                      | 152 | 23/4               | 70  | 43/16                                 | 106  | 31.7  | 900  | 9/ <sub>16</sub> | 14          | 3300 | 1500 | 7050  | 3200     |
| B1878AM     | Tri-roller/pinstop*        | 26    | <b>1</b> <sup>3</sup> / <sub>4</sub>   | 45  | 4                                      | 103 | 2 <sup>1</sup> /2  | 63  | 33/8                                  | 85   | 17.6  | 500  | 3/8              | 10          | 2205 | 1000 | 4410  | 2000     |
| B2056M      | Stop*                      | 40    | _                                      | —   | <b>1</b> <sup>15</sup> / <sub>16</sub> | 50  | 2 <sup>3</sup> /16 | 56  | 1                                     | 25   | 3.5   | 100  | _                | _           | 2650 | 1200 | 5500  | 2500     |
| B2057M      | Stop*                      | 32    | _                                      | _   | <b>1</b> <sup>15</sup> / <sub>16</sub> | 50  | 23/16              | 56  | <sup>15</sup> / <sub>16</sub>         | 23   | 4     | 113  | _                | _           | 1750 | 800  | 3850  | 1750     |

\*Aluminum \*\*Chrome ‡Refers to Big Boat track part number

B1872CM

B1873CM

## Aluminum & Stainless Steel T-Track

Anodized aluminum T-Track features rounded top edges for protection and impact resistance. Drilled and tapped holes at ends make endstop and B1877 end control installation easy. Track comes in clear or black-anodized finishes.

32 mm High-Performance Track features black Hardkoteanodizing. It has precise 33 mm pinstop hole spacing.

Stainless steel track is available in 32 and 40 mm. The high luster finish makes it ideal for luxury cruisers/racers from 33 ft to 140 ft (9.5 m to 42 m).









| Part              | Leng                                | jth            | Wei        | ght     | Fast<br>(F                   | eners<br><sup>:</sup> H) | Pinsto<br>spac                         | p hole<br>cing | Endstop  |
|-------------------|-------------------------------------|----------------|------------|---------|------------------------------|--------------------------|----------------------------------------|----------------|----------|
| No.               | ft/in                               | m              | 0Z         | kg      | in                           | mm                       | in                                     | mm             | Part No. |
| 26 mm Anodized /  | Aluminum:                           | <b>B204 CI</b> | ear & B205 | 5 Black |                              |                          |                                        |                |          |
| B204/B205.1m      | 3'3%"                               | 1              | 18.17      | 0.52    | 1/4                          | 6                        | 315/16                                 | 100            | B809     |
| B204/B205.1.5m    | 4'11 <sup>1</sup> /16"              | 1.5            | 27.25      | 0.77    | 1/4                          | 6                        | 315/16                                 | 100            | B809     |
| B204/B205.2m      | 6'6¾"                               | 2              | 36.33      | 1.03    | 1/4                          | 6                        | 315/16                                 | 100            | B809     |
| B204B/B205.2.5m   | 8'27/16"                            | 2.5            | 45.5       | 1.29    | 1/4                          | 6                        | 315/16                                 | 100            | B809     |
| B204/B205.3m      | 9'101/8"                            | 3              | 54.50      | 1.55    | 1/4                          | 6                        | 315/16                                 | 100            | B809     |
| B204/B205.6m      | 19'81/4"                            | 6              | 108.99     | 3.09    | 1/4                          | 6                        | 315/16                                 | 100            | B809     |
| 32 mm Anodized /  | Aluminum:                           | 3086 BI        | ack & 3087 | 7 Clear |                              |                          |                                        |                |          |
| 3086/3087.1m‡‡    | 3'3%"                               | 1              | 31.7       | 0.9     | <sup>5</sup> / <sub>16</sub> | 8                        | 315/16                                 | 100            | B810     |
| 3086/3087.1.5m‡‡  | 4'11 <sup>1</sup> / <sub>16</sub> " | 1.5            | 45.5       | 1.29    | <sup>5</sup> / <sub>16</sub> | 8                        | 315/16                                 | 100            | B810     |
| 3086/3087.2m‡‡    | 6'6¾"                               | 2              | 63.46      | 1.8     | <sup>5/</sup> 16             | 8                        | 315/16                                 | 100            | B810     |
| 3086/3087.2.5m‡‡  | 8'27/16"                            | 2.5            | 79.32      | 2.24    | <sup>5/</sup> 16             | 8                        | 315/16                                 | 100            | B810     |
| 3086/3087.3m‡‡    | 9'101/8"                            | 3              | 95.22      | 2.69    | <sup>5/</sup> 16             | 8                        | 315/16                                 | 100            | B810     |
| 3086/3087.4m‡‡    | 13'1½"                              | 4              | 126.98     | 3.59    | <sup>5</sup> / <sub>16</sub> | 8                        | 315/16                                 | 100            | B810     |
| 3086/3087.6m‡‡    | 19'81/4"                            | 6              | 190.5      | 5.39    | <sup>5</sup> / <sub>16</sub> | 8                        | 315/16                                 | 100            | B810     |
| 32 mm High-Perfo  | rmance Ha                           | rdkote-/       | Anodized A | luminum | 1                            |                          |                                        |                |          |
| 3121.1m           | 3'3%"                               | 1              | 30.3       | 0.86    | <sup>5</sup> / <sub>16</sub> | 8                        | <b>1</b> 5/16                          | 33             | B810     |
| 3121.1.2m         | 3'113/16"                           | 1.2            | 37         | 1.05    | <sup>5/</sup> 16             | 8                        | <b>1</b> 5/16                          | 33             | B810     |
| 3121.1.5m         | 4'11 <sup>1</sup> /16"              | 1.5            | 45.5       | 1.29    | <sup>5/</sup> 16             | 8                        | <b>1</b> 5/16                          | 33             | B810     |
| 3121.2.5m         | 8'27/16"                            | 2.5            | 75.3       | 2.13    | 5/16                         | 8                        | <b>1</b> 5/16                          | 33             | B810     |
| 32 mm Stainless S | Steel                               |                |            |         |                              |                          |                                        |                |          |
| 1835.2m‡‡         | 6'6¾"                               | 2              | 169.31     | 4.8     | 5/16                         | 8                        | <b>1</b> <sup>15</sup> /16             | 50             | 1836     |
| 1835.4m‡‡         | 13'1½"                              | 4              | 338.62     | 9.6     | 5/16                         | 8                        | <b>1</b> <sup>15</sup> /16             | 50             | 1836     |
| 40 mm Anodized /  | Aluminum:                           | B206 CI        | ear & B207 | 7 Black |                              |                          |                                        |                |          |
| B206/B207.1m      | 3'3%"                               | 1              | 48.85      | 1.39    | 5/16                         | 8                        | 315/16                                 | 100            | B811     |
| B206/B207.1.8m    | 5'10"                               | 1.8            | 87.94      | 2.49    | 5/16                         | 8                        | 315/16                                 | 100            | B811     |
| B206/B207.2m      | 6'6¾"                               | 2              | 97.71      | 2.77    | 5/16                         | 8                        | 315/16                                 | 100            | B811     |
| B206/B207.2.5m    | 8'27/16"                            | 2.5            | 122.13     | 3.46    | 5/16                         | 8                        | 315/16                                 | 100            | B811     |
| B206/B207.3m      | 9'101/8"                            | 3              | 146.56     | 4.16    | 5/16                         | 8                        | 315/16                                 | 100            | B811     |
| B206/B207.3.5m    | 11'5 <sup>13</sup> /16"             | 3.5            | 170.99     | 4.85    | 5/16                         | 8                        | 315/16                                 | 100            | B811     |
| B206/B207.4m      | 13'1½"                              | 4              | 195.41     | 5.54    | <sup>5</sup> / <sub>16</sub> | 8                        | 315/16                                 | 100            | B811     |
| B206/B207.6m      | 19'8¼"                              | 6              | 293.12     | 8.31    | <sup>5</sup> / <sub>16</sub> | 8                        | 315/16                                 | 100            | B811     |
| 40 mm Stainless S | Steel                               |                |            |         |                              |                          |                                        |                |          |
| 1888.2m‡‡         | 6'63/4"                             | 2              | 282.91     | 8       | _                            | 12                       | <b>1</b> <sup>15</sup> / <sub>16</sub> | 50             | 1889     |
| 1888 4m++         | 13'11//                             | Δ              | 564 37     | 16      | _                            | 12                       | 1 15/10                                | 50             | 1889     |











## **Custom Yacht Genoa Lead Cars**

We offer a variety of genoa cars for 26, 32 and 40 mm T-Track, including custom 50 mm T-Track, as well as Big Boat, Mini-Maxi and Maxi tracks. Car bodies are made of either Hardkote-anodized aluminum or highluster stainless steel. Sheaves are Teflon<sup>®</sup>-impregnated with an ultra-light composite bearing system (ULC). Maximum working loads range from 8500 lb (3856 kg) to 50,000 lb (26,680 kg). Custom cars can be designed to handle higher loads.

Compositebearing sheave

Mirror-polished

stainless

C7788

| Part   |                                               | Lei | ıgth | W                        | idth | We   | ight  | Maxi<br>workii | imum<br>ng load | Brea<br>Io | aking<br>ad |
|--------|-----------------------------------------------|-----|------|--------------------------|------|------|-------|----------------|-----------------|------------|-------------|
| No.    | Description                                   | in  | mm   | in                       | mm   | lb   | kg    | lb             | kg              | lb         | kg          |
| C4219  | 40 mm T-track genoa slider*                   | 9   | 229  | 29/16                    | 65   | 6.54 | 2.97  | 12860          | 5845            | 25720      | 11690       |
| C5900  | Mini-Maxi lead car/slider rods                | 12  | 305  | 3                        | 75   | 13   | 5.9   | 19625          | 8900            | 39249      | 17800       |
| C6869  | Maxi jib slider/slider rods                   | 10  | 254  | 35/8                     | 93   | 8.7  | 3.94  | 20322          | 9218            | 40644      | 18436       |
| C7181  | 50 mm T-track jib/slider rods                 | 14  | 356  | <b>3</b> <sup>3</sup> /8 | 86   | 38   | 17.24 | 50000          | 22680           | 100000     | 45360       |
| C7268  | Maxi genoa slider                             | 14  | 356  | 35/8                     | 92   | 13   | 6     | 25000          | 11339           | 50000      | 22678       |
| C7399  | 40 mm stainless steel genoa lead/pinstop      | 10  | 254  | 21/2                     | 63   | 14   | 6     | 22567          | 10236           | 45134      | 20472       |
| C7401  | 40 mm stainless steel/pivot stops             | 10  | 254  | 21/2                     | 63   | 14   | 6     | 22567          | 10236           | 45134      | 20472       |
| C7788  | 40 mm T-track genoa for B206 track            | 9   | 229  | 29/16                    | 65   | 6.54 | 2.97  | 8500           | 3856            | 17000      | 7712        |
| C8077  | Big Boat jib slider/125 mm Black Magic® block | 8   | 203  | 211/32                   | 59   | 4.1  | 1.86  | 8818           | 4000            | 17636      | 8000        |
| C8836  | Mini-Maxi jib slider/Loop block               | 10  | 254  | 215/16                   | 75   | 6.2  | 2.82  | 19824          | 9000            | 39648      | 27200       |
| HC5754 | 40 mm T-track jib/Maxi sheave*                | 11  | 279  | 29/16                    | 65   | 11.5 | 5.22  | 19625          | 8900            | 39249      | 17800       |
|        |                                               |     |      |                          |      |      |       |                |                 |            |             |

Contact Harken to request quote and lead time. For full product line, visit www.harkencustom.com \*Stainless steel track only



0

## Grand Prix Athwartship Systems

Harken offers athwartship systems in ball bearing and CRX versions with either 1:1 or 2:1 up/down controls and in/out controls in a variety of configurations. Teflon<sup>®</sup>-impregnated anodizing allows line to run smoothly. Extremely compact, high-load floating blocks or rings are supplied to match the car's up/down design. Athwartship cars can handle loads up to 19,840 lb (4509 kg).

Simple design allows versatility when used with soft attachments

C8728

"Soft" radiused surfaces eliminate chafe

Up/down control line through center slot allows sheet to be pulled low



| Part             |                                         | Sh | eave<br>Ø | Ler                                  | igth | Car I<br>hei                         | body<br>ght | We   | ight | Maxi<br>workin | mum<br>g load | Brea<br>Io | ıking<br>ad |
|------------------|-----------------------------------------|----|-----------|--------------------------------------|------|--------------------------------------|-------------|------|------|----------------|---------------|------------|-------------|
| No.              | Description                             | in | mm        | in                                   | mm   | in                                   | mm          | 0Z   | g    | lb             | kg            | lb         | kg          |
| <b>Ring lead</b> | S                                       |    |           |                                      |      |                                      |             |      |      |                |               |            |             |
| C8684            | Floating jib lead thimble/1:1           | 2  | 50.8      | _                                    | _    | _                                    | _           | 1.8  | 51   | 10000          | 4536          | 20000      | 9072        |
| C8882            | Floating ring sheet lead/2:1            | 3  | 76.2      | _                                    | _    | _                                    | _           | 6.8  | 193  | 7200           | 3266          | 14400      | 6532        |
| Midrange         |                                         |    |           |                                      |      |                                      |             |      |      |                |               |            |             |
| C4040            | Ball bearing genoa lead car             | _  | _         | 5 <sup>1</sup> /8                    | 130  | <b>1</b> <sup>5</sup> /32            | 29          | 17.2 | 489  | 2300           | 1043          | 4600       | 2086        |
| Big Boat         |                                         |    |           |                                      |      |                                      |             |      |      |                |               |            |             |
| C8728            | CRX Loop car                            | _  | _         | <b>3</b> <sup>3</sup> /8             | 86   | 2                                    | 51          | 11.6 | 330  | 3300           | 1497          | 6600       | 2994        |
| C8823            | CRX athwartship car/2:1                 | _  | _         | 717/32                               | 191  | <b>1</b> <sup>3</sup> /4             | 45          | 31.9 | 905  | 7500           | 3402          | 15000      | 6804        |
| C8895            | CRX low-profile fairlead endstop (pair) | _  | _         | <b>1</b> <sup>3</sup> / <sub>4</sub> | 44   | 7/ <sub>8</sub>                      | 22          | 1.9  | 55   | _              | _             | _          | _           |
| Mini-Max         | i                                       |    |           |                                      |      |                                      |             |      |      |                |               |            |             |
| C6584            | CRX athwartship car/2:1 dead-ends       | _  | _         | 8                                    | 203  | 3 <sup>13</sup> /16                  | 97          | 42.3 | 1200 | 9920           | 4509          | 19840      | 9018        |
| C6585            | Endstop                                 | _  | _         | 33/4                                 | 95   | <b>1</b> <sup>1</sup> / <sub>2</sub> | 39          | 23.4 | 663  | 4410           | 2000          | 8820       | 4000        |
| C8955            | CRX Loop car                            | _  | _         | <b>7</b> <sup>1</sup> / <sub>2</sub> | 191  | 21/4                                 | 57          | 29.2 | 827  | 7937           | 3600          | 15874      | 7200        |
| C9200            | CRX Loop car                            | _  | _         | 8                                    | 203  | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57          | 30.0 | 852  | 9900           | 4500          | 19800      | 9000        |

Contact Harken to request quote and lead time. For full product line, visit www.harkencustom.com

Paula Rosa, Shipman 80', J & J Design, Seaway Group — Studio 37 Photo

## **MAINSAIL HANDLING SYSTEMS**

## **Ordering Battcar Systems**



#### 1. Determine system size

The four sizes, Systems AA, A, B, and C, are based on sail area (pages 136–143). If you need to reduce car stack height on mast, see **Switch T-Track Battcar Systems** (pages 144-146).



P x E x .5

|        | M    | aximur | n sail ar | ea    |         | Typical bo  | at length |             |
|--------|------|--------|-----------|-------|---------|-------------|-----------|-------------|
| System | Mon  | ohull  | Mult      | ihull | Ma      | nohull      | Mu        | ltihull     |
| size   | ft²  | m²     | ft²       | m²    | ft      | m           | ft        | m           |
| AA     | 350  | 32     | 275       | 25    | to 37   | to 11.3     | to 30     | to 9.1      |
| Α      | 600  | 56     | 500       | 46    | 37 - 50 | 11.3 - 15.2 | 30 - 40   | 9.1 - 12.2  |
| В      | 900  | 83     | 700       | 65    | 50 - 60 | 15.2 - 18.3 | 40 - 50   | 12.2 - 15.2 |
| C      | 1940 | 180    | 1510      | 140   | 60 - 90 | 18.3 - 27   | 50 - 70   | 15.2 - 21   |

#### 2. Determine track quantity and type

Use **Mainsail Luff Length** chart on each system page to determine number of track sections.

**Slug-mount:** Most common. Requires 1 slug-mount kit per track section. Select slug that matches the mast's bolt rope groove shape.

**Drill-tap:** For masts without a bolt rope groove. Requires 1 splice link at each track joint.

#### 3. Choose endstop kit

**Quick-release:** Includes screwpin or pinstop endstop for bottom of mast and fixed endstop for the top.

Fixed: Includes two fixed endstops.

#### 4. Choose cars

Order 1 headboard, 1 Battcar for every full batten, and use the Intermediate Car Chart to determine number of intermediate cars.

**CB system:** All captive ball bearing components. Lowest friction system for fast sail hoists, douses, and reefs.

**Combination system:** CB headboard and Battcars, Slider intermediate cars. Reduces cost but uses CB in the most critical load areas.

**Slider system:** All Slider components. Raise and lower sails without battling a sail that gets jammed in the groove.

#### **Intermediate Cars**

| Distance I | between battens* | Intermediate cars |
|------------|------------------|-------------------|
| ft         | between battens  |                   |
| 8 or less  | 2.4 or less      | 1                 |
| 9 - 13     | 2.7 - 4          | 2                 |
| 14 - 16    | 4.3 - 4.9        | 3                 |
| <br>       |                  |                   |

\*Boats without full battens should use 1 intermediate CB or Slider car per 1.2 m (4 ft) and no Battcars.

#### 5. Contact

If you have any questions, please contact your dealer or Harken Technical Service.

## **Battcar Dimensions**

#### С **Headboard Plate Headboard Car Assembly** В - C - C -В — E • Ð **Battcar/Stud** 3813 HARKEN 3827/3811 3861 D 3862 3833/3852 С Ð Ŧ 3803 3867 . В. 3830 **Intermediate Car Reef Car** Α F Δ $\sim$ **Universal Battcar** 3816 B 3814/3815 3802/3829 1777/3828 3834/3835 3812/3831 3856/3857 3836 Ď 3868/3869/3870 В 3859/3860/3863 3872/3873 F D

**Battcar/Receptacle** 

D

#### Dimensions (measured from aft face of mast)

|           |                           |                                      |     |                                       |     |                                       |        |                                       |     |                              | E  | F      |
|-----------|---------------------------|--------------------------------------|-----|---------------------------------------|-----|---------------------------------------|--------|---------------------------------------|-----|------------------------------|----|--------|
| Part      |                           |                                      | Α   |                                       | В   | (                                     | )      |                                       | D   | Pi                           | nØ | Stud Ø |
| No.       | Description               | in                                   | mm  | in                                    | mm  | in                                    | mm     | in                                    | mm  | in                           | mm | mm     |
| System AA | A CB                      |                                      |     |                                       |     |                                       |        |                                       |     |                              |    |        |
| 3813      | Headboard car assembly    | 5 <sup>3</sup> / <sub>16</sub>       | 132 | 1                                     | 25  | <b>1</b> <sup>13</sup> /16            | 46     | _                                     | _   | _                            | 5  |        |
| 3814      | Intermediate car          | 13/4                                 | 44  | <sup>15</sup> / <sub>16</sub>         | 24  | _                                     | _      | 3/4                                   | 19  | _                            | 5  | _      |
| 3815      | Intermediate car          | 23/16                                | 56  | 1                                     | 25  | —                                     | _      | 3/4                                   | 19  | —                            | 5  | _      |
| 3816      | Battcar/10 mm stud        | 23/16                                | 56  | 1                                     | 25  | <b>1</b> <sup>13</sup> /16            | 46     | 35/16                                 | 84  | —                            | 5  | 10     |
| System A  | Slider                    |                                      |     |                                       |     |                                       |        |                                       |     |                              |    |        |
| 3827      | Headboard car assembly    | 6                                    | 153 | <b>1</b> 1/16                         | 27  | 21/8                                  | 54     | 311/16                                | 94  | <sup>3/</sup> 16             | 5  |        |
| 1777      | Intermediate car/low-load | 2                                    | 51  | <b>1</b> 1/8                          | 28  | —                                     | _      | 3/4                                   | 19  | <sup>3/</sup> 16             | 5  | _      |
| 3828      | Intermediate car          | <b>1</b> <sup>3</sup> / <sub>4</sub> | 44  | <b>1</b> <sup>1</sup> / <sub>16</sub> | 27  | —                                     | _      | <sup>21</sup> / <sub>32</sub>         | 17  | <sup>3</sup> / <sub>16</sub> | 5  | _      |
| 3802      | Battcar/10 mm stud        | <b>1</b> <sup>3</sup> / <sub>4</sub> | 44  | <b>1</b> 1/16                         | 27  | 21/8                                  | 54     | _                                     | _   | <sup>3</sup> / <sub>16</sub> | 5  | 10     |
| 3803      | Battcar/receptacle        | <b>1</b> <sup>3</sup> / <sub>4</sub> | 44  | <b>1</b> 1/16                         | 27  | 21/8                                  | 54     | 5 <sup>1</sup> /8                     | 130 | <sup>3</sup> / <sub>16</sub> | 5  |        |
| System A  | CB                        |                                      |     |                                       |     |                                       |        |                                       |     |                              |    |        |
| 3811      | Headboard car assembly    | <b>8</b> <sup>3</sup> / <sub>8</sub> | 213 | 13/8                                  | 35  | 2 <sup>1</sup> /4/2 <sup>7</sup> /8*  | 57/73* | 4                                     | 102 | <sup>3</sup> / <sub>16</sub> | 5  | _      |
| 3812      | Intermediate car          | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57  | 13/8                                  | 35  | _                                     | _      | 3/4                                   | 19  | <sup>3</sup> / <sub>16</sub> | 5  | _      |
| 3829      | Battcar/10 mm stud        | 27/8                                 | 73  | 13/8                                  | 35  | <b>2</b> <sup>1</sup> / <sub>4</sub>  | 57     | 311/16                                | 94  | <sup>3</sup> / <sub>16</sub> | 5  | 10     |
| 3830      | Battcar/receptacle        | 27/8                                 | 73  | 13/8                                  | 35  | 27/8                                  | 73     | 53/4                                  | 146 | <sup>3</sup> / <sub>16</sub> | 5  | _      |
| 3831      | Universal Battcar         | 27/8                                 | 73  | <b>1</b> <sup>3</sup> /8              | 35  | _                                     | _      | 3/4                                   | 19  | <sup>3</sup> / <sub>16</sub> | 5  |        |
| System B  | Slider                    |                                      |     |                                       |     |                                       |        |                                       |     |                              |    |        |
| 3833      | Headboard car assembly    | <b>7</b> <sup>1</sup> / <sub>2</sub> | 190 | <b>1</b> <sup>1</sup> /4              | 32  | 2 <sup>5</sup> /16                    | 59     | 45/8                                  | 119 | 1/4                          | 6  |        |
| 3836      | Intermediate car          | 2 <sup>3</sup> /16                   | 56  | <b>1</b> 1/4                          | 32  | _                                     | _      | _                                     | _   | 1/4                          | 6  |        |
| 3834      | Battcar/10 mm stud        | 2 <sup>3</sup> /16                   | 56  | <b>1</b> 1/4                          | 32  | 25/16                                 | 59     | 39/16                                 | 91  | 1/4                          | 6  | 10     |
| 3835      | Battcar/12 mm stud        | 2 <sup>3</sup> /16                   | 56  | <b>1</b> 1/4                          | 32  | 25/16                                 | 59     | 33/4                                  | 96  | 1/4                          | 6  | 12     |
| System B  | CB                        |                                      |     |                                       |     |                                       |        |                                       |     |                              |    |        |
| 3852      | Headboard car assembly    | 10 <sup>1</sup> /2                   | 267 | <b>1</b> <sup>9</sup> / <sub>16</sub> | 39  | <b>3</b> <sup>1</sup> / <sub>16</sub> | 78     | 4 <sup>1</sup> / <sub>16</sub>        | 102 | 3/8                          | 10 |        |
| 3863      | Intermediate car          | 2 <sup>9</sup> / <sub>16</sub>       | 68  | <b>1</b> <sup>9</sup> / <sub>16</sub> | 39  | _                                     | _      | 3/4                                   | 19  | 1/4                          | 6  |        |
| 3856      | Battcar/10 mm stud        | 45/16                                | 109 | <b>1</b> <sup>9</sup> / <sub>16</sub> | 39  | <b>3</b> <sup>1</sup> / <sub>16</sub> | 78     | 4 <sup>3</sup> /8                     | 111 | 3/8                          | 10 | 10     |
| 3857      | Battcar/12 mm stud        | 45/16                                | 109 | <b>1</b> <sup>9</sup> / <sub>16</sub> | 39  | <b>3</b> <sup>1</sup> / <sub>16</sub> | 78     | 4 <sup>3</sup> /8                     | 111 | 3/8                          | 10 | 12     |
| 3859      | Universal Battcar         | 41/4                                 | 108 | <b>1</b> 9/16                         | 39  | _                                     | _      | 1                                     | 26  | 3/8                          | 10 |        |
| 3860      | Reef car                  | 5 <sup>3</sup> /16                   | 132 | <b>1</b> 9/16                         | 39  | _                                     |        | 1                                     | 26  | 3/8                          | 10 |        |
| 3861      | Headboard plate           | 613/16                               | 172 | 6 <sup>3</sup> /8                     | 161 | 47/8                                  | 124    | _                                     | _   | _                            | _  |        |
| 3862      | Headboardplate/flat-top   | 5 <sup>13</sup> /16                  | 147 | <b>6</b> <sup>3</sup> / <sub>16</sub> | 157 | 5 <sup>23</sup> /32                   | 145    | _                                     | _   | _                            | _  |        |
| System C  | CB                        |                                      |     |                                       |     |                                       |        |                                       |     |                              |    |        |
| 3867      | Headboard car assembly    | 185/8                                | 473 | 2                                     | 51  | 35/8                                  | 92     | 5                                     | 126 | 1/2                          | 12 |        |
| 3871      | Intermediate car          | 33/4                                 | 95  | 2                                     | 51  | _                                     | _      | 1                                     | 26  | 3/8                          | 10 |        |
| 3868      | Battcar/12 mm stud        | 5 <sup>3</sup> /8                    | 136 | 2                                     | 51  | 35/8                                  | 92     | 5 <sup>1</sup> / <sub>16</sub>        | 128 | 1/2                          | 12 | 12     |
| 3869      | Battcar/14 mm stud        | 5 <sup>3</sup> /8                    | 136 | 2                                     | 51  | 35/8                                  | 92     | 5 <sup>1</sup> / <sub>16</sub>        | 128 | 1/2                          | 12 | 14     |
| 3870      | Battcar/16 mm stud        | 53/8                                 | 136 | 2                                     | 51  | 35/8                                  | 92     | 5 <sup>1</sup> / <sub>16</sub>        | 128 | 1/2                          | 12 | 16     |
| 3872      | Universal Battcar         | 5 <sup>3</sup> /8                    | 136 | 2                                     | 51  | _                                     | _      | <b>1</b> <sup>5</sup> / <sub>16</sub> | 33  | 1/2                          | 12 | _      |
| 3873      | Reef car                  | <b>9</b> <sup>1</sup> / <sub>8</sub> | 231 | 2                                     | 51  | _                                     | _      | <b>1</b> <sup>5</sup> / <sub>16</sub> | 33  | 1/2                          | 12 |        |

\*Batten car 3829/Batten car 3830

## **Battcar Systems**



### **TAME YOUR MAIN**

Handling a big mainsail? Wrestling a flogging main onto the boom? Raising the genoa, but not the main when it's windy? Sailing solo?

A Harken<sup>®</sup> Battcar system helps raise, douse and reef with ease and acts as extra crew if you're sailing shorthanded. Battcar systems outperform in-mast or in-boom furling, cost less, and you

don't need to recut

### **DETAILS MAKE THE DIFFERENCE**

#### **CARS AND TRACK BUILT TO LAST**

Made of one-piece high-grade aluminum, cars and track are strong, lightweight, and will last for years. They are deep-saturation Hardkote-anodized with a black additive to resist the corrosive effects of salt, sun and long-term wear.

#### SLIDER CARS—A COST EFFECTIVE WAY TO TAME YOUR MAIN

Low-friction plastic slider insert lets you raise and lower sails without battling bolt ropes or slugs that stick in mast groove.

#### CB CAPTIVE BALL CARS—THE ULTIMATE IN LOW-FRICTION

Torlon<sup>®</sup> ball bearings circulate smoothly for fast sail hoists, douses and reefs.

Captive bearings allow cars to easily roll off the track for cleaning and maintenance.

Batten toggle moves freely in all directions to prevent the sail from binding when reefing under load.

#### **MIX CB AND SLIDER BATTCARS**

CB and Slider Battcar systems use the same track. Mix Slider cars with CB cars to get the perfect system for your boat and budget.



#### **1. Quick Sail Removal**

Cars and sails slide off the track by removing the screwpin endstopno tools needed.

2. Easy Mast-up Installation Battcar track is designed to screw directly into slugs that slide into mast groove-no drilling or tapping.

## System AA

Typical Boat Size: Monohulls: length to 37 ft (11.3 m); mainsail area under 350 ft<sup>2</sup> (32 m<sup>2</sup>)

Multihulls: length to 30 ft (9.1 m); mainsail area under 275 ft $^2$  (26 m $^2$ )

The one-piece solid aluminum construction is lightweight and strong. The free-rolling ball bearing cars let you hoist and reef the main quickly on all

#### **CB Ball Bearing Cars**

Captive balls make

cars easy to load and

Headboard Car Assembly



| Part      |                                             | Lei                                   | ngth         | Wi            | dth | Wei | Max headboard<br>Weight thickness |     |    | Maximum<br>working load |     |
|-----------|---------------------------------------------|---------------------------------------|--------------|---------------|-----|-----|-----------------------------------|-----|----|-------------------------|-----|
| No.       | Description                                 | in                                    | mm           | in            | mm  | 0Z  | g                                 | in  | mm | lb                      | kg  |
| Typical B | oat Length: Monohulls to 37 ft (11.3 m); Mu | ltihulls to 3                         | 80 ft (9.1 n | 1)            |     |     |                                   |     |    |                         |     |
| 3813      | CB Headboard car assembly                   | <b>5</b> <sup>3</sup> / <sub>16</sub> | 132          | <b>1</b> 9/16 | 40  | 6.7 | 188                               | 1/2 | 12 | 440                     | 200 |
| 3814      | Slider intermediate car                     | <b>1</b> <sup>3</sup> / <sub>4</sub>  | 44           | 1             | 25  | 0.5 | 15                                | —   | _  | 130                     | 59  |
| 3815      | CB intermediate car                         | <b>2</b> <sup>3</sup> / <sub>16</sub> | 56           | <b>1</b> 9/16 | 40  | 1.7 | 48                                | —   | _  | 130                     | 59  |
| 3816      | CB Battcar/10 mm stud**                     | <b>2</b> <sup>3</sup> / <sub>16</sub> | 56           | <b>1</b> 9/16 | 40  | 3   | 85                                | _   | _  | 220                     | 100 |
|           |                                             |                                       |              |               |     |     |                                   |     |    |                         |     |

See page 26 for replacement balls \*\*Batten receptacle not included

### System AA NEW: 3837

#### Track

Track is extruded from high-grade 6061-T6 aluminum and Hardkote-anodized for a hard, long-lasting surface. 3817 track mounts to mast using a unique slug system that allows mast-up installation.

For masts without internal sail track, attach 2707 Micro traveler track by drilling and tapping the spar. Join track sections with splice links. Order one per track joint. Order one low-beam endstop (sold in pairs). See chart below.

#### **Mast Track: Slug Mount**

| Part |                  | Len   | gth  | We    | ight | Fast<br>spa                            | ener<br>cing | Fastening      |
|------|------------------|-------|------|-------|------|----------------------------------------|--------------|----------------|
| No.  | Description      | in    | m    | oz/ft | g/m  | in                                     | mm           | method         |
| 3817 | Slug-mount track | 803/4 | 2.05 | 2.84  | 264  | <b>3</b> <sup>15</sup> / <sub>16</sub> | 100          | Mounting slugs |

#### **Traveler Track: Drill/Tap**

| Part<br>No. | Description | Splice link | Endstop | Ordering<br>information | Fastening<br>method  |
|-------------|-------------|-------------|---------|-------------------------|----------------------|
| 2707        | Micro track | 2711        | 2706    | page 105                | Drilling and tapping |



Salona 37, J & J Design, AD Boats

#### **Mounting Kits and Endstops**

Mounting kit slugs are available for flat or round mast grooves. Order one kit per track section.

Use screwpin endstop to easily remove cars and mainsail. Order one kit.



# Endstop kit/screwpin 3821

3822 3823

#### Track Mounting Kits: Slug Mount\*

|      |                       |        | Mounti | ng slug |      |           | Mounting slug Connector slug Fits flat mast groove |    |           |    |           |                  |    |                  | gap |
|------|-----------------------|--------|--------|---------|------|-----------|----------------------------------------------------|----|-----------|----|-----------|------------------|----|------------------|-----|
| Part |                       | Length |        | Wei     | ight | Mounting  | ing Length Weight Connecto                         |    | Connector | M  | lin       | Μ                | ax |                  |     |
| No.  | Description           | in     | mm     | 0Z      | g    | slugs/kit | unting Length<br>gs/kit in mm                      |    | oz g      |    | slugs/kit | in               | mm | in               | mm  |
| 3818 | Round mast groove     | 3/4    | 19     | .14     | 4    | 19        | 25/8                                               | 67 | .54       | 15 | 1         | —                | —  | —                | —   |
| 3819 | Flat mast groove      | 3/4    | 19     | .17     | 5    | 19        | 25/8                                               | 67 | .60       | 17 | 1         | 5⁄16             | 8  | 7/ <sub>16</sub> | 11  |
| 3820 | Wide flat mast groove | 3/4    | 19     | .25     | 6    | 19        | 25/8                                               | 67 | .94       | 23 | 1         | 7/ <sub>16</sub> | 11 | 1/2              | 13  |

#### Endstop Kits: Slug Mount & Drill/Tap\*

| Part |                                | Tra | ck end length |     | Weight |                    |
|------|--------------------------------|-----|---------------|-----|--------|--------------------|
| No.  | Description                    | in  | mm            | 0Z  | g      | Mounting slugs/kit |
| 3821 | Round mast groove/screwpin     | 6   | 152           | 2.4 | 70     | 2                  |
| 3822 | Flat mast groove/screwpin      | 6   | 152           | 2.4 | 70     | 2                  |
| 3823 | Wide flat mast groove/screwpin | 6   | 152           | 2.4 | 70     | 2                  |
| 3837 | Micro track/screwpin           | 6   | 152           | 2.2 | 62     | —                  |
| *    | MAY 7 YOO as OF man factorian  |     |               |     |        |                    |

Includes M4 x .7 x 20 or 25 mm fasteners

| Mainsail       | luff length   | Number of      |  |  |  |  |
|----------------|---------------|----------------|--|--|--|--|
| ft             | m             | track sections |  |  |  |  |
| 20'10" - 27'6" | 6.35 - 8.38   | 4              |  |  |  |  |
| 27'7" - 34'3"  | 8.41 - 10.44  | 5              |  |  |  |  |
| 34'4" - 40'11" | 10.47 - 12.47 | 6              |  |  |  |  |
| 41'0" - 47'8"  | 12.50 - 14.53 | 7              |  |  |  |  |



## System A

Typical Boat Size:

Monohulls: length 37 - 50 ft (11.3 - 15.2 m); mainsail area under 600 ft<sup>2</sup> (56 m<sup>2</sup>)

Multihulls: length 30 - 40 ft (9.1 - 12.2 m); mainsail area under 500 ft<sup>2</sup> (46 m<sup>2</sup>)

The one-piece solid aluminum construction is lightweight and strong. Cars are easily removed from the track by freeing the screwpin endstop and sliding them off. Both CB and Slider Battcar systems use the same track. Mix and match sliders and ball bearing cars for optimal performance and cost.

#### **CB** Cars

The free-rolling ball bearing cars let you hoist and reef the main quickly on all points of sail. Stainless steel wire guides keep the balls captive when the car is off the track.

#### **Slider Cars**

Slider Battcars offer a lightweight, costeffective way to raise, reef, and douse mainsails. Hardkote-anodized aluminum cars slide on low-friction plastic inserts. The compact car size translates into reduced weight and stack height.



Wyliecat 44 - Walter Cooper Photo

WYLIECALA

3831

**CB Ball Bearing Cars** 





|                 |                                     |                                      |                       |                                      |         |          |           | Max he                       | adboard  |              | Max batten |     |    |            | Maxi   | mum    |
|-----------------|-------------------------------------|--------------------------------------|-----------------------|--------------------------------------|---------|----------|-----------|------------------------------|----------|--------------|------------|-----|----|------------|--------|--------|
| Part            |                                     | Lei                                  | ngth                  | Wi                                   | dth     | We       | ight      | thick                        | iness    | Wi           | idth       |     | Ø  |            | workin | g load |
| No.             | Description                         | in                                   | mm                    | in                                   | mm      | 0Z       | g         | in                           | mm       | in           | mm         | in  | mm | Batten     | lb     | kg     |
| <b>CB</b> Cars: | Typical Boat Length: Monohulls 37   | ' <b>- 50</b> 1                      | it (11.3              | - 15.2                               | m); Mu  | ltihulls | 30 - 40   | ) ft (9.1                    | - 12.2 ו | m)           |            |     |    |            |        |        |
| 3811            | Headboard car assembly              | <b>8</b> <sup>3</sup> / <sub>8</sub> | 213                   | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57      | 18       | 518       | <sup>9</sup> / <sub>16</sub> | 14       | —            | _          | _   | _  | —          | 1600   | 725    |
| 3812            | Intermediate car                    | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57                    | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57      | 4        | 109       | _                            | _        | _            | _          | _   | _  | —          |        |        |
| 3829            | Battcar/10 mm stud**                | 27/8                                 | 73                    | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57      | 6        | 157       | _                            | _        | _            | _          | _   | _  | —          | 600    | 272    |
| 3830            | Battcar/40 mm receptacle            | 27/8                                 | 73                    | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57      | 9        | 253       | _                            | _        | <b>1</b> 5/8 | 41         | 5/8 | 16 | Flat/Round | 600    | 272    |
| 3831            | Universal Battcar**                 | 27/8                                 | 73                    | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57      | 4.3      | 122       | _                            | _        | —            | _          | _   | _  | —          | 600    | 272    |
| Slider Ca       | ars: Typical Boat Length: Monohulls | : 37 -                               | 50 ft (1 <sup>-</sup> | 1.3 - 15                             | i.2 m); | Multihu  | ılls 30 · | - 40 ft (                    | 9.1 - 12 | 2.2 m)       |            |     |    |            |        |        |
| 3827            | Headboard car assembly              | 6                                    | 153                   | 13/8                                 | 35      | 10       | 269       | <sup>9</sup> / <sub>16</sub> | 14       | —            | _          | —   | _  | _          | 1600   | 725    |
| 1777            | Low-load intermediate car*          | 2                                    | 51                    | <b>1</b> <sup>1</sup> /4             | 32      | 1.1      | 32        | _                            | _        | —            | _          | _   | _  | _          | 200    | 91     |
| 3828            | Intermediate car                    | <b>1</b> <sup>3</sup> /4             | 44                    | 13/8                                 | 35      | 1.6      | 45        | _                            | _        | —            | _          | _   | _  | —          | 350    | 159    |
| 3802            | Battcar/10 mm stud**                | <b>1</b> <sup>3</sup> / <sub>4</sub> | 44                    | 13/8                                 | 35      | 2.8      | 80        | _                            | _        | _            | _          | _   | _  | _          | 350    | 159    |
| 3803            | Battcar/40 mm receptacle            | <b>1</b> <sup>3</sup> / <sub>4</sub> | 44                    | 13/8                                 | 35      | 6.4      | 181       | _                            | _        | 15/8         | 41         | 5/8 | 16 | Flat/Round | 350    | 159    |

See page 26 for replacement balls \*Max. sail area: Monohull 350 ft<sup>2</sup> (33m<sup>2</sup>). Multihull 300 ft<sup>2</sup> (28 m<sup>2</sup>) \*\*Batten receptacle not included

#### **Slider Cars**

# System A

#### Track

Track is extruded from high-grade 6061-T6 aluminum and Hardkote-anodized for a hard, long-lasting surface. 3807 track mounts to mast using a unique slug system that allows mast-up installation.

For masts without internal sail track, attach 2720 Small Boat traveler track by drilling and tapping the spar. Join track sections with splice links. Order one per track section. Order one low-beam endstop (sold in pairs). See chart below.

Use flanged track when mounting to carbon spars. Track features a groove for racing sails with boltropes or slugs.

#### **Mast Track**

| Part    |                  | Len                             | Length Weight |       |     | Fast<br>spa                            | ener<br>cing | Fastening             |
|---------|------------------|---------------------------------|---------------|-------|-----|----------------------------------------|--------------|-----------------------|
| No.     | Description      | in                              | m             | oz/ft | g/m | in                                     | mm           | method Mounting slugs |
| 3807    | Slug-mount track | 803/4                           | 2.05          | 4.44  | 413 | <b>4</b> <sup>15</sup> / <sub>16</sub> | 125          | Mounting slugs        |
| 3878.2M | Flanged track    | 78 <sup>3</sup> /4              | 2             | 2.24  | 209 | _                                      | —            | Adhesive              |
| 3878.6M | Flanged track    | 236 <sup>1</sup> / <sub>4</sub> | 6             | 2.24  | 209 | _                                      | _            | Adhesive              |

#### **Traveler Track: Drill/Tap**

**Mounting Kits and Endstops** 

track section.

Mounting kit

3804

3805

3806

Mounting kit slugs are available for flat or round mast grooves. Order one kit per

Use screwpin endstop to easily remove cars and mainsail. Order one kit only.

| Part<br>No. | Description      | Splice link | Endstop | Ordering<br>information | Fastening<br>method  |
|-------------|------------------|-------------|---------|-------------------------|----------------------|
| 2720        | Small Boat track | 2724        | 263     | page 107                | Drilling and tapping |

Endstop kit/fixed

3808

3809

3810





| Track N                      | Track Mounting Kits: Slug Mount* |     |      |     |                                         |                                |      |    |     |    |           |                  |            |          |     |
|------------------------------|----------------------------------|-----|------|-----|-----------------------------------------|--------------------------------|------|----|-----|----|-----------|------------------|------------|----------|-----|
| Mounting slug Connector slug |                                  |     |      |     |                                         |                                |      |    |     |    |           | Fit              | s flat mas | t groove | gap |
| Part                         |                                  | Lei | ngth | We  | Veight Mounting Length Weight Connector |                                |      |    |     |    |           | M                | lin        | Μ        | ax  |
| No.                          | Description                      | in  | mm   | 0Z  | g                                       | slugs/kit in mm oz g slugs/kit |      |    |     |    | slugs/kit | in               | mm         | in       | mm  |
| 3804                         | Round mast groove                | 3/4 | 19   | .14 | 4                                       | 15                             | 25/8 | 67 | .54 | 15 | 1         | —                | —          | —        | _   |
| 3805                         | Flat mast groove                 | 3/4 | 19   | .17 | 5                                       | 15                             | 25/8 | 67 | .60 | 17 | 1         | <sup>5/</sup> 16 | 8          | 7/16     | 11  |
| 3806                         | Wide flat mast groove**          | 3/4 | 19   | .25 | 6                                       | 15                             | 25/8 | 67 | .94 | 23 | 1         | 7/16             | 11         | 5/8      | 16  |

#### **Endstop Kits: Slug Mount\***

|                 |         | Weight            |                   | ack end length    | Tr          |                                                                                                   | Part                 |
|-----------------|---------|-------------------|-------------------|-------------------|-------------|---------------------------------------------------------------------------------------------------|----------------------|
| nting slugs/kit | Mountin | g                 | OZ                | mm                | in          | Description                                                                                       | No.                  |
| 2               |         | 14                | .5                | —                 | —           | Round mast groove/fixed (pair)                                                                    | 3808                 |
| 2               |         | 15                | .52               | _                 | —           | Flat mast groove/fixed (pair)                                                                     | 3809                 |
| 2               |         | 19                | .67               | _                 | —           | Wide flat mast groove/fixed (pair)**                                                              | 3810                 |
| 3               |         | 155               | 5.4               | 203               | 8           | Round mast groove/screwpin                                                                        | 3824                 |
| 3               |         | 157               | 5.5               | 203               | 8           | Flat mast groove/screwpin                                                                         | 3825                 |
| 3               |         | 174               | 6.1               | 203               | 8           | Wide flat mast groove/screwpin**                                                                  | 3826                 |
| _               |         | 155<br>157<br>174 | 5.4<br>5.5<br>6.1 | 203<br>203<br>203 | 8<br>8<br>8 | Hound mast groove/screwpin       Flat mast groove/screwpin       Wide flat mast groove/screwpin** | 3824<br>3825<br>3826 |

\*Includes M5 X .8 X 20/25 mm or 25 mm fasteners \*\*For Selden mast slugs contact Harken®

### System B NEW: 3879

Typical Boat Size: Monohulls: length 50 - 60 ft (15.2 - 18.3 m); mainsail area under 900 ft<sup>2</sup> (83 m<sup>2</sup>)

Multihulls: length 40 - 50 ft (12.2 - 15.2 m); mainsail area under 700 ft<sup>2</sup> (65 m<sup>2</sup>)

The one-piece solid aluminum construction is lightweight and strong. Cars and headboard plates are deep-saturation Hardkote anodized and Teflon<sup>®</sup> impregnated for durability. UV stabilized with black additive for maximum protection. Both CB and Slider Battcar systems use the same track. Mix and match sliders and ball bearing cars for optimal performance and cost.

#### **CB** Cars

The free-rolling ball bearing cars let you hoist and reef the main quickly on all points of sail. The quick-release button lets you easily load and remove the mainsail. Stainless steel wire guides keep the balls captive when the car is off the track.

#### Web-On Headboard Plates

Aluminum web-on headboard plates are easy for sailmakers to install. Plates have radiused edges to protect the sail and fit 1 in (25 mm) webbing strap. Holes threaded into plates accept 416 cheek blocks for leech line. Web-on plates are required for the 3852 System B CB headboard car. Sold separately.

#### **Slider Cars**

Slider Battcars offer a lightweight, cost-effective way to raise, reef, and douse mainsails. Hardkoteanodized aluminum cars slide on low-friction plastic inserts. The compact car size translates into reduced weight and stack height.



| Part               |                                         | Lei                                   | ngth       | W                                      | idth        | We          | ight | Max he<br>thicl              | Max headboard<br>thickness |      | mum<br>1g load |
|--------------------|-----------------------------------------|---------------------------------------|------------|----------------------------------------|-------------|-------------|------|------------------------------|----------------------------|------|----------------|
| No.                | Description                             | in                                    | mm         | in                                     | mm          | 0Z          | g    | in                           | in mm                      |      | kg             |
| <b>CB Cars: Ty</b> | pical Boat Length: Monohulls 50 - 60 fl | t (15.2 - 18.3 r                      | n); Multil | 1ulis 40 -                             | 50 ft (12.  | 2 - 15.2 m  | )    |                              |                            |      |                |
| 3852               | Headboard car assembly                  | 101/2                                 | 267        | 23/4                                   | 70          | 41.4        | 1173 | 7/ <sub>16</sub>             | 12                         | 3200 | 1450           |
| 3863               | Intermediate car                        | 29/16                                 | 68         | 23/4                                   | 70          | 6.8         | 191  | _                            | _                          | 524  | 238            |
| 3856               | Battcar/10mm Stud**                     | 45/16                                 | 109        | 23/4                                   | 70          | 14.3        | 406  | _                            | _                          | 1260 | 571            |
| 3857               | Battcar/12mm Stud**                     | <b>4</b> <sup>5</sup> / <sub>16</sub> | 109        | <b>2</b> <sup>3</sup> / <sub>4</sub>   | 70          | 14.6        | 413  | _                            | _                          | 1260 | 571            |
| 3879               | Battcar/14mm Stud                       | <b>4</b> <sup>5</sup> / <sub>16</sub> | 109        | <b>2</b> <sup>3</sup> / <sub>4</sub>   | 70          | 15.1        | 429  | _                            | _                          | 1260 | 571            |
| 3859               | Universal Battcar**                     | <b>4</b> <sup>5</sup> / <sub>16</sub> | 109        | <b>2</b> <sup>3</sup> / <sub>4</sub>   | 70          | 12.3        | 348  | _                            | _                          | 1260 | 571            |
| 3860               | Reef Car                                | <b>5</b> <sup>3</sup> ⁄ <sub>16</sub> | 132        | <b>2</b> <sup>3</sup> / <sub>4</sub>   | 70          | 14.4        | 408  | _                            | _                          | 1600 | 725            |
| 3861               | Web-on headboard plate*                 | <b>6</b> <sup>3</sup> / <sub>4</sub>  | 172        | 6 <sup>3</sup> /8                      | 161         | 10.3        | 292  | _                            | _                          | _    |                |
| 3862               | Web-on headboard plate/flat-top*        | 5 <sup>13</sup> / <sub>16</sub>       | 148        | <b>6</b> <sup>3</sup> / <sub>16</sub>  | 157         | 11.2        | 317  | _                            | _                          | _    | _              |
| <b>Slider Cars</b> | : Typical Boat Length: Monohulls 50 - 6 | i0 ft (15.2 - 18                      | .3 m); Mı  | ultihulls 4                            | 0 - 50 ft ( | 12.2 - 15.2 | 2 m) |                              |                            |      |                |
| 3833               | Headboard car assembly†                 | 71/2                                  | 190        | <b>1</b> 11/16                         | 42          | 14.8        | 420  | <sup>9</sup> / <sub>16</sub> | 16                         | 3200 | 1450           |
| 3836               | Intermediate Car                        | 2 <sup>3</sup> /16                    | 56         | <b>1</b> <sup>11</sup> / <sub>16</sub> | 42          | 2.9         | 82   | _                            | _                          | 1260 | 570            |
| 3834               | Battcar/10mm stud**                     | 2 <sup>3</sup> /16                    | 56         | <b>1</b> <sup>11</sup> / <sub>16</sub> | 42          | 4.5         | 128  | _                            | _                          | 1260 | 570            |
| 3835               | Battcar/12mm stud**                     | 2 <sup>3</sup> /16                    | 56         | <b>1</b> <sup>11</sup> / <sub>16</sub> | 42          | 49          | 140  | _                            |                            | 1260 | 570            |

3862

#### **CB Ball Bearing Cars**

Battcars use highstrength Torlon®

ball bearings

#### **Slider Cars**

Low-friction plastic

slider compound

3834 3835

3856

3857

3879

3859

Headboard Car Assemblies

\*Contact Harken for headboard plate for non-CB systems

\*\*Batten receptacle not included +Fits standard sailmaker-supplied headboard

# System B

#### Track

Track is extruded from high-grade 6061-T6 aluminum and Hardkote-anodized for a hard, long-lasting surface. 3844 track mounts to mast using a unique slug system that allows mast-up installation.

For masts without internal sail track, attach 1616 Midrange traveler track by drilling and tapping the spar. Join track sections with splice links. Order one per track section. Order one low-beam endstop (sold in pairs). See chart below.

Use flanged track when mounting to carbon spars. Track features a groove for racing sails with boltropes or slugs.

| Mainsail       | luff length   | Number of |
|----------------|---------------|-----------|
| ft             | track section |           |
| 41'6" - 48'2"  | 12.65 - 14.68 | 7         |
| 48'3" - 54'11" | 14.71 - 16.74 | 8         |
| 55'0" - 61'8"  | 16.76 - 18.80 | 9         |
| 61'9" - 68'5"  | 18.82 - 20.85 | 10        |
| 68'6" - 75'2"  | 20.90 - 22.91 | 11        |

#### **Mast Track**

| Part    |                  | Fastener<br>Length Weight spacing     |      |       |      |                                        |     | Fastening      |
|---------|------------------|---------------------------------------|------|-------|------|----------------------------------------|-----|----------------|
| No.     | Description      | in                                    | m    | oz/ft | g/m  | in                                     | mm  | method         |
| 3844    | Slug-mount track | <b>81</b> <sup>1</sup> /8             | 2.06 | 5.66  | 527  | <b>3</b> <sup>15</sup> / <sub>16</sub> | 100 | Mounting slugs |
| 3849.2M | Flanged track    | <b>78</b> <sup>3</sup> / <sub>4</sub> | 2    | 12    | 1119 | _                                      | _   | Adhesive       |
| 3849.6M | Flanged track    | 236 <sup>1</sup> /4                   | 6    | 12    | 1119 | _                                      | —   | Adhesive       |

#### Traveler Track: Drill/Tap

| Part |                | -           |         | Ordering          | Fastening            |  |  |
|------|----------------|-------------|---------|-------------------|----------------------|--|--|
| No.  | Description    | Splice link | Endstop | information       | method               |  |  |
| 1616 | Midrange track | 1619        | 1522    | 2007-2008 catalog | Drilling and tapping |  |  |

#### **Mounting Kits and Endstops**

Mounting kit slugs are available for flat or round mast grooves. Order one kit per track section.

Use pinstop endstop to easily remove cars and mainsail. Order one kit only.







#### Track Mounting Kits: Slug Mount\*

|               |                          |     | Mounting slug Connector slug |     |      |           |    |      |      |     | Fit       | Fits flat mast groove gap |     |      |    |
|---------------|--------------------------|-----|------------------------------|-----|------|-----------|----|------|------|-----|-----------|---------------------------|-----|------|----|
| Part          |                          | Le  | ngth                         | We  | ight | Mounting  | Le | ngth | Wei  | ght | Connector | N                         | lin | М    | ax |
| No.           | Description              | in  | mm                           | 0Z  | g    | slugs/kit | in | mm   | 0Z   | g   | slugs/kit | in                        | mm  | in   | mm |
| 3845�         | Round mast groove        | 7/8 | 22                           | .43 | 12   | 19        | 3  | 76   | 1.27 | 36  | 1         | 7/16                      | 11  | 5/8  | 16 |
| <b>3846</b> � | Flat mast groove         | 7/8 | 22                           | .56 | 16   | 19        | 3  | 76   | 1.71 | 48  | 1         | 7/16                      | 11  | 5/8  | 16 |
| 3864          | Flat mast groove/Selden‡ | 7/8 | 22                           | .48 | 14   | 19        | 3  | 76   | 1.29 | 37  | 1         | 3/8                       | 9.5 | 7/16 | 11 |

#### **Endstop Kits: Slug Mount\***

| Part |                                  | Track en                             | d length | Wei  | ght |                    |
|------|----------------------------------|--------------------------------------|----------|------|-----|--------------------|
| No.  | Description                      | in                                   | mm       | 0Z   | g   | Mounting slugs/kit |
| 3847 | Round mast groove/pinstop*       | <b>9</b> <sup>1</sup> / <sub>2</sub> | 241      | 8.3  | 234 | 3                  |
| 3848 | Flat mast groove/pinstop*‡       | <b>9</b> <sup>1</sup> / <sub>2</sub> | 241      | 11.3 | 322 | 3                  |
| 3850 | Round mast groove/fixed (pair)*  | —                                    | —        | 3.3  | 94  | 2                  |
| 3851 | Flat mast groove/fixed (pair)*‡  | —                                    | —        | 3.7  | 105 | 2                  |
| 3865 | Flat mast groove/fixed/Selden‡   | —                                    | —        | 3.5  | 100 | 2                  |
| 3866 | Flat mast groove/pinstop/Selden‡ | <b>9</b> <sup>1</sup> / <sub>2</sub> | 241      | 11.1 | 316 | 3                  |
|      |                                  |                                      |          |      |     |                    |



# System C

Typical Boat Size: Monohulls: length 60 - 90 ft (18.3 - 27 m); mainsail area under 1940 ft<sup>2</sup> (180 m<sup>2</sup>)

Multihulls: length 50 - 70 ft (15.2 - 21 m); mainsail area under 1510 ft<sup>2</sup> (140 m<sup>2</sup>)

The one-piece solid aluminum construction is lightweight and strong. Cars and headboard plates are deep-saturation Hardkote anodized and Teflon<sup>®</sup> impregnated for durability. UV stabilized with black additive for maximum protection.

#### **CB** Cars

The free-rolling ball bearing cars let you hoist and reef the main guickly on all points of sail. The quick-release button lets you easily load and remove the mainsail. Stainless steel wire guides keep the balls captive when the car is off the track.

#### Web-On Headboard Plates

Aluminum web-on headboard plates are easy for sailmakers to install. Plates have radiused edges to protect the sail and fit 1 in (25 mm) webbing strap. Holes threaded into plates accept 416 cheek blocks for leech line. Web-on plates are required for the 3867 System C CB headboard car. Sold separately.

Headboard Car Assembly



Gunboat 48, Morrelli & Melvin/Peter Johnstone — Walter Cooper Photo

| Part              |                                        | Len                                  | Length Width |                          |              | We    | ight | Max he<br>thick  | adboard<br>mess | Maximum<br>working load |      |
|-------------------|----------------------------------------|--------------------------------------|--------------|--------------------------|--------------|-------|------|------------------|-----------------|-------------------------|------|
| No.               | Description                            | in                                   | mm           | in                       | mm           | 0Z    | g    | in               | mm              | lb                      | kg   |
| <b>CB Cars: T</b> | lypical Boat Length: Monohulls 60 - 90 | ft (18.3 - 27 n                      | n); Multih   | ulis 50 - 70             | ) ft (15.2 - | 21 m) |      |                  |                 |                         |      |
| 3867              | Headboard car assembly*                | 185/8                                | 473          | 33/8                     | 85           | 107   | 2980 | <sup>9</sup> /16 | 15              | 6300                    | 2858 |
| 3871              | Intermediate car                       | 33/4                                 | 96           | 33/8                     | 85           | 17    | 493  | —                | —               | 1530                    | 695  |
| 3868              | Battcar/12 mm stud**                   | 5 <sup>3</sup> /8                    | 136          | 33/8                     | 85           | 29    | 834  | _                | —               | 2100                    | 953  |
| 3869              | Battcar/14 mm stud**                   | 5 <sup>3</sup> /8                    | 136          | <b>3</b> <sup>3</sup> /8 | 85           | 30    | 844  | _                | —               | 2100                    | 953  |
| 3870              | Battcar/16 mm stud**                   | 5 <sup>3</sup> /8                    | 136          | <b>3</b> <sup>3</sup> /8 | 85           | 105   | 2980 | —                | —               | 2100                    | 953  |
| 3872              | Universal Battcar**                    | 5 <sup>3</sup> /8                    | 136          | <b>3</b> <sup>3</sup> /8 | 85           | 24    | 676  | —                | —               | 2100                    | 953  |
| 3873              | Reef car                               | <b>9</b> <sup>1</sup> / <sub>8</sub> | 231          | <b>3</b> <sup>3</sup> /8 | 85           | 38    | 1071 | —                |                 | 3150                    | 1429 |
| 3876              | Web-on headboard plate*                | 109/16                               | 268          | 715/16                   | 201          | 29    | 828  | 1/2              | 13              | —                       | —    |
| 3877              | Web-on headboard plate/flat-top*       | 10 <sup>3</sup> /4                   | 273          | 11 <sup>1</sup> /8       | 282          | 43    | 1343 | 1/2              | 13              | _                       | _    |

\*Contact Harken for headboard plate for older systems \*\*Batten receptacle not included

# System C

#### Track

Track is extruded from high-grade 6061-T6 aluminum and Hardkoteanodized for a hard, long-lasting surface. 3853 track mounts to mast using a unique slug system that allows mast-up installation.

For masts without internal sail track, attach 3154 or 3162 Big Boat traveler track by drilling and tapping the spar. Join track sections with splice links. Order one per track section. Order one low-beam endstop (sold in pairs). See chart below.

Use flanged track when mounting to carbon spars. Track features a groove for racing sails with boltropes or slugs.

| ft                                                                                                                            | m                                               | track sections                                                                                              | _ |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------------------------------------------------------------------------------|---|
| 56'3" - 61'6"                                                                                                                 | 17.15 - 18.75                                   | 9                                                                                                           | - |
| 61'7" - 68'4"                                                                                                                 | 18.77 - 20.83                                   | 10                                                                                                          | - |
| 68'5" - 75'2"                                                                                                                 | 20.85 - 22.91                                   | 11                                                                                                          | _ |
| 75'3" - 82'                                                                                                                   | 22.94 - 24.99                                   | 12                                                                                                          | - |
| 82'1" - 88'10"                                                                                                                | 25.02 - 27.08                                   | 13                                                                                                          | - |
| 88'11" - 95'8"                                                                                                                | 27.10 - 29.16                                   | 14                                                                                                          | - |
| 95'9" - 97'2"                                                                                                                 | 29.19 - 29.62                                   | 15                                                                                                          | - |
| 82'1" - 88'10"   88'11" - 95'8"   95'9" - 97'2"   11/4" (32 mm)   11/4"   11/4"   32 mm   11/4"   32 mm   11/4"   30 mm   31! | 25.02 - 27.08<br>27.10 - 29.16<br>29.19 - 29.62 | 13<br>14<br>15<br>0 unting kit<br>dstop kit/fixed<br>dstop kit/pinstop<br>vat<br>er track<br>15/16"<br>24 m |   |
|                                                                                                                               |                                                 |                                                                                                             |   |
| 25/16" (58.4 mm                                                                                                               | )                                               | <u> </u>                                                                                                    |   |
|                                                                                                                               | 385                                             | 8 Flanged track                                                                                             |   |
| Endstop kit/pinstop                                                                                                           |                                                 |                                                                                                             | ) |
| connector slug                                                                                                                | FIIS 11a                                        | t mast groove gap<br>Max                                                                                    |   |
| mm oz g slug                                                                                                                  | is/kit in r                                     | nm in mm                                                                                                    | _ |

Mainsail luff length

Number of

#### **Mast Track**

|         |                  | ener                                    |      |       |      |                                        |      |                |
|---------|------------------|-----------------------------------------|------|-------|------|----------------------------------------|------|----------------|
| Part    |                  | Len                                     | gth  | We    | ight | spa                                    | cing | Fastening      |
| No.     | Description      | in                                      | m    | oz/ft | g/m  | in                                     | mm   | method         |
| 3853    | Slug-mount track | <b>81</b> <sup>15</sup> / <sub>16</sub> | 2.08 | 9.28  | 863  | <b>3</b> <sup>15</sup> / <sub>16</sub> | 100  | Mounting slugs |
| 3858.2M | Flanged track    | <b>78</b> <sup>3</sup> / <sub>4</sub>   | 2    | 17.38 | 1619 | —                                      | _    | Adhesive       |
| 3858.6M | Flanged track    | <b>236</b> <sup>1</sup> / <sub>4</sub>  | 6    | 17.38 | 1619 | —                                      | —    | Adhesive       |

#### Traveler Track: Drill/Tap

| Part<br>No. | Description    | Splice link | Endstop | Ordering<br>information | Fastening<br>method  |
|-------------|----------------|-------------|---------|-------------------------|----------------------|
| 3154/3162   | Big Boat track | 3153        | 548     | page 114                | Drilling and tapping |

#### **Mounting Kits and Endstops**

Mounting kit slugs are available for flat mast grooves. Order one kit per track section.

Use pinstop endstop to easily remove cars and mainsail. Order one kit only.





#### **Track Mounting Kits: Slug Mount**

|      |                  |     | Mounti | ng slug |      |           | Connector slug                       |      |      |     |           | Fits flat mast groove gap |     |     |    |
|------|------------------|-----|--------|---------|------|-----------|--------------------------------------|------|------|-----|-----------|---------------------------|-----|-----|----|
| Part |                  | Lei | ngth   | We      | ight | Mounting  | Lei                                  | ngth | Wei  | ght | Connector | Μ                         | lin | M   | ax |
| No.  | Description      | in  | mm     | 0Z      | g    | slugs/kit | in                                   | mm   | 0Z   | g   | slugs/kit | in                        | mm  | in  | mm |
| 3854 | Flat mast groove | 1   | 25     | .60     | 17   | 19        | <b>4</b> <sup>1</sup> / <sub>8</sub> | 105  | 2.49 | 70  | 1         | 7/ <sub>16</sub>          | 11  | 5/8 | 16 |

#### Endstop Kits: Slug Mount

| Part |                                | Track en | d length | Wei  | ght |                    |
|------|--------------------------------|----------|----------|------|-----|--------------------|
| No.  | Description                    | in       | mm       | 0Z   | g   | Mounting slugs/kit |
| 3855 | Flat mast groove/fixed (pair)* | —        | —        | 1.21 | 34  | 2                  |
| 3875 | Flat mast groove/pinstop*      | 17       | 432      | 30   | 853 | 5                  |

M8 x 1.25 x 40 mm fasteners \*Not for flanged track

### 18 mm Switch T-Track Battcar Systems

The 18 mm car bodies are built of fiberreinforced, lubricated plastic that is UV stabilized with black additive for maximum protection. 18 mm high-load car bodies are machined aluminum with low-friction Delrin<sup>®</sup> sliders. Aluminum cars and T-Track are Hardkote anodized for durability.

#### Fits Boats:

**18 mm:** Monohulls: 37-45 ft (11 m - 13.5 m); Multihulls: 30-35 ft (9 - 10.5 m); **18 mm High-Load:** Monohulls 45 - 50 ft (13.5 m - 15 m); Multihulls 35 - 40 ft (10.5 - 12 m)



HC7905



HC7905HL

**INTERMEDIATE CARS** 



HC8537



HC7904HL HC8537HL

**BATTEN CARS** 



HC7906



Cut car stack height in half by flaking the sail alternately to port and starboard of the boom.

### BATTCAR 84

### WHY DO I WANT A SWITCH BATTCAR SYSTEM?

A Switch Battcar system cuts stack height in half, so putting on a sail cover or connecting/disconnecting your halyard is a much easier task. The system works by alternately dropping mainsail cars onto port and starboard storage racks. Headboard cars articulate and pass through the switch, reducing stack height even more.

HEADBOARD CARS

HC7906HL



## **18 mm Switch T-Track** Battcar Systems

Switch system track is machined or extruded from 6061-T6 aluminum and Hardkote anodized for a long-lasting surface. For masts with sail grooves, 18 mm slug-mount track uses a unique system that allows mast-up installation. Use high-load slug-mount tracks on boats over 40' (12.2 m) at sail headboard locations at full hoist and when sail is reefed. Drill/tap track and switches fit masts without sail grooves. Join drill/tap track sections with splice links. Order one per track section. Boats with larger sail areas should use long switches to accommodate more cars.

#### **Mounting Kits and Endstops**

Slug mounting kits are available for flat or round mast grooves. Order one kit per track section.

Switch track includes screwpin stops for easy car and sail removal below switch. Stop at masthead also included.



#### **SLUG MOUNT**

#### **Mounting Kits: Slug Mount**

|               |                                           | N                                    | lountir | ıg slu | g          |            | C              | onnec  | tor sl      | ug        |           | Flat                         | mast g | roov                         | e gap |
|---------------|-------------------------------------------|--------------------------------------|---------|--------|------------|------------|----------------|--------|-------------|-----------|-----------|------------------------------|--------|------------------------------|-------|
| Part          |                                           | Lei                                  | ngth    | Wei    | ight       | Mounting   | Ler            | ngth   | We          | ight      | Connector | M                            | lin    | Μ                            | ax    |
| No.           | Description                               | in                                   | mm      | 0Z     | g          | slugs/kit  | in             | mm     | OZ          | g         | slugs/kit | in                           | mm     | in                           | mm    |
| Switch Mo     | ounting Kits                              |                                      |         |        |            |            |                |        |             |           |           |                              |        |                              |       |
| HC8918        | Round mast groove                         | 2                                    | 51      | .32    | 9          | 3          | _              | _      | _           | —         | _         | _                            | _      | —                            | _     |
| HC8919        | Flat mast groove                          | <b>1</b> <sup>3</sup> / <sub>4</sub> | 45      | .28    | 8          | 3          | _              | _      | —           | —         | _         | <sup>5</sup> /16             | 8      | <sup>7</sup> /16             | 11    |
| HC8921        | Wide flat mast groove                     | <b>1</b> <sup>3</sup> / <sub>4</sub> | 45      | .56    | 16         | 3          | _              | _      | —           | —         | —         | <sup>7</sup> /16             | 11     | 5/8                          | 16    |
| Track Mou     | ick Mounting Kits                         |                                      |         |        |            |            |                |        |             |           |           |                              |        |                              |       |
| HC9106        | Round mast groove                         | 3/4                                  | 19      | .14    | 4          | 19         | 25/8           | 67     | .54         | 15        | 1         | —                            | —      | —                            | _     |
| HC9702        | Round mast groove, extras*                | 3/4                                  | 19      | .14    | 4          | 10         | _              | _      | —           |           | —         | —                            | —      | —                            | _     |
| HC9107        | Flat mast groove                          | 3/4                                  | 19      | .17    | 5          | 19         | 25/8           | 67     | .60         | 17        | 1         | <sup>5</sup> /16             | 8      | <sup>7</sup> / <sub>16</sub> | 11    |
| HC9703        | Flat mast groove, extras*                 | 3/4                                  | 19      | .17    | 5          | 10         | —              | _      | —           | _         | —         | <sup>5</sup> /16             | 8      | <sup>7</sup> / <sub>16</sub> | 11    |
| HC9108        | Wide flat mast groove                     | 3/4                                  | 19      | .25    | 6          | 19         | 25/8           | 67     | .94         | 23        | 1         | <sup>7</sup> / <sub>16</sub> | 11     | <sup>5</sup> /8              | 16    |
| HC9704        | Wide flat mast groove, extras*            | 3/4                                  | 19      | .25    | 6          | 10         | _              | _      | —           | —         | _         | <sup>7</sup> /16             | 11     | 5/8                          | 16    |
| *Eutro alua I | the fear 11000 did towards. Outlan area 1 | 1100407                              | 1004    | 00 (   | a still be | a a alla a | and to address | 1.4.11 | la a la Ara | and south |           |                              |        |                              |       |

\*Extra slug kit for HC8811 track. Order one kit in addition to HC9106, HC9107 or HC9108 for sail headboard location at full hoist and when sail is reefed.

#### Track

| Part      |                       | Len                                   | gth  | Wi    | dth | We   | ight | Fasteners | Fastener<br>spacing |
|-----------|-----------------------|---------------------------------------|------|-------|-----|------|------|-----------|---------------------|
| No.       | Description           | in                                    | mm   | in    | mm  | 0Z   | g    | mm        | mm                  |
| Slug Mou  | nt                    |                                       |      |       |     |      |      |           |                     |
| HC8798    | Switch/short          | 24                                    | 610  | 25/8  | 67  | 32   | 907  | 5         | _                   |
| HC8799    | Switch/long           | <b>33</b> <sup>3</sup> / <sub>4</sub> | 857  | 25/8  | 67  | 47   | 1336 | 5         | _                   |
| HC8800    | T-Track               | 8013/16                               | 2051 | 27/32 | 21  | 27   | 758  | 5         | 100                 |
| HC8811    | T-Track/high-load     | 8013/16                               | 2051 | 27/32 | 21  | 26   | 748  | 5         | 50                  |
| Drill/Tap |                       |                                       |      |       |     |      |      |           |                     |
| HC8218    | Switch/short          | 23 <sup>13</sup> /16                  | 605  | 3     | 76  | 20.1 | 571  | 5         | 75                  |
| HC8219    | Switch/long **        | 3325/32 *                             | 858  | 3     | 76  | 26.7 | 758  | 5         | 75                  |
| HC7827    | 3 m T-Track           | 118 <sup>1</sup> /8                   | 3000 | 23/32 | 18  | 38.9 | 1106 | 5         | 75                  |
| HC9597    | 2 m T-Track/high load | 78 <sup>3</sup> /4                    | 2000 | 23/32 | 18  | 25.5 | 723  | 5         | 50                  |
| HC8230    | Splice link           | _                                     | _    | _     | _   | _    |      | _         | _                   |

\*\*Includes storage tracks



HC8800 HC8811

5/32" (4 mm)

<sup>11</sup>/<sub>16</sub>" 18 mm

27/32" 21 mm

HC8918

HC8919

HC8921

HC8800

HC8811

HC8798

HC8799

<sup>19</sup>/<sub>32</sub>"

15 mm

HC9106

HC9107

HC9108

HC9106

HC9107

HC9108



### 26 mm, 32 mm, 50 mm<sup>2</sup>Switch T-Track **Battcar Systems**

#### NEW: HC9045, HC9046

Battcar switch systems cut sail stack height in half by automatically splitting cars onto two tracks.

Aluminum cars are deep-saturation Hardkote anodized, Teflon® impregnated for durability. UV stabilized with black additive for maximum protection. Cars run on low-friction plastic slides. Aluminum T-Track is Hardkote anodized for durability. Use HC8879 and HC8880 for headboard reefed position. See page 146. Gate track is removed to load and unload cars.

Bushings let headboard cars pass through switch.

#### Fits Boats:

26 mm: Monohullis 50 - 80 ft (15 - 24 m) Multihulls 40 - 60 ft (12 - 18 m)

- 32 mm: Monohulls 80 140 ft (24 43 m)
- Multihulls 60 90 ft (18 27 m) 50 mm: Monohulls over 140 ft (43 m); Multihulls over 90 ft (27 m)



Mirabella — Dane Blackburn Photo



HC8076 C7810

HC7324 HC8098 HC7316

C7814

Maximum sail area

Max headhoard

**Reef Cars** 

Intermediate Cars

HC7493

HC7322

C7811



Tack Car

Maximu



|        |                        |                                       |      |                                       |       |      |      | 1111  | uubouru | N/1    |       | Na     |       | muxin   |        |
|--------|------------------------|---------------------------------------|------|---------------------------------------|-------|------|------|-------|---------|--------|-------|--------|-------|---------|--------|
| Part   |                        | Len                                   | igth | W                                     | idth  | We   | ight | thici | cness   | Won    | onuli | Mult   | inuli | working | g load |
| No.    | Description            | in                                    | mm   | in                                    | mm    | OZ   | g    | in    | mm      | ft²    | m²    | ft²    | m²    | lb      | kg     |
| 26 mm  |                        |                                       |      |                                       |       |      |      |       |         |        |       |        |       |         |        |
| HC9045 | Headboard car          | 105/8                                 | 270  | <b>2</b> <sup>3</sup> /8              | 60    | 34.3 | 973  | 21/32 | 17      | 1730   | 160   | 1300   | 120   | 4500*   | 2045*  |
| HC7493 | Intermediate car       | <b>2</b> <sup>3</sup> / <sub>8</sub>  | 60   | <b>2</b> <sup>3</sup> /8              | 60    | 5.6  | 159  | —     | —       | 1730   | 160   | 1300   | 120   | 1000    | 455    |
| HC7324 | Batten car/12 mm stud  | 2 <sup>15</sup> /16                   | 75   | <b>2</b> <sup>3</sup> / <sub>8</sub>  | 60    | 8.8  | 250  | —     | —       | 1730   | 160   | 1300   | 120   | 1500    | 682    |
| HC7325 | Reef car               | 317/32                                | 90   | <b>2</b> <sup>3</sup> / <sub>8</sub>  | 60    | 7.2  | 205  | —     | _       | 1730   | 160   | 1300   | 120   | 2100*   | 955*   |
| HC8125 | Tack car               | 3 <sup>17</sup> / <sub>32</sub>       | 90   | 4 <sup>3</sup> /8                     | 111.2 | 14.4 | 409  | _     | _       | 1730   | 160   | 1300   | 120   | 3800    | 1727   |
| 32 mm  |                        |                                       |      |                                       |       |      |      |       |         |        |       |        |       |         |        |
| HC9046 | Headboard car          | 11                                    | 280  | <b>2</b> <sup>3</sup> / <sub>4</sub>  | 70    | 44.7 | 1266 | 21/32 | 17      | 3780   | 350   | 2400   | 225   | 8000*   | 3635*  |
| HC7322 | Intermediate car       | 215/16                                | 75   | <b>2</b> <sup>3</sup> / <sub>4</sub>  | 70    | 10.4 | 297  | _     | —       | 3780   | 350   | 2400   | 225   | 2800    | 1273   |
| HC8098 | Batten car/12mm stud   | 317/32                                | 90   | <b>2</b> <sup>3</sup> / <sub>4</sub>  | 70    | 11.2 | 319  | —     | —       | 3780   | 350   | 2400   | 225   | 4000    | 1818   |
| HC7316 | Batten car/14mm stud   | 317/32                                | 90   | <b>2</b> <sup>3</sup> / <sub>4</sub>  | 70    | 11.2 | 319  | —     | —       | 3780   | 350   | 2400   | 225   | 4000    | 1818   |
| HC8076 | Reef car               | 4 <sup>17</sup> / <sub>32</sub>       | 115  | <b>2</b> <sup>3</sup> / <sub>4</sub>  | 70    | 14.4 | 409  | _     | _       | 3780   | 350   | 2400   | 225   | 4000*   | 1818*  |
| HC8099 | Tack car               | 417/32                                | 115  | <b>5</b> <sup>3</sup> / <sub>16</sub> | 132   | 29.2 | 830  | —     | —       | 3780   | 350   | 2400   | 225   | 7900    | 3590   |
| 50 mm  |                        |                                       |      |                                       |       |      |      |       |         |        |       |        |       |         |        |
| C7811  | Intermediate car**     | 315/16                                | 100  | <b>4</b> <sup>5</sup> / <sub>16</sub> | 110   | 36.8 | 1043 | _     | _       | 3780 + | 350 + | 2400 + | 275 + | 4500    | 2045   |
| C7814  | Batten car/16mm stud** | <b>5</b> <sup>9</sup> / <sub>16</sub> | 141  | 45/16                                 | 110   | 60.8 | 1724 | _     | —       | 3780 + | 350 + | 2400 + | 275 + | 7500    | 3408   |
| C9313  | Reef car**             | 77/8                                  | 200  | 45/16                                 | 110   | 168  | 4763 | _     | —       | 3780 + | 350 + | 2400 + | 275 + | 12500   | 5670   |
| C9475  | Headboard car**        | 173/4                                 | 450  | 45/16                                 | 110   | 309  | 8754 | 1     | 25      | 3780 + | 350 + | 2400 + | 275 + | 16500   | 7500   |

\*May increase by using track with closer hole spacing; contact Harken with sail areas at the high and low ends of the size range If your boat or sail area is larger than the lengths and sail areas listed, please contact Harken.

Cars



## Furling Mainsail Outhaul Systems

#### NEW: 1771

Use furling outhaul cars with in-mast or behind-the-mast furlers on boats up to 45 ft (13.5 m). Sheave carriers pivot side-to-side to accommodate changing lead angles. Systems have 2:1 purchase and ride on cars with Torlon<sup>®</sup> ball bearings. A dead-end outhaul shackle is included.

The 1615 Midrange car has an axle-bearing sheave.

The sheaves on the 595 and 1771 Big Boat cars use Torlon<sup>®</sup> rollers.

#### **Clew Block**

This strong, lightweight block uses the 75 mm ESP sheave. Plates angle so attachment straps fit shape of clew. Use with 595 and 1615 outhaul cars.







To order track see mainsail traveler track for the appropriate size car

430

See "Single line" on page 24

|      |             | She   | ave   |      |          |    |       | C    | ar      | Maxi   | imum    | M    | ax   |       |
|------|-------------|-------|-------|------|----------|----|-------|------|---------|--------|---------|------|------|-------|
| Part | Description | ,<br> | a<br> | Lei  | ngth<br> | We | eight | WI   | ath<br> | WORKIN | ig load | Sall | area | Treek |
| NU.  | Description |       |       | 111  |          | UZ | y     |      | 111111  | UI UI  | ку      | 11-  | 111- | ITACK |
| 595  | Outhaul car | 21/2  | 64    | 51/4 | 133      | 41 | 1162  | 31/3 | 85      | 3000   | 1361    | 425  | 40   | 3154  |
| 1615 | Outhaul car | 2     | 51    | 51/4 | 133      | 24 | 680   | 23/4 | 70      | 2300   | 1043    | 300  | 28   | 1616  |
| 1771 | Outhaul car | 3     | 75    | 71/4 | 184      | 63 | 1786  | 31/3 | 85      | 4500   | 2041    | 550  | 51   | 3154  |
| 6061 | Clew block  | 3     | 75    | 5½   | 140      | 13 | 370   | _    | _       | 3000   | 1361    | 425  | 40   | _     |

See page 26 for replacement balls

## Single Line Reefing

Single line reefing kits let you shorten the mainsail in three easy steps: ease the halyard to a predetermined mark, tension the reef line, and trim the sail. Sails with reef points do not need modifying.

## Lazy Jacks

Lazy Jacks contain mainsails while reefing and dousing. They work extremely well with full-batten mains, but can also be used with conventional sails.



#### **Single Line Reefing Kit**

| Part |             | M<br>boat | ax<br>ength | Max<br>mainsail area |    |  |  |  |
|------|-------------|-----------|-------------|----------------------|----|--|--|--|
| No.  | Description | ft        | m           | ft²                  | m² |  |  |  |
| 430  | Medium      | 27        | 8.2         | 150                  | 14 |  |  |  |

#### Lazy Jack Kits

| Part |             | Boat I  | ength       | Boom       | length      | Mainsail   | luff length   |
|------|-------------|---------|-------------|------------|-------------|------------|---------------|
| No.  | Description | ft      | m           | ft         | m           | ft         | m             |
| 252  | Small       | 21 - 28 | 6.4 - 8.5   | 7 - 13     | 2.13 - 3.96 | 21 - 32    | 6.4 - 9.75    |
| 253  | Medium      | 27 - 37 | 8.2 - 11.3  | 10'6" - 16 | 3.2 - 4.9   | 32 - 42    | 9.75 - 12.8   |
| 254  | Large       | 35 - 42 | 10.7 - 12.8 | 12 - 16    | 3.7 - 4.9   | 35'7" - 48 | 10.88 - 14.63 |



## **HEADSAIL HANDLING SYSTEMS**

2

### **Carbo Racing Foil** NEW: 7000.30, 7001.30, 7002.30

The engineering resins in these strong, lightweight head foils offer significant advancements over the weaker PVC materials used by other manufacturers. The low-friction twin headsail grooves are ultrasmooth, allowing hoists, douses and headsail changes to be easily and efficiently executed. Impact resistance is unmatched, with far less foil damage from loaded spinnaker poles, especially in cold weather. Heat has little effect on stiffness.

Foils are UV protected and easy for the trimmer to see. For mast-up installation, simply uncoil the foil and snap onto the stay.

#### **Aluminum Chafe Guard**

An aluminum chafe guard keeps spinnaker sheets from damaging the foil during high-speed jibes. Testing shows this guard weighs the same as Kevlar<sup>®</sup> or composite, and is impervious to wear, unlike UHMW plastic tape which wears away quickly. A Harken chafe guard is included free with the purchase of a 7000, 7001, or 7002 kit. Low Friction: Loaded luff tapes run more easily in ultrasmooth sail grooves

*High Strength: More resistant to line wear and impact damage than PVC* 

> **Feeder for Smooth Hoists:** Funnel-shaped stainless feeder smoothly guides boltrope into head foil for fast hoists

> > Prefeeder: Hardkote-anodized, Teflon®-impregnated aluminum rollers spin freely on low-friction bushings



Feeder

Prefeeder

Actual Size Unit 3 Unit 2 Unit 1 Unit 0

Kit includes prefeeder 7003







| Part     |                       | Max                          | wire<br>Ø | Max  | rod<br>Ø | Extrus<br>leng | sion<br>th | Max he<br>len | adstay<br>gth | Space<br>leng | r tube<br>yth | Extru<br>wei | sion<br>ght | Full sy<br>weig | /stem<br>jht* | Luff tap<br>size       | e   |
|----------|-----------------------|------------------------------|-----------|------|----------|----------------|------------|---------------|---------------|---------------|---------------|--------------|-------------|-----------------|---------------|------------------------|-----|
| No.      | Description           | in                           | mm        | dash | mm       | ft/in          | m          | ft/in         | m             | ft/in         | m             | lb/ft        | kg/m        | lb              | kg            | in                     | mm  |
| 7000.9m  | Unit 0                | 1/4                          | 6         | -10  | 6.35     | 29'6"          | 9          | 33'6"         | 10.2          | 3'3"          | 1             | .102         | .152        | 3.29            | 1.50          | #5 (5/32)              | 4   |
| 7000.12m | Unit 0                | 1/4                          | 6         | -10  | 6.35     | 39'4"          | 12         | 43'4"         | 13.2          | 3'3"          | 1             | .102         | .152        | 4.29            | 1.95          | #5 (5/32)              | 4   |
| 7000.15m | Unit 0                | 1/4                          | 6         | -10  | 6.35     | 49'2"          | 15         | 53'2"         | 16.2          | 3'3"          | 1             | .102         | .152        | 5.30            | 2.41          | #5 (5/32)              | 4   |
| 7001.12m | Unit 1                | <sup>5/</sup> 16             | 8         | -17  | 8.38     | 39'4"          | 12         | 43'4"         | 13.2          | 3'3"          | 1             | .162         | .241        | 6.99            | 3.18          | #6 ( <sup>6</sup> /32) | 5   |
| 7001.16m | Unit 1                | <sup>5/</sup> 16             | 8         | -17  | 8.38     | 52'6"          | 16         | 56'5"         | 17.2          | 3'3"          | 1             | .162         | .241        | 9.13            | 4.14          | #6 ( <sup>6</sup> /32) | 5   |
| 7001.20m | Unit 1                | 5/ <sub>16</sub>             | 8         | -17  | 8.38     | 65'7"          | 20         | 69'6"         | 21.2          | 3'3"          | 1             | .162         | .241        | 11.25           | 5.10          | #6 (6/32)              | 5   |
| 7002.16m | Unit 2                | 3/8                          | 10        | -25  | 10.31    | 52'6"          | 16         | 56'6"         | 17.2          | 3'3"          | 1             | .185         | .275        | 10.43           | 4.73          | #6 (6/32)              | 5   |
| 7002.20m | Unit 2                | 3/8                          | 10        | -25  | 10.31    | 65'7"          | 20         | 69'7"         | 21.2          | 3'3"          | 1             | .185         | .275        | 12.90           | 5.83          | #6 (6/32)              | 5   |
| 7002.24m | Unit 2                | 3/8                          | 10        | -25  | 10.31    | 78'9"          | 24         | 82'9"         | 25.2          | 3'3"          | 1             | .185         | .275        | 15.29           | 6.93          | #6 ( <sup>6</sup> /32) | 5   |
| 7003.24m | Unit 3                | <sup>7</sup> / <sub>16</sub> | 11        | -30  | 11.1     | 78'8.5"        | 24         | 82'9"         | 25.2          | 3'3"          | 1             | .245         | .365        | 20.08           | 9.10          | #6 (6/32)/#7 (7/32)    | 5/6 |
| 7003.28m | Unit 3                | <sup>7</sup> / <sub>16</sub> | 11        | -30  | 11.1     | 91'10"         | 28         | 95'9"         | 29.2          | 3'3"          | 1             | .245         | .365        | 23.31           | 10.57         | #6 (6/32)/#7 (7/32)    | 5/6 |
| 7006     | Replacement prefeeder | —                            | —         | —    | —        | —              | —          | —             | —             | —             | —             | —            | —           | 3 oz            | 85 g          | —                      | _   |
| 7000.30  | Unit 0 chafe guard    | —                            | —         | —    | —        | 3'3"           | 1          | —             | —             | —             | —             | 2.5 oz       | 70 g        | —               | —             | —                      | _   |
| 7001.30  | Unit 1 chafe guard    | _                            | _         | _    | _        | 3'3"           | 1          | _             | _             | _             | _             | 2.9 oz       | 82 g        | _               | _             | _                      | _   |
| 7002.30  | Unit 2 chafe guard    | _                            | _         | _    | _        | 3'3"           | 1          | _             | _             | _             | _             | 3 oz         | 85 g        | _               | _             |                        | _   |

7000

7001

7002



# **Small Boat Furling**

Harken® Small Boat furling systems allow the trailerable cruising or dinghy sailor to set and furl the jib from the cockpit. The drums and halyard swivels of these furling systems feature multiple stacked races of Delrin® or Torlon<sup>®</sup> bearings to ensure smooth rotation under load. All Small Boat furling systems require a jib with a luff wire properly seized to the sail. Small boat units are not suitable for reefing.

#### Use for:

- **434** Dinghies under 16 ft (4.9 m) **435** Dinghies to 20 ft (6.1 m)
- Catamarans to 18 ft (5.5 m)

436 Cruising boats to 25 ft (7.6 m) Catamarans to 23 ft (7 m)

Multiple stacked races of Torlon® ball bearings roll easily under load

435 (164, 165)\*

Hardkote-anodized, Teflon<sup>®</sup>-impregnated 6061-T6 aluminum

Furl or set your jib from the safety of the cockpit

Lightweight, highstrength design



Norseboat 17.5 — Elizabeth Wendt photo

| Part         |               | W    | eight | Fits   |
|--------------|---------------|------|-------|--------|
| No.          | Description   | 0Z   | g     | furler |
| 162          | Swivel        | 2.6  | 74    | 434    |
| 163          | Drum          | 5    | 142   | 434    |
| 164          | Swivel        | 2.6  | 74    | 435    |
| 165          | Drum          | 5    | 142   | 435    |
| 207          | Swivel        | 9.2  | 261   | 436    |
| 208          | Drum          | 13.6 | 386   | 436    |
| * If orderin | va senarately |      |       |        |

'If ordering separately

| Furle       | rs                 |                                      |                |                                |         |                  |          |                  |            |                              | ii oru         | oning 50         | puratory     |      |      |               |                 |
|-------------|--------------------|--------------------------------------|----------------|--------------------------------|---------|------------------|----------|------------------|------------|------------------------------|----------------|------------------|--------------|------|------|---------------|-----------------|
| Part        |                    | Pin-1<br>Ier                         | to-pin<br>1gth | Dr                             | um<br>Ø | Li               | ine<br>Ø | J<br>W           | aw<br>idth | Ma:<br>wi                    | k luff<br>re Ø | Clev             | ris pin<br>Ø | We   | ight | Max<br>workii | imum<br>1g load |
| No.         | Description        | in                                   | mm             | in                             | mm      | in               | mm       | in               | mm         | in                           | mm             | in               | mm           | 0Z   | g    | lb            | kg              |
| 434         | Furler**           | <b>2</b> 1/2                         | 64             | <b>2</b> <sup>7</sup> /8       | 73      | 5/ <sub>32</sub> | 4        | <sup>5/</sup> 16 | 8          | 1/8                          | 3              | 1/4              | 6            | 7.6  | 215  | 500           | 227             |
| 435         | High-load furler** | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64             | 27/8                           | 73      | 5/ <sub>32</sub> | 4        | <sup>5/</sup> 16 | 8          | 1/8                          | 3              | 1/4              | 6            | 7.6  | 215  | 950           | 431             |
| 436         | Cruising furler**  | 4                                    | 102            | 4 <sup>3</sup> / <sub>16</sub> | 106     | 1/4              | 6        | 3/8              | 10         | <sup>3</sup> / <sub>16</sub> | 5              | 5/ <sub>16</sub> | 8            | 22.8 | 646  | 2000          | 907             |
| de de la la |                    |                                      |                |                                |         |                  |          |                  |            |                              |                |                  |              |      |      |               |                 |

\*\*Includes drum and swivel

## **Small Boat Furling**

#### **Underdeck Furler**

A ball bearing underdeck furler minimizes windage and provides a clean, uncluttered bow for easier mooring and anchoring. It also allows the tack of the sail to be at deck level for better sail shape and more forward power. Its single through-deck spherical joint provides a low-profile, nearly watertight system that aligns the spool to the headstay. Like all small boat furlers, the underdeck furler is not suitable for reefing and it requires a jib with an embedded luff wire. Swivels must be purchased separately.

#### **Hoistable Swivels**

Hoistable ball bearing swivels slide over your headstay and work in conjunction with your normal upper swivel. Since normal swivels are attached to the masthead, you usually need to take down the mast or tip the boat on its side to detach the sail. By attaching the head of your sail to the hoistable swivel instead, you can simply lower the swivel with the jib halyard and unshackle the sail. In addition to making it much easier to change or remove your headsail, the swivel is independent from the headstay so it gives you a way to tension the luff independently of the mast rake. Hoistable swivels are compatible with any Harken small boat furler.

#### **Furler Kit with Hoistable Swivel**

This kit is similar to Harken's existing 435 high-load furler kit but includes everything you need for a hoistable halyard swivel. The kit includes a 164 swivel, HC7744 hoistable swivel, 165 drum, and a tang to attach the forestay and sail tack to the lower unit.



**UNDERDECK FURLER** 





FURLER KIT





*Turnbuckle eye on stationary bracket attaches to an underdeck chainplate* 



Fairlead feeds line onto the spool

|             |                 | Use with         |                     |
|-------------|-----------------|------------------|---------------------|
| Part<br>No. | Upper<br>swivel | Lower<br>drum    | Hoistable<br>swivel |
| HC7744      | 164             | 165 or<br>HC9226 | —                   |
| HC9330      | 207             | 208              | _                   |
| HC9226      | 164             | _                | HC7744              |

| Part   |                                   | Pin-te<br>Ien                    | o-pin<br>gth | Dr   | um<br>ð | Li                           | ne<br>Ø | Ja<br>wi                     | aw<br>dth | Max<br>wir       | c luff<br>'e Ø | Clev             | is pin<br>Ø | Wei  | ight | Maxi<br>workin | mum<br>1g load |
|--------|-----------------------------------|----------------------------------|--------------|------|---------|------------------------------|---------|------------------------------|-----------|------------------|----------------|------------------|-------------|------|------|----------------|----------------|
| No.    | Description                       | in                               | mm           | in   | mm      | in                           | mm      | in                           | mm        | in               | mm             | in               | mm          | 0Z   | g    | lb             | kg             |
| HC7744 | Halyard swivel/hole for 4 mm wire | 4 <sup>3</sup> / <sub>16</sub> * | 124*         | —    | —       | _                            | _       | —                            | —         | 5/32             | 4              | 5/ <sub>32</sub> | 4           | 2.9  | 82   | 810            | 367            |
| HC9226 | Underdeck furler                  | 6 <sup>1</sup> /8                | 156          | 31/8 | 79      | 5/32                         | 4       | <sup>5</sup> / <sub>16</sub> | 8         | 1/8              | 3              | 1/4              | 6           | 23.3 | 661  | 950            | 431            |
| HC9330 | Halyard swivel/hole for 5 mm wire | 511/16*                          | 144*         | —    | _       | _                            | _       | —                            | —         | <sup>3</sup> /16 | 5              | <sup>3</sup> /16 | 5           | 8.9  | 252  | 1190           | 540            |
| HSB463 | Furler kit/hoistable halyard      | 21/2**                           | 64**         | 27/8 | 73      | <sup>5</sup> / <sub>32</sub> | 4       | <sup>5</sup> / <sub>16</sub> | 8         | <sup>5</sup> /32 | 4              | 1/4              | 6           | 11.2 | 318  | 950            | 431            |

\*Shackle to shackle \*\*Tang hole to tang hole
# Spinnaker Staysail & Gennaker®

### Spinnaker Staysail

Furled staysails are easy to hoist rolled and can be deployed or doused from the cockpit. In marginal conditions the sail can be struck instantly without changing the trim of the boat. Multiple stacked races of Torlon<sup>®</sup> ball bearings ensure smooth operation under load. Systems include a lower drum with snap shackle, fairlead and Cam-Matic<sup>®</sup> cleats, and an upper swivel with provision for halyard attachment.

### **Gennaker®** Furling

Gennaker<sup>®</sup> furling was developed for large singlehanded boats and huge oceangoing multihulls. The 1900 Gennaker<sup>®</sup> furler is ideal for drifters and reachers on multihulls to 45 ft (14 m). Smaller boats use the 3049. The drum unit features a fairlead, while the upper swivel is designed for direct halyard attachment. Custom designs are available for larger boats.

### **Screecher Furling**

Use screecher furling systems on multihulls up to 32 ft (9.60 m) and easily driven sport boats. Perfect for jib reaching, screechers are set on the bowsprit. They are often carried upwind in light to moderate conditions and used as storm spinnakers when it's blowing.

Systems are sized to handle loads of 2:1 halyards and multiple stacked races of Torlon<sup>®</sup> ball bearings ensure smooth rotation under load. Fairleads allow the furling line to lead aft to the cockpit. Hardkote-anodized with Teflon® impregnation

Lightweight aluminum construction

Narrow-diameter swivel allows max luff lengths

> Integrated fairlead prevents line overrides

Direct halyard attachment

Multiple stacked races of Torlon<sup>®</sup> ball bearings roll easily under load



3029 3049

The LP is a perpendicular line measured from the luff to clew.

1900

Corsair F31

| Part |                              | Ø<br>Drum Swivel |     | ivel                                  | Length<br>Drum Swivel |                                       |     | Max line Max<br>Ø* halyard load |     | Wei                          | Max<br>Weight luff length |      | Max  | x LP |     |    |       |      |     |
|------|------------------------------|------------------|-----|---------------------------------------|-----------------------|---------------------------------------|-----|---------------------------------|-----|------------------------------|---------------------------|------|------|------|-----|----|-------|------|-----|
| No.  | Description                  | in               | mm  | in                                    | mm                    | in                                    | mm  | in                              | mm  | in                           | mm                        | lb   | kg   | 0Z   | g   | ft | m     | ft   | m   |
| 1851 | Small staysail furler        | 27/8             | 73  | 1                                     | 25                    | <b>5</b> <sup>3</sup> / <sub>16</sub> | 132 | <b>4</b> ∛ <sub>16</sub>        | 106 | 5/ <sub>32</sub>             | 4                         | 950  | 431  | 13   | 366 | 50 | 15.25 | 13.5 | 4.1 |
| 1852 | Large staysail furler        | 41/4             | 108 | <b>1</b> 7/ <sub>16</sub>             | 37                    | 75/16                                 | 186 | 51/8                            | 149 | 1/4                          | 6                         | 2000 | 907  | 28   | 800 | 70 | 21.33 | 20   | 6   |
| 1899 | Maxi staysail furler         | 5½               | 138 | <b>1</b> ¾                            | 44                    | 71/2                                  | 191 | 7                               | 178 | <sup>5</sup> /16             | 8                         | 3000 | 1361 | 34   | 964 | 80 | 24    | 28   | 8.5 |
| 1900 | Gennaker <sup>®</sup> furler | <b>5</b> ½       | 138 | <b>1</b> ¾                            | 44                    | 6                                     | 152 | 6                               | 152 | <sup>5</sup> /16             | 8                         | 3000 | 1361 | 29   | 822 | 50 | 15.25 | 28   | 8.5 |
| 3029 | Small screecher furler       | 27/8             | 73  | 1                                     | 25                    | 31/4                                  | 83  | 41/8                            | 105 | <sup>5</sup> / <sub>32</sub> | 4                         | 950  | 431  | 9    | 255 | 30 | 9.14  | 13.5 | 4.1 |
| 3049 | Large screecher furler       | 41/4             | 108 | <b>1</b> <sup>7</sup> / <sub>16</sub> | 37                    | 5                                     | 127 | 57/8                            | 149 | 1/4                          | 6                         | 2000 | 907  | 24.5 | 695 | 40 | 12.19 | 20   | 6   |

1851 1852 1899

\*Smaller line may be required for spinnaker staysails with long foot lengths

# Code Zero Furling

Originally built for Volvo 60s, Code Zero furlers are used with free-flying asymmetrical headsails and staysails. Suitable for boats up to 125 ft (38 m), they tame Code Zero sails, screechers, Gennakers<sup>®</sup> and staysails.

The eight-faceted sheave-drive grips line aggressively to furl huge sails with minimal line. The large diameter makes furling smooth and easy. The 3126, 3127, 3128 and 3115 Code Zero's spring-loaded arms hold line captive in the sheave. Arms open to remove the line for quick unfurling, or to strike the furler. A built-in stripper safely guides line out of the furler. The lower unit incorporates a quick sail disconnect by pushing a spring-loaded button.

Compact hardened steel roller thrust bearings handle extremely high luff loads. Furler heights are kept to a minimum to maximize luff length.

Since furling a Code Zero sail requires very high luff tension, a 2:1 adapter is available. This fits either the upper or the lower unit, but installation on the upper is advised to prevent halyard twisting. A snap shackle adapter allows quick disconnect.

To minimize twisting, we recommend using a dual luff cord system. This system uses thimbles to loop the cords around the tack and head of the sail. Talk to your sailmaker. Code Zero furlers are not for reefing.

### Fits boats:

C0-00: 20 ft - 30 ft (6 - 9 m) C0-0: 25 ft - 40 ft (8 - 12 m) C0-1: 35 ft - 50 ft (11 - 15 m) C0-2: 45 ft - 70 ft (14 - 21 m) C0-3: 60 ft - 95 ft (18 - 29 m) C0-4: 85 ft - 125 ft (26 - 38 m)

3126 3127 3128 3115 Spring-loaded Compact height button for quick allows long luff sail disconnect lengths HARKEN Arms allow easy line removal, but snap shut to keep line captive Aggressive, largediameter sheave drive for easy furling Sealed hardened-steel thrust bearing system for extreme loading Integrated stripper to peel line out of Lower unit comes unit safelv with D-ring shackle that can be replaced with accessories

Lightspeed 32, Van Peteghem/Lauriot Prévost, al fresco Composites — Billy Black Photo

| Part |             | Dri | um<br>J | Sw   | ivel<br>ð | Μ                            | Line | eØ<br>M          | ax | Pin/sl           | hackle<br>Ø | We<br>Lov | eight w<br>ver | / schacl<br>Up | (le<br>per | Maxi<br>workin | mum<br>Ig load | Brea<br>Io | king<br>ad |
|------|-------------|-----|---------|------|-----------|------------------------------|------|------------------|----|------------------|-------------|-----------|----------------|----------------|------------|----------------|----------------|------------|------------|
| No.  | Description | in  | mm      | in   | mm        | in                           | mm   | in               | mm | in               | mm          | 0Z        | kg             | 0Z             | kg         | lb             | kg             | lb         | kg         |
| 3100 | Unit 00     | 4   | 102     | 17/8 | 47        | 3/ <sub>16</sub>             | 5    | 1/4              | 6  | —                | 6           | 15.6      | .44            | 10             | .28        | 2750           | 1250           | 5500       | 2500       |
| 3101 | Unit 0      | 5   | 127     | 21/8 | 54        | 1/4                          | 6    | 5/ <sub>16</sub> | 8  | 5/ <sub>16</sub> | 8           | 26.2      | .74            | 16.8           | .47        | 5000           | 2272           | 10000      | 4545       |
| 3126 | Unit 1      | 6   | 152     | 23/8 | 61        | 1/4                          | 6    | 5/ <sub>16</sub> | 8  | —                | 10          | 46.4      | 1.32           | 25.9           | .73        | 8000           | 3628           | 16000      | 7256       |
| 3127 | Unit 2      | 7   | 178     | 23/4 | 70        | 5/ <sub>16</sub>             | 8    | 3/8              | 10 | —                | 12          | 74.9      | 2.12           | 44.2           | 1.26       | 12000          | 5442           | 24000      | 10884      |
| 3128 | Unit 3      | 8   | 203     | 33/8 | 86        | <sup>5</sup> / <sub>16</sub> | 8    | <sup>3</sup> /8  | 10 | <sup>5</sup> /8  | 16          | 119.9     | 3.40           | 79             | 2.24       | 18000          | 8163           | 36000      | 16326      |
| 3115 | Unit 4      | 11  | 279     | 41/2 | 114       | <sup>3</sup> /8              | 10   | 1/2              | 12 | _                | 20          | 271.9     | 7.71           | 172.1          | 4.88       | 29500          | 13409          | 59000      | 26818      |

# **Code Zero Accessories**

|      |                      |              | Pin/shackle      |    |       |      | Maxi   | mum    | Breaking |       |  |
|------|----------------------|--------------|------------------|----|-------|------|--------|--------|----------|-------|--|
| Part |                      |              | 1                | Ø  | Wei   | ight | workin | g load | lo       | ad    |  |
| No.  | Description          | Fits         | in               | mm | 0Z    | g    | lb     | kg     | lb       | kg    |  |
| 3105 | 2:1 Fairlead         | Code Zero 00 | —                | 6  | 8     | 227  | 2750   | 1250   | 5500     | 2500  |  |
| 3106 | 2:1 Fairlead         | Code Zero 0  | <sup>5</sup> /16 | 8  | 11    | 312  | 5000   | 2272   | 10000    | 4545  |  |
| 3107 | 2:1 Sheave adapter   | Code Zero 1  | —                | 10 | 10    | 284  | 8000   | 3628   | 16000    | 7256  |  |
| 3108 | 2:1 Sheave adapter   | Code Zero 2  | —                | 12 | 24    | 680  | 12000  | 5442   | 24000    | 10884 |  |
| 3109 | 2:1 Sheave adapter   | Code Zero 3  | 5/ <sub>8</sub>  | 16 | 40    | 1134 | 18000  | 8163   | 36000    | 16326 |  |
| 3110 | Snap shackle adapter | Code Zero 00 | —                | 6  | 6     | 170  | 2750   | 1250   | 5500     | 2500  |  |
| 3111 | Snap shackle adapter | Code Zero 0  | <sup>5</sup> /16 | 8  | 8     | 227  | 5000   | 2272   | 10000    | 4545  |  |
| 3112 | Snap shackle adapter | Code Zero 1  | —                | 10 | 17    | 482  | 8000   | 3628   | 16000    | 7256  |  |
| 3113 | Snap shackle adapter | Code Zero 2  | —                | 12 | 34    | 964  | 12000  | 5442   | 24000    | 10884 |  |
| 3114 | Snap shackle adapter | Code Zero 3  | 5/8              | 16 | 57    | 1616 | 18000  | 8163   | 36000    | 16326 |  |
| 3116 | Thimble set (pair)   | Code Zero 00 | —                | 6  | 1.9*  | 54*  | 2750   | 1250   | 5500     | 2500  |  |
| 3117 | Thimble set (pair)   | Code Zero 0  | <sup>5/</sup> 16 | 8  | 3.7*  | 105* | 5000   | 2272   | 10000    | 4545  |  |
| 3118 | Thimble set (pair)   | Code Zero 1  | —                | 10 | 6.2*  | 176* | 8000   | 3628   | 16000    | 7256  |  |
| 3119 | Thimble set (pair)   | Code Zero 2  | _                | 12 | 12.6* | 357* | 12000  | 5442   | 24000    | 10884 |  |
| 3120 | Thimble set (pair)   | Code Zero 3  | 5/8              | 16 | 24.4* | 692* | 18000  | 8163   | 36000    | 16326 |  |
|      |                      |              |                  |    |       |      |        |        |          |       |  |

\*Weight (pair)



# **Code Zero Furling Dimensions**

| Unit  | Α                                 | В                                       | C                                        | D                         | E                  | F                               | G                                       | Н                                        |
|-------|-----------------------------------|-----------------------------------------|------------------------------------------|---------------------------|--------------------|---------------------------------|-----------------------------------------|------------------------------------------|
| C0-00 | 315/16"                           | 4 <sup>1</sup> /4"                      | 4 <sup>1</sup> /4"                       | 33/16"                    | 3"                 | 1/4"                            | 1/2"                                    | <sup>9</sup> / <sub>16</sub> "           |
|       | 100 mm                            | 108 mm                                  | 108 mm                                   | 81 mm                     | 77 mm              | 6 mm                            | 12.7 mm                                 | 14 mm                                    |
| C0-0  | 4 <sup>15</sup> / <sub>16</sub> " | 5 <sup>1</sup> /4"                      | 51/4"                                    | 41/2"                     | 37/16"             | 5/16"                           | 5/8"                                    | 5/8"                                     |
|       | 126 mm                            | 134 mm                                  | 134 mm                                   | 115 mm                    | 87 mm              | 8 mm                            | 16 mm                                   | 16 mm                                    |
| C0-1  | 5 <sup>15</sup> / <sub>16</sub> " | 7"                                      | 69/16"                                   | 57/16"                    | 4"                 | 3/8"                            | 3/4"                                    | 13/16"                                   |
|       | 151 mm                            | 177 mm                                  | 167 mm                                   | 139 mm                    | 101 mm             | 10 mm                           | 19 mm                                   | 20 mm                                    |
| C0-2  | 6 <sup>15</sup> / <sub>16</sub> " | 81/8"                                   | 711/16"                                  | 55/16"                    | 41/2"              | 7/16"                           | 7/8"                                    | 1"                                       |
|       | 177 mm                            | 207 mm                                  | 195 mm                                   | 135 mm                    | 115 mm             | 12 mm                           | 22 mm                                   | 25 mm                                    |
| C0-3  | 715/16"                           | <b>9</b> <sup>5</sup> / <sub>16</sub> " | <b>8</b> <sup>13</sup> / <sub>16</sub> " | 6 <sup>3</sup> /4"        | 5 <sup>1</sup> /2" | 5/8"                            | <b>1</b> <sup>1</sup> / <sub>16</sub> " | <b>1</b> <sup>1</sup> /8"                |
|       | 202 mm                            | 236 mm                                  | 224 mm                                   | 172 mm                    | 140 mm             | 16 mm                           | 27 mm                                   | 29 mm                                    |
| C0-4  | 1015/16"                          | 12 <sup>13</sup> / <sub>16</sub> "      | 12"                                      | <b>9</b> <sup>3</sup> /4" | 7"                 | <sup>13</sup> / <sub>16</sub> " | <b>1</b> <sup>1</sup> / <sub>2</sub> "  | <b>1</b> <sup>11</sup> / <sub>16</sub> " |
|       | 278 mm                            | 325 mm                                  | 305 mm                                   | 248 mm                    | 178 mm             | 20 mm                           | 38 mm                                   | 42 mm                                    |







# **Ordering Furling**

# 1. Choose furler type

The table below is based on sailing style and approximate boat size. This table is only a guideline. Do not use it to determine unit size.

# **Comparison Chart**

|                            | <b>OOAL</b><br>Small Cruising Boats               | <b>MKIV</b><br>Racers/Performance Cruisers                                                                                                                                          | <b>MKIII</b><br>Racers/Performance Cruisers                                 | <b>CRUISING</b><br>Cruising Boats                                   |
|----------------------------|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------|
| Note: Typical boat le      | ngths are listed as a guideline b                 | out are not the determining fac                                                                                                                                                     | ctor. Check with Harken® if your len                                        | gth varies.                                                         |
| Typical Boat Lengths       | Unit 00: 20 - 26 ft (6 - 8 m)                     | Unit 0: 22 - 30 ft (6.5 - 9.1 m)<br>Unit 1: 28 - 36 ft (8.5 - 11 m)<br>Unit 2: 35 - 46 ft (10 - 14.2 m)<br>Unit 3: 45 - 60 ft (13.7 - 18.3 m)<br>Unit 4: 65 - 80 ft (19.8 - 24.4 m) | Unit 4: 75 - 90 ft (22.9 - 27.4 m)<br>Unit 4.5: 85 - 110 ft (25.9 - 33.5 m) | Unit 1: 28 - 36 ft (8.5 - 11 m)<br>Unit 2: 35 - 46 ft (10 - 14.2 m) |
| Foils                      | Double groove Air Foil®<br>Stainless steel feeder | Double groove Air Foil <sup>®</sup><br>Stainless steel feeder                                                                                                                       | Double groove Air Foil®<br>Stainless steel feeder                           | Single Groove Round Foil                                            |
| Halyard and<br>Tack Swivel | Fixed                                             | Independent swivels for improved sail shape                                                                                                                                         | Independent swivels<br>for improved sail shape                              | Fixed                                                               |
| Drum                       | Removable split drum<br>for racing                | Removable split drum<br>for racing                                                                                                                                                  | Removable split drum for racing                                             | —                                                                   |
| Line                       | Included                                          | Included on Units 0, 1, 2                                                                                                                                                           | Not included                                                                | Included                                                            |

# 2. Determine unit size

Size is based on the headstay and clevis pin diameters listed on unit pages.

### 3. Determine if additional foils needed

Use the I and J measurements to determine the length of the headstay. If the existing headstay is longer than the standard length listed under **Headstay Length** on unit pages, order additional foils and connectors.

### 4. Determine chainplate attachment

For Unit 00AL, determine the diameter of the existing clevis pin to select a clevis pin assembly. MKIII units include attachment. For other units, see the **MKIV & Cruising Toggle Options** page 165 to find a toggle that fits your existing hardware.

### 5. Choose lead block kit and accessories

Harken recommends equipping every furling system with a ratchet lead block kit. Other parts on the **Furling Accessories** page 172 include mounting equipment and racing hardware for faster sail changes.

# 6. Prepare sail and headstay

Have a luff tape added to your genoa. See sizing information on page 166.

00AL, MKIV, and Cruising furlers install over the existing turnbuckle. The turnbuckle is accessible for adjustment by raising the drum. Some headstays will require cutting and shortening to fit Harken toggle. If the turnbuckle can be shortened by using an eye stud to Harken jaw/jaw toggle, the headstay can remain uncut. Check with a professional rigger on stay condition before reusing stay.

MKIII furlers include terminals with threaded stud end fittings to attach the headstay to the drum assembly.

For all units, rod rigging requires a Harken rod adapter stud and it must be cut and coldheaded by an authorized rod service center.

### 7. Contact

If you have any questions, please contact your dealer or Harken Technical Service.





Headstay Length =  $\sqrt{I^2 + J^2}$ 

# **Furling Dimensions**

|        |      |                                         |                           | C      |                                          | E                   |                                         |                            | F                                        |                                           | G                                         |                                          |                                         |                                  | J                                       |
|--------|------|-----------------------------------------|---------------------------|--------|------------------------------------------|---------------------|-----------------------------------------|----------------------------|------------------------------------------|-------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------------------------|----------------------------------|-----------------------------------------|
| System | Unit | Α                                       | В                         | Max    | D                                        | Max                 | Min                                     | Max                        | Min                                      | Max                                       | Min                                       | Н                                        | I                                       | Max                              | Min                                     |
| AL     | OOAL | 33/4"                                   | 65/16"                    | 9"     | 5/8"                                     | 38"                 | 33"                                     | 73/8"                      |                                          | 61/8"                                     |                                           | 53/4"                                    | 25/8"                                   | 21/2"                            |                                         |
| 8      |      | 95 mm                                   | 160 mm                    | 229 mm | 16 mm                                    | 965 mm              | 838 mm                                  | 187 mm                     | _                                        | 156 mm                                    | _                                         | 146 mm                                   | 66 mm                                   | 63 mm                            |                                         |
|        | 0    | 33/4"                                   | 57/8"                     | 97/8"  | <b>1</b> <sup>7</sup> /8"                | 41"                 | <b>39</b> <sup>1</sup> / <sub>2</sub> " | 83/8"                      | <b>8</b> <sup>1</sup> / <sub>4</sub> "   | 75/16"                                    | 73/16"                                    | 5 <sup>1</sup> /2"                       | 25/8"                                   | 25/16"                           | <b>2</b> <sup>3</sup> / <sub>16</sub> " |
|        |      | 96 mm                                   | 150 mm                    | 250 mm | 47 mm                                    | 1041 mm             | 1003 mm                                 | 213 mm                     | 209 mm                                   | 186 mm                                    | 183 mm                                    | 140 mm                                   | 66 mm                                   | 59 mm                            | 56 mm                                   |
|        | 1    | 43/4"                                   | 7"                        | 13"    | 2"                                       | 461/4"              | 42 <sup>1</sup> /4"                     | 13 <sup>1</sup> /8"        | <b>9</b> <sup>1</sup> / <sub>2</sub> "   | 11"                                       | <b>8</b> <sup>1</sup> /2"                 | 65/8"                                    | 31/16"                                  | 5 <sup>1</sup> / <sub>16</sub> " | <b>2</b> <sup>9</sup> / <sub>16</sub> " |
|        |      | 120 mm                                  | 178 mm                    | 330 mm | 51 mm                                    | 1175 mm             | 1073 mm                                 | 333 mm                     | 241 mm                                   | 279 mm                                    | 216 mm                                    | 167 mm                                   | 78 mm                                   | 129 mm                           | 65 mm                                   |
|        | 2    | 55/8"                                   | <b>9</b> <sup>1</sup> /8" | 16"    | 2 <sup>9</sup> /16"                      | 51 <sup>3</sup> /4" | 463/4"                                  | 15 <sup>1</sup> /8"        | <b>12</b> <sup>1</sup> /16"              | <b>13</b> <sup>15</sup> / <sub>16</sub> " | 107/8"                                    | <b>8</b> <sup>3</sup> / <sub>16</sub> "  | 313/16"                                 | 67/16"                           | 33/8"                                   |
| ž      |      | 143 mm                                  | 231 mm                    | 406 mm | 66 mm                                    | 1314 mm             | 1187 mm                                 | 384 mm                     | 306 mm                                   | 348 mm                                    | 276 mm                                    | 208 mm                                   | 97 mm                                   | 164 mm                           | 85 mm                                   |
|        | 3    | 75/16"                                  | 115/8"                    | 18"    | 33/8"                                    | 507/8"              | 505/16"                                 | <b>18</b> 11/16"           | <b>18</b> <sup>1</sup> / <sub>16</sub> " | <b>16</b> <sup>13</sup> / <sub>16</sub> " | <b>16</b> <sup>1</sup> / <sub>2</sub> "   | <b>9</b> <sup>3</sup> / <sub>4</sub> "   | <b>4</b> <sup>3</sup> / <sub>4</sub> "  | 711/16"                          | 71/8"                                   |
|        |      | 186 mm                                  | 296 mm                    | 457 mm | 86 mm                                    | 1293 mm             | 1278 mm                                 | 474 mm                     | 460 mm                                   | 427 mm                                    | 413 mm                                    | 247 mm                                   | 121 mm                                  | 195 mm                           | 180 mm                                  |
|        | 4    | 815/16"                                 | **                        | 21"    | * *                                      | 55%16               | 55 <sup>1</sup> / <sub>16</sub> "       | **                         | **                                       | <b>20</b> <sup>1</sup> /4"                | <b>19</b> <sup>13</sup> / <sub>16</sub> " | <b>11</b> <sup>1</sup> / <sub>16</sub> " | 5 <sup>1</sup> /8"                      | 87/8"                            | 87/16"                                  |
|        |      | 227 mm                                  |                           | 533 mm |                                          | 1411 mm             | 1399 mm                                 |                            |                                          | 515 mm                                    | 503 mm                                    | 280 mm                                   | 130 mm                                  | 225 mm                           | 214 mm                                  |
|        | 3.25 | 73/4"                                   | 12"                       | 161/8" | <b>1</b> 3/4"                            | 551/4"              | 41¾"                                    | 201/2"                     | 171/2"                                   | 17"                                       | 14"                                       | 12"                                      | 117/8"                                  | 9"                               | 6"                                      |
|        |      | 197 mm                                  | 305 mm                    | 410 mm | 44 mm                                    | 1403 mm             | 1060 mm                                 | 521 mm                     | 445 mm                                   | 432 mm                                    | 356 mm                                    | 305 mm                                   | 302 mm                                  | 229 mm                           | 152 mm                                  |
|        | 3.5  | <b>9</b> <sup>3</sup> / <sub>16</sub> " | 133/16"                   | 17"    | <b>1</b> 3/4"                            | 59"                 | 53"                                     | 23"                        | 193/4"                                   | 191/2"                                    | 16¼"                                      | 12"                                      | 117/8"                                  | 111/2"                           | 81/4"                                   |
|        |      | 233 mm                                  | 335 mm                    | 432 mm | 44 mm                                    | 1499 mm             | 1346 mm                                 | 584 mm                     | 502 mm                                   | 495 mm                                    | 413 mm                                    | 305 mm                                   | 302 mm                                  | 292 mm                           | 209 mm                                  |
| Ξ      | 4    | 105/8"                                  | 151/4"                    | 31"    | <b>2</b> <sup>3</sup> / <sub>4</sub> "   | 68"                 | 60"                                     | 29"                        | 25"                                      | 24"                                       | 20"                                       | 137/16"                                  | 131/4"                                  | 14"                              | 10"                                     |
|        |      | 270 mm                                  | 387 mm                    | 787 mm | 70 mm                                    | 1727 mm             | 1524 mm                                 | 737 mm                     | 635 mm                                   | 610 mm                                    | 508 mm                                    | 342 mm                                   | 337 mm                                  | 356 mm                           | 254 mm                                  |
|        | 4.5  | 14"                                     | 181/8"                    | 36"    | 3"                                       | 681/2"              | 631/2"                                  | 31"                        | 26"                                      | 26"                                       | 21"                                       | 137/16"                                  | 131/4"                                  | 151/2"                           | 101/2"                                  |
|        |      | 356 mm                                  | 460 mm                    | 914 mm | 76 mm                                    | 1740 mm             | 1613 mm                                 | 787 mm                     | 660 mm                                   | 660 mm                                    | 533 mm                                    | 342 mm                                   | 337 mm                                  | 394 mm                           | 267 mm                                  |
| *      | 1    | 35/8"                                   | 6"                        | 12"    | <b>1</b> <sup>3</sup> /8"                | 407/16"             | 331/4"                                  | <b>11</b> <sup>7</sup> /8" | <b>9</b> <sup>1</sup> / <sub>4</sub> "   | 1013/16"                                  | <b>8</b> <sup>1</sup> /4"                 | 65/8"                                    | <b>3</b> <sup>1</sup> / <sub>16</sub> " | 5 <sup>1</sup> / <sub>16</sub> " | <b>2</b> <sup>1</sup> / <sub>2</sub> "  |
| sing   |      | 93 mm                                   | 152 mm                    | 305 mm | 35 mm                                    | 1027 mm             | 845 mm                                  | 302 mm                     | 235 mm                                   | 275 mm                                    | 210 mm                                    | 167 mm                                   | 78 mm                                   | 129 mm                           | 64 mm                                   |
| rai 1  | 2    | 4 <sup>1</sup> / <sub>2</sub> "         | 8"                        | 16"    | <b>1</b> <sup>11</sup> / <sub>16</sub> " | 50 <sup>3</sup> /4" | 427/16"                                 | 14 <sup>7</sup> /8"        | 11 <sup>3</sup> /4"                      | <b>13</b> <sup>1</sup> /2"                | 10 <sup>3</sup> /8"                       | 83/16"                                   | 313/16"                                 | <b>6</b> <sup>1</sup> /2"        | 33/8"                                   |
| Ū      |      | 114 mm                                  | 203 mm                    | 406 mm | 42 mm                                    | 1289 mm             | 1078 mm                                 | 378 mm                     | 298 mm                                   | 343 mm                                    | 264 mm                                    | 208 mm                                   | 97 mm                                   | 165 mm                           | 86 mm                                   |

\*Soft attachment tack, head, and halyard; distance varies

| Í  | *Note: If a lo<br>point (G) and<br>hole position | ng link plate is used, add the fo<br>drum height (J) (based on whe<br>s). Do not add to halyard swivel | llowing dimensions to feeder (E), shackle (F), pivot<br>ther plate is used full-length or shortened to one of five<br>or top terminal dimensions. |
|----|--------------------------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 | Unit 1                                           | <sup>1</sup> /2" (12.7 mm) Clevis pin                                                                  | Add 131/4" - 63/8" (337 - 162 mm)                                                                                                                 |
|    | Unit I                                           | 5/8" (15.9 mm) Clevis pin                                                                              | Add 111/4" - 43/8" (286 - 111 mm)                                                                                                                 |
| -  | linit 0                                          | <sup>5</sup> /8" (15.9 mm) Clevis pin                                                                  | Add 16 <sup>1</sup> /8" - 8 <sup>1</sup> /4" (410 - 210 mm)                                                                                       |
|    | Unit 2                                           | <sup>3</sup> /4" (19.1 mm) Clevis pin                                                                  | Add 13 <sup>9</sup> /16" - 5 <sup>11</sup> /16" (344 - 144 mm)                                                                                    |
| 6  | linit 2                                          | <sup>3</sup> /4" (19.1 mm) Clevis pin                                                                  | Add 19 <sup>9</sup> /16" - 10 <sup>11</sup> /16" (497 - 271 mm)                                                                                   |
| 65 |                                                  | <sup>7</sup> /8" (22.2 mm) Clevis pin                                                                  | Add 19 <sup>7</sup> /8" - 11" (505 - 279 mm)                                                                                                      |





# **Foil Dimensions**

|           |      | K                                      | (  | L                                      | -  | Foil | length |                                                          |
|-----------|------|----------------------------------------|----|----------------------------------------|----|------|--------|----------------------------------------------------------|
| System    | Unit | in                                     | mm | in                                     | mm | ft   | m      | Luff tape                                                |
| OOAL      | OOAL | 3/4                                    | 20 | 1                                      | 25 | 7    | 2.13   | #6 <sup>6</sup> / <sub>32</sub> " (5 mm)                 |
|           | 0    | 7/8                                    | 23 | <b>1</b> 1/32                          | 26 | 7    | 2.13   | #6 <sup>6</sup> /32" (5 mm)                              |
| >         | 1    | 1                                      | 25 | <b>1</b> 1/8                           | 29 | 7    | 2.13   | #6 <sup>6</sup> / <sub>32</sub> " (5 mm)                 |
| <b>X</b>  | 2    | <b>1</b> <sup>1</sup> / <sub>4</sub>   | 32 | <b>1</b> <sup>3</sup> /8               | 36 | 7    | 2.13   | #6 <sup>6</sup> /32" (5 mm)                              |
| 2         | 3    | <b>1</b> <sup>1</sup> / <sub>2</sub>   | 38 | <b>1</b> <sup>11</sup> / <sub>16</sub> | 43 | 7    | 2.13   | #6 <sup>6</sup> /32" (5 mm)                              |
|           | 4    | <b>1</b> <sup>3</sup> / <sub>4</sub>   | 44 | 1 <sup>27</sup> /32                    | 47 | 7    | 2.13   | #6 <sup>6</sup> /32" (5 mm)                              |
|           | 3.25 | <b>1</b> <sup>5</sup> / <sub>16</sub>  | 33 | <b>1</b> <sup>11</sup> / <sub>16</sub> | 43 | 7    | 2.13   | #6 <sup>6</sup> /32" (5 mm)                              |
|           | 3.5  | <b>1</b> 9/16                          | 40 | <b>1</b> <sup>15</sup> / <sub>16</sub> | 49 | 9    | 2.74   | #6 <sup>6</sup> /32" (5 mm)                              |
| Ē         | 4    | <b>1</b> <sup>15</sup> / <sub>16</sub> | 49 | 27/16                                  | 61 | 9    | 2.74   | #6 <sup>6</sup> /32" (5 mm), #7 <sup>7</sup> /32" (6 mm) |
|           | 4.5  | 211/16                                 | 68 | 33/16                                  | 81 | 12   | 3.66   | #6 <sup>6</sup> /32" (5 mm), #7 <sup>7</sup> /32" (6 mm) |
| Cruicing  | 1    | 13/8                                   | 35 | 13/8                                   | 35 | 7    | 2.13   | #6                                                       |
| GIUISIIIY | 2    | 13/4                                   | 44 | <b>1</b> 5/8                           | 42 | 7    | 2.13   | #6                                                       |

# **Unit OOAL Optional Parts Jib Reefing & Furling** Unit 00AL is the perfect jib reefing and furling system for small cruising boats under 26 ft (8 m). It combines most of the features of larger Harken® furling 909 systems in a simpler unit. Like other Harken® systems, the main components of the 00AL are 6061-T6 Hardkote-anodized aluminum with Teflon® impregnation. Features include a free-spinning, omnidirectional bearing system with multiple ball bearing races, a double grooved foil for racing sail changes, and a lightweight halyard swivel to minimize windage and weight aloft. The furler's large 1112 inside spool provides plenty of mechanical advantage for smooth, easy reefing and furling. There are enough aluminum foil sections to build a headstay with a pin-to-pin measurement to 31 ft 6 in (9.60 m). Harken® offers an additional foil and connector to extend headstay length to 35 ft (10.7 m). Note: You must cut your headstay to install OOAL furling. You must also purchase a Harken® clevis pin to match your chainplate. 7404 Bearing shields protect Air Swivel® and tack bearings from UV and dirt Small Air Swivels® turn freely 884 on computer-designed bearing races to reduce windage and weight aloft Large-diameter ball bearings minimize friction, require no lubrication or isolating seals Pressure-cast sculpted aluminum line quard is open for easy line access Unit OOA Typical Boat Length 20' - 26' (6 - 8 m) Rod Ø Wire Ø (1 v 10 SS) Clevis Pin Ø Ē

Large inner spool diameter increases mechanical advantage for more powerful reefing and furling

|                                                       |                            |                            | 0.01.0                                                                                      |
|-------------------------------------------------------|----------------------------|----------------------------|---------------------------------------------------------------------------------------------|
| <sup>1</sup> /8", <sup>5</sup> /32", <sup>3</sup> /16 | " (3, 4, 5 mm)             | -4 (4.37 mm)               | <sup>1</sup> /4", <sup>5</sup> /16", <sup>3</sup> /8", <sup>7</sup> /16" (6, 8, 9.5, 11 mm) |
| eadstay Length                                        | Standard 9.60 m (31'6")    | ; max 10.67 m (35')        |                                                                                             |
| Part No.                                              | Description                |                            |                                                                                             |
| 1110                                                  | Furling system             |                            |                                                                                             |
| levis Pin Assem                                       | bly Required - sold so     | eparately                  |                                                                                             |
| 1106                                                  | <sup>1</sup> /4" (6 mm)    |                            |                                                                                             |
| 1107                                                  | <sup>5</sup> /16" (8 mm)   |                            |                                                                                             |
| 1108                                                  | <sup>3</sup> /8" (9.5 mm)  |                            |                                                                                             |
| 1109                                                  | <sup>7</sup> /16" (11 mm)  |                            |                                                                                             |
| ptional Parts                                         |                            |                            |                                                                                             |
| 909                                                   | Extra 6" (152 mm) conn     | ector                      |                                                                                             |
| 1112                                                  | Extra 3.5' (1.07 m) foil e | extrusion                  |                                                                                             |
| 7404                                                  | Lead block kit: 3 x 7403   | /1 x 7402/1 x 7401/1 cleat |                                                                                             |
| 884                                                   | Snap shackle for tack/he   | ead (each shackle)         |                                                                                             |
| 061                                                   | Stanchion mount base       |                            |                                                                                             |
| 944                                                   | Halyard restrainer (use    | only when required)        |                                                                                             |
| onsult with Harken                                    | if boat length exceeds s   | pecifications above        |                                                                                             |
|                                                       |                            |                            |                                                                                             |

# **MKIV Jib Reefing & Furling**

# FOR RACING AND PERFORMANCE CRUISING SAILORS

MKIV furling systems are strong, lightweight and aerodynamic, with the performance and features Harken<sup>®</sup> is known for. Longevity, ease of use and simplicity of installation are crucial components of the design. These free-rolling furlers make all the difference in headsail control by allowing racers and cruisers to quickly furl and reef from the safety of the cockpit, while maintaining great sail shape and optimal speed.

# DETAILS MAKE THE DIFFERENCE

# **EASY REEFING AND FURLING**

ENMKIY

Multiple rows of large-diameter Torlon<sup>®</sup> ball bearings used in high-load areas to minimize friction for easy reefing and furling; require no lubrication or isolating seals.

# **MORE FURLING POWER**

Large inner spool diameter increases mechanical advantage for powerful reefing and furling. Smaller outside dimension allows unit to fit narrow bows or below deck. Unit rotates around rod or wire headstay so furling bearings do not carry the headstay load for easy furling.

# LONG-LASTING PROTECTIVE FINISH

Aluminum line guard, torque tube and swivels are deepsaturation Hardkote-anodized for no-fade UV-stabilization, strength and durability. The Hardkote-anodized line guard is urethane coated for additional corrosion protection.

Specially formulated low-stretch black line is abrasion and UV resistant; standard on units 0, 1 and 2.

# 1. Halyard Swivel Turns Freely

Strong, lightweight halyard swivel reduces windage and weight aloft to minimize pitching and heeling. Stacked bearing races evenly distribute radial and thrust loads to ball bearings; foils turn freely under halyard loads.

Independent halyard and tack swivels furl sail center before head and tack for improved sail shape and upwind pointing.

### 2. Strong Foil Joints

Tough triple-interlock foil joints withstand years of torque loading. Connector's geometric shape interlocks to foil and secures with a syringe-injected adhesive into an engineered channel. Screws provide final lock.

# 3. Easy to Assemble Foils

C-shaped open connectors with low-friction plastic isolators slip onto the headstay wire and into foil for easy installation.

### 4. Drum Installs Over Existing Turnbuckle

Units are adaptable to a variety of rigging options for easy installation. Harken toggle assembly accepts standard turnbuckle using swage, rod, Norseman<sup>®</sup> or Sta-Lok<sup>®</sup> terminals. Toggle flips for fork or tang chainplate installation. A single stainless steel clevis pin provides access to the turnbuckle for adjustment.

#### Stainless Steel Feeder Stainless steel feeder allows fast singlehanded hoist and quick sail changes.

6. Removable Split Drum Line guard and spool come off easily for racing.

### 7. Double Foil Grooves for Racing

Aerodynamic aluminum Air Foils<sup>®</sup> handle extreme reefing loads. Double foil grooves allow fast hoists, douses and sail changes.



| MKIV                           | <u>Unit O</u>                | Typical Boat Length 22' -               | 30' (6.5 - 9.1 m)          |
|--------------------------------|------------------------------|-----------------------------------------|----------------------------|
| Wire Ø (                       | 1 x 19 SS)                   | Rod Ø                                   | Clevis Pin Ø               |
| 3/16", 7/32"                   | (5, 6 mm)                    | -4, -6 (4.37, 5.03 mm)                  | 3/8", 7/16" (9.5, 11.1 mm) |
| Headstay Length                | Standard 38'7" (11.          | 77 m); max 45'7" (13.9 m)               |                            |
| Part No.                       | Description                  |                                         |                            |
| 7410.10                        | Furling system               |                                         |                            |
| Toggle Assembly                | Required - sold s            | eparately                               |                            |
| 7410.20 3/8                    | Eye/Jaw reversible           | toggle assembly with 3/8" (9.5 mm) clev | ris pin                    |
| 7410.20 7/16                   | Eye/Jaw reversible           | toggle assembly with 7/16" (11.1 mm) cl | evis pin                   |
| Optional Parts                 |                              |                                         |                            |
| 7410.30                        | Extra 7' (2.13 m) lu         | ff foil extrusion                       |                            |
| 7410.31                        | Extra 61/2" (165 mm          | ) connector with bushings               |                            |
| 7420 -4                        | -4 Rod adaptor stud          | d (thread Ø UNF 7/16")*                 |                            |
| 7421 -6                        | -6 Rod adaptor stud          | d (thread Ø UNF 7/16")*                 |                            |
| *I I a such has a successful a | a di da come la cone da la s |                                         |                            |

\*Use with conventional turnbuckle

| Wire Ø              | ( <u>1 x 19 SS)</u>    | Rod Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Clevis Pin Ø               |
|---------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| 1/4", 9/32", 5/16   | " (6, 7, 8 mm)         | -8, -10, -12 (5.72, 6.35, 7.14 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1/2", 5/8" (12.7, 15.9 mm) |
| eadstay Length      | Standard 45'11"        | (13.99 m); max 52'11" (16.12 m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| Part No.            | Description            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| 7411.10             | Furling system         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| iggle Assembly      | <b>Required - sold</b> | separately                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
| 7411.20 1/2         | Eye/Jaw reversib       | le toggle assembly with 1/2" (12.7 mm) cle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | vis pin                    |
| 7311.20 1/2         | Jaw/Jaw toggle a       | assembly with 1/2" (12.7 mm) clevis pin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |
| 7311.20 5/8         | Stud/Jaw toggle        | assembly with 5/8" (15.9 mm) clevis pin (t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hread Ø UNF 5/8" LH)       |
| 7311.21 1/2         | Long link plate w      | vith toggle assembly with 1/2" (12.7 mm) cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | evis pin                   |
| 7311.21 5/8         | Long link plate w      | rith toggle assembly with 5/8" (15.9 mm) cl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | evis pin                   |
| ptional Parts       |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| 7411.30             | Extra 7' (2.13 m)      | luff foil extrusion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                            |
| 7411.31             | Extra 7" (178 mn       | n) connector with bushings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                            |
| 7422 -8             | -8 Rod adaptor s       | tud (thread Ø UNF 1/2")*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                            |
| 7423 -10            | -10 Rod adaptor        | stud (thread Ø UNF 1/2")*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
| 7424 -12            | -12 Rod adaptor        | stud (thread Ø UNF 5/8")*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            |
| Jse with convention | nal turnbuckle         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
|                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
|                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
| - And               |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
|                     |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                            |
|                     |                        | and the second se |                            |

Outward Bound 46 — Swiftsure Yachts Seattle photo



| MKIV                                               | Unit 2                    | Typical Boat Length 35' - 4                 | 6' (10.6 - 14.2 m)                                 |
|----------------------------------------------------|---------------------------|---------------------------------------------|----------------------------------------------------|
| <br>Wire Ø (                                       | (1 x 19 SS)               | Rod Ø                                       | Clevis Pin Ø                                       |
| <sup>5</sup> / <sub>16</sub> ", <sup>3</sup> /8" ( | (8, 10 mm)                | -12, -17, -22 (7.14, 8.38, 9.53 mm)         | <sup>5</sup> /8", <sup>3</sup> /4" (15.9, 19.1 mm) |
| Headstay Length                                    | Standard 60'4" (18.       | 38 m); max 67'4" (20.51 m)                  |                                                    |
| Part No.                                           | Description               |                                             |                                                    |
| 7412.10                                            | Furling system            |                                             |                                                    |
| <b>Toggle Assembly</b>                             | <b>Required</b> - sold so | eparately                                   |                                                    |
| 7412.20 5/8                                        | Eye/Jaw reversible        | toggle assembly with 5/8" (15.9 mm) clevis  | pin                                                |
| 7312.20 5/8                                        | Jaw/Jaw toggle ass        | embly with 5/8" (15.9 mm) clevis pin        |                                                    |
| 7312.20 3/4                                        | Stud/Jaw toggle as:       | sembly with 3/4" (19.1 mm) clevis pin (thre | ad Ø UNF 3/4" LH)                                  |
| 7312.21 5/8                                        | Long link plate with      | toggle with 5/8" (15.9 mm) clevis pin       |                                                    |
| 7312.21 3/4                                        | Long link plate with      | toggle with 3/4" (19.1 mm) clevis pin       |                                                    |
| <b>Optional Parts</b>                              |                           |                                             |                                                    |
| 7412.30                                            | Extra 7' (2.13 m) lu      | ff foil extrusion                           |                                                    |
| 7412.31                                            | Extra 9" (229 mm) (       | connector with bushings                     |                                                    |
| 7424 -12                                           | -12 Rod adaptor stu       | ud (thread Ø UNF 5/8")*                     |                                                    |
| 7425 -17                                           | -17 Rod adaptor stu       | ud (thread Ø UNF 5/8")*                     |                                                    |
| 7426 -22                                           | -22 Rod adaptor stu       | ud (thread Ø UNF 3/4")*                     |                                                    |
| 411 111 11                                         |                           |                                             |                                                    |

\*Use with conventional turnbuckle

### NEW

| MKIV                 | Ilnit                | 3.          |                                      | COL (10.7 10.0 m)                                                            |
|----------------------|----------------------|-------------|--------------------------------------|------------------------------------------------------------------------------|
| Wire Ø (             | 1 x 19 SS)           |             | Bod Ø                                | • <b>DU</b> <sup>•</sup> <b>(13.7 - 18.3 M)</b><br>Clevis Pin Ø              |
| 7/16", 1/2" (        | 11, 12 mm)           |             | -22, -30 (9.53, 11.10 mm)            | <sup>3</sup> / <sub>4</sub> ", <sup>7</sup> / <sub>8</sub> " (19.1, 22.2 mm) |
| Headstay Length      | Standard 74'8        | " (22.76 m  | ı); max 81'8" (24.89 m)              |                                                                              |
| Part No.             | Description          |             | · · ·                                |                                                                              |
| 7413.10              | Furling system       | ۱*          |                                      |                                                                              |
| Toggle Assembly      | <b>Required</b> - so | ld separ    | ately                                |                                                                              |
| 7413.20 3/4          | Jaw/Jaw with         | short link  | plate with 3/4" (19.1 mm) clevis pir | 1                                                                            |
| 7413.20 7/8          | Jaw/Jaw with         | short link  | plate with 7/8" (22.2 mm) clevis pir | 1                                                                            |
| 7313.21 3/4          | Long link plate      | with togg   | le with 3/4" (19.1 mm) clevis pin    |                                                                              |
| 7313.21 7/8          | Long link plate      | with togg   | le with 7/8" (22.2 mm) clevis pin    |                                                                              |
| Optional Parts       |                      |             |                                      |                                                                              |
| 7413.30              | Extra 7' (2.13       | m) luff foi | l extrusion                          |                                                                              |
| 7413.31              | Extra 93/4" (248     | 3 mm) con   | nector with bushings                 |                                                                              |
| 7426 -22             | -22 Rod adapt        | or stud (th | nread Ø UNF 3/4")**                  |                                                                              |
| 7427 -30             | -30 Rod adapt        | or stud (th | nread Ø UNF 7/8")**                  |                                                                              |
| Available January 20 | 09 *Line not         | included    | **Use with conventional turnbu       | uckle                                                                        |

#### Available January 2009 \*Line not included

| NEW                                                      |                       |                                          |                                                                 |
|----------------------------------------------------------|-----------------------|------------------------------------------|-----------------------------------------------------------------|
| MKIV                                                     | <b>Unit 4</b>         | Typical Boat Length 65'                  | - 80' (19.8 - 24.4 m)                                           |
| Wire Ø (                                                 | 1 x 19 SS)            | Rod Ø                                    | Clevis Pin Ø                                                    |
| <sup>1</sup> /2", <sup>9</sup> /16", <sup>5</sup> /8" (1 | 2, 14, 16 mm)*        | -30, -40, -48 (11.10, 12.7, 14.3 mm)     | <sup>7</sup> /8", 1", 1 <sup>1</sup> /8" (22.2, 25.4, 28.57 mm) |
| Headstay Length                                          | Standard 75'1" (22.8  | 38 m); max 89'1" (27.15 m)               |                                                                 |
| Part No.                                                 | Description           |                                          |                                                                 |
| 7414.10                                                  | Furling system**      |                                          |                                                                 |
| Toggle Assembly                                          | Required - sold se    | parately                                 |                                                                 |
| 7414.20 7/8                                              | Jaw/Jaw with short    | link plate with 7/8" (22.2 mm) clevis pi | n                                                               |
| 7414.20 1                                                | Jaw/Jaw with short    | link plate with 1" (25.4 mm) clevis pir  | 1                                                               |
| 7414.20 1 1/8                                            | Jaw/Jaw with short    | link plate with 11/8" (28.57 mm) clevis  | pin                                                             |
| Optional Parts                                           |                       |                                          |                                                                 |
| 7414.30                                                  | Extra 7' (2.13 m) luf | f foil extrusion                         |                                                                 |
| 7414.31                                                  | Extra 103/4" (270 mm  | i) connector                             |                                                                 |
| 7427 -30                                                 | -30 Rod adaptor stu   | d***                                     |                                                                 |
| 7428 -40                                                 | -40 Rod adaptor stu   | d***                                     |                                                                 |
| 7429 -48                                                 | -48 Rod adaptor stu   | 4***                                     |                                                                 |

Available January 2009 \*For 3/4" ( \*\*\*Use with conventional turnbuckle \*For 3/4" (19 mm) wire Ø contact Harken \*\*Line not included



# MKIV Under-Deck Jib Reefing & Furling



# FOR PERFORMANCE RACING AND CRUISING SAILORS

Harken's MKIV Under-Deck Furling is the perfect solution for performance racers and cruisers that want an aerodynamic system with a minimal amount of equipment above deck. The spool mounts underneath the deck, reducing windage and providing an uncluttered bow. The sail's tack is at deck level so wind can flow smoothly across the sail and bow for efficient forward power. The headsail disconnects from the drum, leaving the lower unit in place. This makes servicing and storage easier and the mast simpler to step.

# **DETAILS MAKE THE DIFFERENCE**

### **EASY REEFING AND FURLING**

Two rows of ball bearings between the center hub and deck bearing provide low-friction furling.

### LONG-LASTING PROTECTIVE FINISH

Aluminum line guard, torque tube and swivels are deepsaturation Hardkote-anodized for no-fade UV-stabilization, strength and durability. The Hardkote-anodized line guard is urethane coated for additional corrosion protection.

The threaded height adjuster uses dissimilar metals (stainless steel and bronze) to prevent galling.

### **EASY TO MAINTAIN**

The furler can be flushed clean with detergent water like traditional furling.

The through-deck bearing minimizes water seepage into the underdeck compartment.

- 1. Torque Tube Houses Full-Length Turnbuckle The torque tube houses a full-length turnbuckle for optimal mast rake and tension adjustment.
- 2. Headstay Toggle with Universal Joint The headstay disconnects from the toggle at deck level, leaving the lower unit in place for maintenance or storage.

A foil universal joint allows ample headstay sag when sailing downwind.

- 3. Belowdeck Drum Fits Narrow Bows The small outside drum diameter lets unit fit inside narrow bows.
- Threaded Height Adjuster Self-locking threaded height adjuster adapts the furler to fit the distance between the chainplate and deck.



# MKIV Under-Deck Unit 1 Typical Boat Length 28' - 36' (8.3 - 11 m)

Wire Ø (1 x 19 SS) Rod Ø Clevis Pin Ø <sup>1</sup>/4", <sup>9</sup>/32", <sup>5</sup>/16" (6, 7, 8 mm) -8, -10 (5.72, 6.35 mm) <sup>1</sup>/2" (12.7 mm) Headstay Length Standard 45'11" (13.99 m); max 52'11" (16.12 m) Part No. Description 7411.11 1/2 Under-Deck Furling system with 1/2" (12.7 mm) clevis pin **Optional Parts** 7411.30 Extra 7' (2.13 m) luff foil extrusion 7411.31 Extra 7" (178 mm) connector with bushings

# MKIV Under-Deck Unit 2 Twical Bast Length 35' - 46' (10.6 - 14.2 m)

| Typiour Dout E                                                | ungui uu -        |                                          |                |
|---------------------------------------------------------------|-------------------|------------------------------------------|----------------|
| Wire Ø (                                                      | (1 x 19 SS)       | Rod Ø                                    | Clevis Pin Ø   |
| <sup>5</sup> / <sub>16</sub> ", <sup>3</sup> / <sub>8</sub> " | (8, 10 mm)        | -12, -17 (7.14, 8.38 mm)                 | ⁵/ଃ" (15.9 mm) |
| Headstay Length                                               | Standard 60'4" (1 | 8.38 m); max 67'4" (20.51 m)             |                |
| Part No.                                                      | Description       |                                          |                |
| 7412.11 5/8                                                   | Under-Deck Furli  | ng system with 5/8" (15.9 mm) clevis pin |                |
| <b>Optional Parts</b>                                         |                   |                                          |                |
| 7412.30                                                       | Extra 7' (2.13 m) | luff foil extrusion                      |                |
| 7412.31                                                       | Extra 9" (229 mm  | ) connector with bushings                |                |
|                                                               |                   |                                          |                |

# MKIV Under-Deck Unit 3 Typical Boat Length 45' - 60' (13.7 - 18.3 m)

| Wire Ø (        | 1 x 19 SS)       | Rod Ø                                      | Clevis Pin Ø               |
|-----------------|------------------|--------------------------------------------|----------------------------|
| 7/16", 1/2" (1  | l1, 12 mm)       | -22, -30 (9.53, 11.10 mm)                  | 3/4", 7/8" (19.1, 22.2 mm) |
| Headstay Length | Standard 75'1"   | (22.88 m); max 82'1" (25.02 m)             |                            |
| Part No.        | Description      |                                            |                            |
| 7413.11 3/4     | Under-Deck Fu    | ling system with 3/4" (19.1 mm) clevis pin |                            |
| 7413.11 7/8     | Under-Deck Fu    | ling system with 7/8" (22.2 mm) clevis pin |                            |
| Optional Parts  |                  |                                            |                            |
| 7413.30         | Extra 7' (2.13 n | 1) luff foil extrusion                     |                            |
| 7413.31         | Extra 93/4" (248 | mm) connector with bushings                |                            |

# **Dimensions**

|      | Α           |                                         |     |                                |     |                                       |     |                                      |     | 0                                      |     |
|------|-------------|-----------------------------------------|-----|--------------------------------|-----|---------------------------------------|-----|--------------------------------------|-----|----------------------------------------|-----|
|      | Part        | Mi                                      | in  | M                              | ax  | E                                     | B   | N                                    | lin | М                                      | ax  |
| Unit | No.         | in                                      | mm  | in                             | mm  | in                                    | mm  | in                                   | mm  | in                                     | mm  |
| 1    | 7411.11 1/2 | 105/8                                   | 270 | 155/8                          | 397 | 5 <sup>1</sup> /2                     | 140 | <b>4</b> <sup>5</sup> / <sub>8</sub> | 117 | <b>9</b> <sup>5</sup> /8               | 244 |
| 2    | 7412.11 5/8 | <b>12</b> <sup>11</sup> / <sub>16</sub> | 322 | <b>18</b> <sup>9</sup> /16     | 471 | 65/8                                  | 167 | 5 <sup>3</sup> /8                    | 137 | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287 |
| 3    | 7413.11 3/4 | <b>16</b> <sup>1</sup> /8               | 410 | 235/8                          | 600 | <b>8</b> <sup>3</sup> / <sub>16</sub> | 208 | 67/8                                 | 175 | 143/8                                  | 365 |
| 3    | 7413.11 7/8 | 16 <sup>9</sup> /16                     | 421 | 24 <sup>1</sup> / <sub>4</sub> | 616 | <b>8</b> <sup>3</sup> / <sub>16</sub> | 208 | 75/16                                | 186 | 15                                     | 381 |



7412.30 7413.30 7411.31 7412.31 7413.31

7411.30

J/122 - J-Boats photo

# **Cruising Jib Reefing & Furling**



The Harken<sup>®</sup> Cruising Furlers are engineered with strength, longevity, ease of use and price crucial to the design. This dependable system lets you smoothly unfurl your headsail, furl and reef safely in a blow, and control boat speed when maneuvering in a crowded harbor—

all from the safety of the cockpit.



# **DETAILS MAKE THE DIFFERENCE**

HAR KEN on

# **EASY REEFING AND FURLING**

Multiple rows of large-diameter Torlon<sup>®</sup> ball bearings in the halyard swivel minimize friction for smooth furling, require no lubrication or isolating seals.

# **MORE FURLING POWER**

Large inner spool diameter increases mechanical advantage for powerful reefing and furling. Smaller outside diameter allows unit to fit narrow bows or belowdeck.

# **STANDS UP TO THE ELEMENTS**

Halyard swivel, line guard, torque tube and bearing races are deep-saturation Hardkote anodized for strength and durability, with a black additive to resist the corrosive effects of saltwater and sun and to provide long-term wear. The line guard is powder coated for added corrosion resistance.

Line is kept on the spool with super-tough polymer drum cap and anodized aluminum line guard. High-strength, low-stretch line is included.

- 1. Strong Foil Joints Tough foil joints withstand years of torque loading. Connector interlocks to foil and secures with screws and adhesive.
- 2. Single-Groove Round Foil Round foil profile withstands extreme reefing loads for safe furling. Rolls more easily than aerodynamic foil shapes.
- 3. Easy-to-Assemble Foils C-shaped open connectors with low-friction plastic isolators slip onto the headstay wire and into foil for easy installation.
- 4. Drum Installs Over Existing Turnbuckle

Units are adaptable to a variety of rigging options for easy installation. Harken® toggle assembly accepts standard turnbuckle using swage, rod, Norseman® or Sta-Lok® terminals, or fits directly to a marine eye. A single stainless steel clevis pin provides access to the turnbuckle for adjustment.

# **Cruising Unit 1** Typical Boat Length 28' - 36' (8.3 - 11 m)

| Typical Boat Long          | Jui Lo oo          |                                   |                                                      |  |  |  |  |
|----------------------------|--------------------|-----------------------------------|------------------------------------------------------|--|--|--|--|
| Wire Ø                     |                    | Rod Ø                             | Clevis Pin Ø                                         |  |  |  |  |
| 1/4", 9/32", 5/16" (6, 7,  | 8 mm) -8           | , -10, -12 (5.72, 6.35, 7.14 mm   | ) <sup>1</sup> /2", <sup>5</sup> /8" (12.7, 15.9 mm) |  |  |  |  |
| Headstay Length            | Standard 45'8" (1  | 3.92 m); max 52'8" (16.05 m)      |                                                      |  |  |  |  |
| Part No.                   | Description        |                                   |                                                      |  |  |  |  |
| 7311.10                    | Furling system     |                                   |                                                      |  |  |  |  |
| <b>Toggle Assembly Rec</b> | juired - sold se   | parately                          |                                                      |  |  |  |  |
| 7411.20 1/2                | Eye/Jaw reversibl  | e toggle assembly with 1/2" (12.3 | 7 mm) clevis pin                                     |  |  |  |  |
| 7311.20 1/2                | Jaw/Jaw toggle a   | ssembly with 1/2" (12.7 mm) cle   | vis pin                                              |  |  |  |  |
| 7311.20 5/8                | Stud/Jaw toggle a  | assembly with 5/8" (15.9 mm) cle  | vis pin (thread Ø UNF 5/8" LH)                       |  |  |  |  |
| 7311.21 1/2                | Long link plate wi | th toggle assembly with 1/2" (12  | bly with 1/2" (12.7 mm) clevis pin                   |  |  |  |  |
| 7311.21 5/8                | Long link plate wi | th toggle assembly with 5/8" (15  | .9 mm) clevis pin                                    |  |  |  |  |
| <b>Optional Parts</b>      |                    |                                   |                                                      |  |  |  |  |
| 7311.30                    | Extra 7' (2.13 m)  | luff foil extrusion               |                                                      |  |  |  |  |
| 7311.31                    | Extra 6" (152 mm   | ) connector with isolator         |                                                      |  |  |  |  |
| 7422 -8                    | -8 Rod adaptor st  | ud (thread Ø UNF 1/2")*           |                                                      |  |  |  |  |
| 7423 -10                   | -10 Rod adaptor    | stud (thread Ø UNF 1/2")*         |                                                      |  |  |  |  |
| 7424 -12                   | -12 Rod adaptor    | stud (thread Ø UNF 5/8")*         |                                                      |  |  |  |  |
| 411 201 21 10              | 1 11               |                                   |                                                      |  |  |  |  |

\*Use with conventional turnbuckle

# **Cruising Unit 2** Typical Boat Length 35' - 46' (10.6 - 14.2 m)

| IJpioui Dout Io                                                                                      |              |                                                                      |                                                    |  |  |  |
|------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------|----------------------------------------------------|--|--|--|
| Wire Ø                                                                                               | 1            | Rod Ø                                                                | Clevis Pin Ø                                       |  |  |  |
| <sup>5</sup> /16 <sup>"</sup> , <sup>3</sup> /8 <sup>"</sup> , <sup>7</sup> /16 <sup>"</sup> (8, 10, | 11, 12 mm)   | -12 -17, -22 (7.14, 8.38, 9.53 mm)                                   | <sup>5</sup> /8", <sup>3</sup> /4" (15.9, 19.1 mm) |  |  |  |
| Headstay Length                                                                                      | Standard 6   | 0'1" (18.31 m); max 67'1" (20.45 m)                                  |                                                    |  |  |  |
| Part No.                                                                                             | Description  | 1                                                                    |                                                    |  |  |  |
| 7312.10                                                                                              | Furling sys  | tem                                                                  |                                                    |  |  |  |
| <b>Toggle Assembly R</b>                                                                             | equired - so | ld separately                                                        |                                                    |  |  |  |
| 7412.20 5/8                                                                                          | Eye/Jaw rev  | versible toggle assembly with 5/8" (15.9 m                           | ım) clevis pin                                     |  |  |  |
| 7312.20 5/8                                                                                          | Jaw/Jaw to   | ggle assembly with 5/8" (15.9 mm) clevis pin                         |                                                    |  |  |  |
| 7312.20 3/4                                                                                          | Stud/Jaw to  | oggle assembly with 3/4" (19.1 mm) clevis pin (thread Ø UNF 3/4" LH) |                                                    |  |  |  |
| 7312.21 5/8                                                                                          | Long link p  | late with toggle with 5/8" (15.9 mm) clevis pin                      |                                                    |  |  |  |
| 7312.21 3/4                                                                                          | Long link p  | late with toggle with 3/4" (19.1 mm) clevis                          | ; pin                                              |  |  |  |
| Optional Parts                                                                                       |              |                                                                      |                                                    |  |  |  |
| 7312.30                                                                                              | Extra 7' (2. | 13 m) luff foil extrusion                                            |                                                    |  |  |  |
| 7312.31                                                                                              | Extra 9" (22 | 9 mm) connector with isolator                                        |                                                    |  |  |  |
| 7424 -12                                                                                             | -12 Rod ad   | aptor stud (thread Ø UNF 5/8")*                                      |                                                    |  |  |  |
| 7425 -17                                                                                             | -17 Rod ad   | aptor stud (thread Ø UNF 5/8")*                                      |                                                    |  |  |  |
| 7426 -22                                                                                             | -22 Rod ad   | aptor stud (thread Ø UNF 3/4")*                                      |                                                    |  |  |  |
|                                                                                                      |              |                                                                      |                                                    |  |  |  |

\*Use with conventional turnbuckle



# 7311.30 7312.30 7311.31 7312.31 7422 -8 7423 -10 7424 -12 7425 - 17 7426 - 22 7411.20 1/2 7412.20 5/8 7311.20 1/2 7312.20 5/8 7311.20 5/8 7312.20 3/4 7311.21 1/2

7311.21 1/2 7311.21 5/8 7312.21 5/8 7312.21 3/4

# **Electric Jib Reefing & Furling**



# PUSH-BUTTON SAIL CONTROL

Designed for large cruising boats, electric furling is a headsail system that helps you get the most out of your boat, while letting you comfortably reef, furl and set sails from the cockpit with the push of a button.

# **DETAILS MAKE THE DIFFERENCE**

# **HIGH-STRENGTH MATERIALS, SCULPTED DESIGN**

The torque tube, motor, and gear housing are deep-saturation Hardkote-anodized, UV-stabilized aluminum. The sculpted gear box and streamlined motor housing is sealed with high-quality lip seals. The motor mounts vertically into pulpits, clearing anchor tackle and providing low windage.

### **HIGH-TORQUE, HIGH-EFFICIENCY MOTOR**

The motor is a permanent magnet design and features high torque and low power consumption. Inside, the hardened steel gears are permanently lubricated. The reversible drive uses a high-reduction worm gear set to prevent reefed sails from unfurling under load.

### **EASY TO INSTALL OR UPGRADE**

C-shaped connectors slip over the headstay without feeding wire through the connector. The lower unit fits over the existing turnbuckle allowing easy length adjustment. Easy upgrade from a Cruising Unit 2 and MKIV Unit 3 manual unit.

2 Ľ 4 **1. Strong Foil Joints** Tough triple-interlock foil joints withstand years of torque loading.

- 2. 12- or 24-Volt Systems Available in 12 or 24 volts; switches and 12- or 24-volt control box and circuit breaker included.
- 3. Emergency Manual Operation Use supplied crank handle or cordless drill adapter.
- Scratch-Resistant Link Plates Stainless steel link plates fit over standard turnbuckle, resist scratches, and can be easily repolished.

# **Electric** Jib Reefing & Furling



Designed for large cruising boats, electric furling is a headsail system that helps you get the most out of your boat, while letting you comfortably reef, furl and set sails from the cockpit with the push of a button.

# **DETAILS MAKE THE DIFFERENCE**

# HIGH-STRENGTH MATERIALS, SCULPTED DESIGN

The torque tube, motor, and gear housing are deep-saturation Hardkote-anodized, UV-stabilized aluminum. The sculpted gear box and streamlined motor housing is sealed with high-quality lip seals. The motor mounts vertically into pulpits, clearing anchor tackle and providing low windage.

### **HIGH-TORQUE, LOW-POWER MOTOR**

HARKEN MANY S

The motor is a permanent magnet design and features high torque and low power consumption. Inside, the hardened steel gears are permanently lubricated. The reversible drive uses a high-reduction worm gear set to prevent reefed sails from unfurling under load.

### **EASY TO INSTALL OR UPGRADE**

C-shaped connectors slip over the headstay without feeding wire through the connector. The lower unit fits over the existing turnbuckle allowing easy length adjustment. Easy upgrade from a Cruising Unit 2 and MKIV Unit 3 manual unit.

2

K

4

 Strong Foil Joints
 Tough triple-interlock foil joints
 withstand years of torque loading.

- 12- or 24-Volt Systems
   Available in 12 or 24 volts; switches
   and 12- or 24-volt control box and
   circuit breaker included.
- 3. Emergency Manual Operation Use supplied crank handle or cordless drill adapter.

 Scratch-Resistant Link Plates Stainless steel link plates fit over standard turnbuckle, resist scratches, and can be easily repolished.

# **Unit 2E** Typical Boat Length <u>35' - 46' (10.6 - 14.2 m)</u>

| Wire Ø                 | (1 x 19 SS)              | Rod Ø                                     | Clevis Pin Ø                 |
|------------------------|--------------------------|-------------------------------------------|------------------------------|
| 5/16", 3/8", 7/16" (   | 8, 10, 11, 12 mm)        | -12 -17, -22 (7.14, 8.38, 9.53 mm         | ) 5/8", 3/4" (15.9, 19.1 mm) |
| Headstay Length        | Standard 60'3" (18       | .36 m); max 67'3" (20.49 m)               |                              |
| Part No.               | Description              |                                           |                              |
| 7312.13 12V            | Electric Furler 12 V     | olt with control box, switches, and circu | iit breaker                  |
| 7312.13 24V            | Electric Furler 24 V     | olt with control box, switches, and circu | iit breaker                  |
| <b>Toggle Assembly</b> | <b>Required - sold s</b> | eparately                                 |                              |
| 7312.22 5/8            | Jaw/Jaw with link p      | plate with 5/8" (15.9 mm) clevis pin      |                              |
| 7413.22 3/4            | Jaw/Jaw with link p      | plate with 3/4" (19.1 mm) clevis pin      |                              |
| Optional Parts         |                          |                                           |                              |
| 7312.12V.CONV          | Conversion Kit Cru       | ising manual to electric*                 |                              |
| 7312.24V.CONV          | Conversion Kit Cru       | ising manual to electric*                 |                              |
| 7312.30                | Extra 7' (2.13 m) lu     | uff foil extrusion                        |                              |
| 7312.31                | Extra 9" (229 mm)        | connector with isolator                   |                              |
| 7424 -12               | -12 Rod adaptor st       | ud (thread Ø UNF 5/8")**                  |                              |
| 7425 -17               | -17 Rod adaptor st       | ud (thread Ø UNF 5/8")**                  |                              |
| 7426 -22               | -22 Rod adaptor st       | ud (thread Ø UNF 3/4")                    |                              |
|                        |                          |                                           |                              |

\* Includes switches and 12- or 24-volt control box and circuit breaker \*\* Use with conventional turnbuckle

# Unit 3E Typical Boat Length 45' - 60' (13.7 - 18.3 m)

| Wire Ø                                                        | i (1 x 19 SS)            | Rod Ø                                      | Clevis Pin Ø               |
|---------------------------------------------------------------|--------------------------|--------------------------------------------|----------------------------|
| <sup>7</sup> / <sub>16</sub> ", <sup>1</sup> / <sub>2</sub> " | (11, 12 mm)              | -22, -30 (9.53, 11.10 mm)                  | 3/4", 7/8" (19.1, 22.2 mm) |
| Headstay Length                                               | Standard 75'1" (22       | 2.88 m); max 82'1" (25.02 m)               |                            |
| Part No.                                                      | Description              |                                            |                            |
| 7413.13 12V                                                   | Electric Furler 12 \     | /olt with control box, switches, and circu | it breaker                 |
| 7413.13 24V                                                   | Electric Furler 24 \     | /olt with control box, switches, and circu | it breaker                 |
| Toggle Assembly                                               | <b>Required</b> - sold s | separately                                 |                            |
| 7413.22 3/4                                                   | Jaw/Jaw with link        | plate with 3/4" (19.1 mm) clevis pin       |                            |
| 7413.22 7/8                                                   | Jaw/Jaw with link        | plate with 7/8" (22.2 mm) clevis pin       |                            |
| Optional Parts                                                |                          |                                            |                            |
| 7413.12V.CONV                                                 | Conversion Kit MK        | (IV manual to electric*                    |                            |
| 7413.24V.CONV                                                 | Conversion Kit MK        | (IV manual to electric*                    |                            |
| 7413.30                                                       | Extra 7' (2.13 m) I      | uff foil extrusion                         |                            |
| 7413.31                                                       | Extra 93/4" (248 mr      | n) connector with bushings                 |                            |
| 7426 -22                                                      | -22 Rod adaptor s        | tud (thread Ø UNF 3/4")**                  |                            |
| 7427 -30                                                      | -30 Rod adaptor s        | tud (thread Ø UNF 7/8")**                  |                            |
|                                                               |                          |                                            |                            |

\* Includes switches and 12- or 24-volt control box and circuit breaker \*\* Use with conventional turnbuckle



7413.30

| Foil Dimensions |                                      |    |                |    |     |        |                             |
|-----------------|--------------------------------------|----|----------------|----|-----|--------|-----------------------------|
|                 |                                      | J  | ŀ              | (  | Foi | length |                             |
| Unit            | in                                   | mm | in             | mm | ft  | m      | Luff tape                   |
| 2E              | 13/4                                 | 44 | 15/8           | 42 | 7   | 2.13   | #6 <sup>6</sup> /32" (5 mm) |
| 3E              | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | <b>1</b> 11/16 | 43 | 7   | 2.13   | #6 <sup>6</sup> /32" (5 mm) |

# **Electric Furler Dimensions**

| Part                            | -                                     | 4   | 1     | 3   | C (I | Max) | l                                    | 2  | E                                      |     | F                               |     | G                                       | ì   | I                                     | 4   |        |     |
|---------------------------------|---------------------------------------|-----|-------|-----|------|------|--------------------------------------|----|----------------------------------------|-----|---------------------------------|-----|-----------------------------------------|-----|---------------------------------------|-----|--------|-----|
| No.                             | in                                    | mm  | in    | mm  | in   | mm   | in                                   | mm | in                                     | mm  | in                              | mm  | in                                      | mm  | in                                    | mm  | in     | mm  |
| 7312.13 with 7312.22 5/8 toggle | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 114 | 8     | 203 | 16   | 406  | <b>3</b> <sup>1</sup> / <sub>4</sub> | 82 | 317/8                                  | 810 | 24 <sup>1</sup> /2              | 622 | <b>22</b> <sup>39</sup> / <sub>64</sub> | 574 | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 116 | 811/32 | 212 |
| 7312.13 with 7413.22 3/4 toggle | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 114 | 8     | 203 | 16   | 406  | <b>3</b> <sup>1</sup> / <sub>4</sub> | 82 | <b>32</b> <sup>1</sup> / <sub>2</sub>  | 826 | 25 <sup>3</sup> / <sub>32</sub> | 637 | 231/4                                   | 590 | <b>5</b> <sup>3</sup> / <sub>16</sub> | 132 | 811/32 | 212 |
| 7413.13 with 7413.22 3/4 toggle | <b>7</b> <sup>5</sup> / <sub>16</sub> | 186 | 115/8 | 296 | 18   | 457  | <b>3</b> <sup>1</sup> / <sub>4</sub> | 82 | <b>32</b> <sup>1</sup> / <sub>2</sub>  | 826 | 25 <sup>3</sup> / <sub>32</sub> | 637 | 23 <sup>1</sup> /4                      | 590 | 5 <sup>3</sup> /16                    | 132 | 811/32 | 212 |
| 7413.13 with 7413.22 7/8 toggle | 75/16                                 | 186 | 115/8 | 296 | 18   | 457  | <b>3</b> <sup>1</sup> / <sub>4</sub> | 82 | <b>33</b> <sup>3</sup> / <sub>16</sub> | 840 | 2511/16                         | 652 | 2313/16                                 | 605 | 5 <sup>3</sup> /4                     | 146 | 811/32 | 212 |

7424 -12

7425 -17

7426 - 22

7427 - 30

7312.22 5/8

7413.22 3/4

7413.22 7/8



7312.13 12V 7312.13 24V 7413.13 24V 7413.13 24V



()

.1

# **MKIV & Cruising Toggle Options**

Use these rigger-supplied options to fit Harken toggles shown below. Harken Toggle assemblies sold separately.



|      |                             | Cross Pins                                | Long Link Plat.<br>Screw Holes | e                          |
|------|-----------------------------|-------------------------------------------|--------------------------------|----------------------------|
|      | Eye/Jaw                     |                                           | Stud/Jaw                       | Long Link Plate            |
| Unit | Toggle                      | Jaw/Jaw Toggle                            | Toggle                         | w/ Toggle                  |
| 0    | 7410.20 3/8<br>7410.20 7/16 | —                                         | _                              | —                          |
| 1    | 7411.20 1/2                 | 7311.20 1/2                               | 7311.20 5/8                    | 7311.21 1/2<br>7311.21 5/8 |
| 2    | 7412.20 5/8                 | 7312.20 5/8                               | 7312.20 3/4                    | 7312.21 5/8<br>7312.21 3/4 |
| 3    | _                           | 7413.20 3/4<br>7413 20 7/8                | _                              | 7313.21 3/4<br>7313 21 7/8 |
| 4    | _                           | 7414.20 7/8<br>7414.20 1<br>7414.20 1 1/8 | _                              |                            |

|       |               |                             |                                     | Clev                     | vis Pin |      |          |
|-------|---------------|-----------------------------|-------------------------------------|--------------------------|---------|------|----------|
| Madal | Toggle        | Description                 | Thread                              |                          | 0       | Fits | Furler   |
| wodei | Part No.      | Description                 | 0                                   | 27                       |         | Unit | Part No. |
|       | 7410.20 3/8   | Eye/Jaw (reversible)        |                                     | 3/8                      | 9.5     | 0    | 7410.10  |
|       | /410.20 //16  | Eye/Jaw (reversible)        |                                     | 1/16                     | 11.1    | 0    | 7410.10  |
|       | 7411.20 1/2   | Eye/Jaw (reversible)        | _                                   | 1/2                      | 12.7    | 1    | 7411.10  |
|       | /311.20 1/2   | Jaw/Jaw                     |                                     | 1/2                      | 12.7    | 1    | 7411.10  |
|       | 7311.20 5/8   | Stud/Jaw                    | ⁰/8 - 18 LH                         | 5/8                      | 15.9    | 1    | /411.10  |
|       | 7311.21 1/2   | Long link plate w/ toggle   |                                     | 1/2                      | 12.7    | 1    | /411.10  |
|       | 7311.21 5/8   | Long link plate w/ toggle   | _                                   | 5/8                      | 15.9    | 1    | 7411.10  |
|       | 7412.20 5/8   | Eye/Jaw (reversible)        | _                                   | 5/8                      | 15.9    | 2    | 7412.10  |
| ≥     | 7312.20 5/8   | Jaw/Jaw                     |                                     | 5/8                      | 15.9    | 2    | 7412.10  |
| MK    | 7312.20 3/4   | Stud/Jaw                    | <sup>3</sup> /4 - 16 LH             | 3/4                      | 19.1    | 2    | 7412.10  |
|       | 7312.21 5/8   | Long link plate w/ toggle   | _                                   | <sup>5</sup> /8          | 15.9    | 2    | 7412.10  |
|       | 7312.21 3/4   | Long link plate w/ toggle   | _                                   | 3/4                      | 19.1    | 2    | 7412.10  |
|       | 7413.20 3/4   | Jaw/Jaw w/ short link plate | _                                   | 3/4                      | 19.1    | 3    | 7413.10  |
|       | 7413.20 7/8   | Jaw/Jaw w/ short link plate | _                                   | 7/ <sub>8</sub>          | 22.2    | 3    | 7413.10  |
|       | 7313.21 3/4   | Long link plate w/ toggle   | _                                   | 3/4                      | 19.1    | 3    | 7413.10  |
|       | 7313.21 7/8   | Long link plate w/ toggle   | _                                   | <sup>7</sup> /8          | 22.2    | 3    | 7413.10  |
|       | 7414.20 7/8   | Jaw/Jaw w/ short link plate | —                                   | <sup>7</sup> /8          | 22.2    | 4    | 7414.10  |
|       | 7414.20 1     | Jaw/Jaw w/ short link plate | _                                   | 1                        | 25.4    | 4    | 7414.10  |
|       | 7414.20 1 1/8 | Jaw/Jaw w/ short link plate | _                                   | <b>1</b> <sup>1</sup> /8 | 28.57   | 4    | 7414.10  |
|       | 7411.20 1/2   | Eye/Jaw (reversible)        | —                                   | 1/2                      | 12.7    | 1    | 7311.10  |
|       | 7311.20 1/2   | Jaw/Jaw                     | _                                   | 1/2                      | 12.7    | 1    | 7311.10  |
|       | 7311.20 5/8   | Stud/Jaw                    | 5/8 - 18 LH                         | 5/8                      | 15.9    | 1    | 7311.10  |
| 5     | 7311.21 1/2   | Long link plate w/ toggle   | _                                   | 1/2                      | 12.7    | 1    | 7311.10  |
| SIIN  | 7311.21 5/8   | Long link plate w/ toggle   | _                                   | 5/8                      | 15.9    | 1    | 7311.10  |
| Î     | 7412.20 5/8   | Eye/Jaw (reversible)        |                                     | <sup>5</sup> /8          | 15.9    | 2    | 7312.10  |
| CE    | 7312.20 5/8   | Jaw/Jaw                     | _                                   | 5/8                      | 15.9    | 2    | 7312.10  |
|       | 7312.20 3/4   | Stud/Jaw                    | <sup>3</sup> / <sub>4</sub> - 16 LH | 3/4                      | 19.1    | 2    | 7312.10  |
|       | 7312.21 5/8   | Long link plate w/ toggle   |                                     | 5/8                      | 15.9    | 2    | 7312.10  |
|       | 7312.21 3/4   | Long link plate w/ toggle   |                                     | 3/4                      | 19.1    | 2    | 7312.10  |
|       |               |                             |                                     |                          |         | -    |          |



# MKIII Jib Reefing & Furling

MKIII jib reefing and furling systems are designed for large performance racing and cruising boats. Strong, lightweight, and aerodynamic, these systems feature large-diameter drums and friction-free bearings to make furling and reefing smooth and easy.

Head and tack swivels feature Torlon<sup>®</sup> ball bearings and operate independently to improve the shape of a partially furled sail for added power through the water. Non-corrosive Hardkote-anodized swivels require no lubrication.

The furler's built-in turnbuckle makes rig installation and tuning painless. The turnbuckle is made of nickel-plated silicon bronze and stainless steel, and adapts to rod, Norseman<sup>®</sup> or Sta-Lok<sup>®</sup> terminals.

#### 1. Strong Foils Aerodynamic Air Foils® handle extreme reefing loads.

Triple-interlock foil joints match foil shape and are secured with screws and adhesive.

2. Removable Split Drum Line guard and spool are easily removed for racing









# <u>MKIII Unit 4</u>

|                        |                             | .,p.eae                              |                                 |
|------------------------|-----------------------------|--------------------------------------|---------------------------------|
| Wir                    | e Ø (1 x 19 SS)             | Rod Ø                                | Clevis Pin Ø                    |
| 7                      | /ଃ" (22 mm)*                | -60, -76 (16.75, 17.91 mm            | ) 1 <sup>1</sup> /4", (31.8 mm) |
| M                      | ax Dyform® size 19 mr       | m - Requires custom Sta-Lok® termina | al. Contact Harken®.            |
| <b>Headstay Length</b> | Standard 87'5" (26.6        | 64 m); max 114'5" (34.87 m)          |                                 |
| Part No.               | Description                 |                                      |                                 |
| 1084                   | Furling system for <b>v</b> | vire with stud**                     |                                 |
| 1085                   | Furling system for <b>r</b> | od with stud** (specify Navtec® or F | Riggarna®/OYS)                  |
| Optional Parts         |                             |                                      |                                 |
| 1086                   | Extra 9' (2.74 m) lut       | ff foil extrusion                    |                                 |
| 1069                   | Extra 12" (305 mm)          | connector                            |                                 |
| *For 2/4" (10 mm)      | wire Q contact Harkon       | **Line not included Continuous       | red only if costional order / F |

Typical Boat Length 75' - 90' (22.9 - 27.4 m)

\*For 3/4" (19 mm) wire Ø contact Harken \*\*Line not included **Continuous rod only. If sectional order 4.5** 

#### Typical Boat Length 85' - 110' (25.9 - 33.5 m) Wire Ø (1 x 19 SS) Clevis Pin Ø Rod Ø 1" (25 mm) -76, -91, -115 11/4", 13/8", 19/16" (17.91, 19.50, 22.20 mm) (31.8, 34.9, 39.7 mm) Headstay Length Standard 102'10" (31.34 m); max 126'10" (38.67 m) Part No. Description 1087 Furling system for wire with stud\* Furling system for rod with stud\* (specify Navtec® or Riggarna®/OYS) 1088 **Optional Parts** 1050 Extra 12' (3.66 m) luff foil extrusion 1051 Extra 131/2" (343 mm) connector

\*Line not included

# Carbon Reefing & Furling Systems

Harken carbon furlers are the ultimate lightweight reefing and furling solution. Featuring all-carbon foils and carbon components in the drum and torque tube, these units can save you from 25 to 200 pounds (11-90 kg). The lower weight fore and aloft not only reduces pitching and heeling, but also reduces the amount of lead needed in the keel.

Carbon furlers have a smooth, elegant finish and are UV resistant. The fiber, the same used in most carbon masts (T300 or equivalent), is laid in the direction of the load to optimize strength and weight. High-strength Spectra<sup>®</sup> line on the tack, head, and halyard swivels replaces heavy metal attachments. The independent swivels improve sail shape by letting the sail center furl before the head.

Foils are made of filament-wound carbon to maximize torsional strength. For faster sail changes, contact Harken to order foils with double sail grooves instead of the standard single groove. Built-in turnbuckles make installation and mast tuning easy. Foil kits include an extra foil and connector. Installation by an authorized professional required.

### Luff Tape

Use #6 luff tape only (%2 in or 5 mm).



# <u>Unit 3C</u>

# Typical Boat Length 45' - 60' (13.7 - 18.3 m)

|                 | Rod Ø                                              | Clevis Pin Ø               |
|-----------------|----------------------------------------------------|----------------------------|
|                 | -22, -30 (9.5, 11.1 mm)                            | 3/4", 7/8" (19.1, 22.2 mm) |
| Headstay Length | Standard 75'1" (22.88 m); max 82'4" (25.1 m)       |                            |
| Part No.        | Description                                        |                            |
| 1120*           | Carbon furling system — specify rod and clevis pin |                            |
| Optional Parts  |                                                    |                            |
| 1125            | 7.25' (2.21 m) Carbon foil/connector kit           |                            |
|                 |                                                    |                            |

\*Line not included

# Unit 3.25C Typical Boat Length 55' - 70' (16.8 - 21.3 m)

| Rod Ø           |                                                    | Clevis Pin Ø                         |  |
|-----------------|----------------------------------------------------|--------------------------------------|--|
|                 | -40 (12.7 mm)                                      | <sup>7</sup> /8", 1" (22.2, 25.4 mm) |  |
| Headstay Length | Standard 75'2" (22.91 m); max 89'8" (27.33 m)      |                                      |  |
| Part No.        | Description                                        |                                      |  |
| 1121*           | Carbon furling system — specify rod and clevis pin |                                      |  |
| Optional Parts  |                                                    |                                      |  |
| 1125            | 7.25' (2.21 m) Carbon foil/connector kit           |                                      |  |
| 1116            | 14.5' (4.42 m) Carbon foil/connector kit           |                                      |  |
|                 |                                                    |                                      |  |

\*Line not included



|                 | Rod Ø                                              | Clevis Pin Ø                                                   |
|-----------------|----------------------------------------------------|----------------------------------------------------------------|
|                 | -48 (14.3 mm)                                      | <sup>7</sup> /8", 1", 1 <sup>1</sup> /8" (22.2, 25.4, 28.6 mm) |
| Headstay Length | Standard 75'7" (23.04 m); max 97'4" (29.67 m)      |                                                                |
| Part No.        | Description                                        |                                                                |
| 1122*           | Carbon furling system — specify rod and clevis pin |                                                                |
| Optional Parts  |                                                    |                                                                |
| 1126            | 7.25' (2.21 m) Carbon foil/connector kit           |                                                                |
| 1117            | 14.5' (4.42 m) Carbon foil/connector kit           |                                                                |

\*Line not included

# <u>Unit 4C</u>

| <u> </u>        | • Iypical Boat Longin Fo                           |                 |
|-----------------|----------------------------------------------------|-----------------|
|                 | Rod Ø                                              | Clevis Pin Ø    |
|                 | -60, -76 (16.8, 17.9 mm)*                          | 1¹/₄" (31.8 mm) |
| Headstay Length | Standard 90'6" (27.58 m); max 112'3" (34.21 m)     |                 |
| Part No.        | Description                                        |                 |
| 1123**          | Carbon furling system — specify rod and clevis pin |                 |
| Optional Parts  |                                                    |                 |
| 1127            | 7.25' (2.21 m) Carbon foil/connector kit           |                 |
| 1118            | 14.5' (4.42 m) Carbon foil/connector kit           |                 |

\*Continuous rod only. If rod is sectional, order 4.5 \*\*Line not included

# <u>Unit 4.5C</u>

Typical Boat Length 85' - 110' (25.9 - 33.5 m)

Tynical Roat Length 75' - 90' (22 9 - 27 4 m)

|                       | Rod Ø                                             | Clevis Pin Ø                                                                      |  |
|-----------------------|---------------------------------------------------|-----------------------------------------------------------------------------------|--|
| -76,                  | -91, -115 (17.9, 19.5, 22.2 mm)                   | 1 <sup>1</sup> /4", 1 <sup>3</sup> /8", 1 <sup>9</sup> /16" (31.8, 34.9, 39.7 mm) |  |
| Headstay Length       | Standard 105'7" (32.18 m); max 127'4" (38.81 m)   |                                                                                   |  |
| Part No.              | Description                                       |                                                                                   |  |
| 1124*                 | Carbon furling system — specify rod and clevis pi | n                                                                                 |  |
| Optional Parts        |                                                   |                                                                                   |  |
| 1128                  | 7.25' (2.21 m) Carbon foil/connector kit          |                                                                                   |  |
| 1119                  | 14.5' (4.42 m) Carbon foil/connector kit          |                                                                                   |  |
| اممانيم ممتلهما بمامط |                                                   |                                                                                   |  |

\*Line not included



Soft Spectra® line attachments are used for the halyard, head and tack and eliminate the need for heavy welded lugs and shackles

### **Optional Parts**



Optional double groove foil. To order, add "DG" to part number

# MKIII Hydraulic Jib Reefing and Furling

MKIII hydraulic furling allows you to reef, furl, or set sails with the touch of a button. The MKIII hydraulic furler is made of Hardkote-anodized aluminum and mirror-polished investment-cast stainless steel. The streamlined housing fits easily within existing pulpits. Double swivels at the tack and head help shape sails when reefing.

The furler's lower toggle fixes at 90-degree intervals to accept any chainplate direction. The reversible hydraulic drive uses a high-reduction, double-enveloping worm gear to prevent reefed sails from unfurling under load.

Hydraulic MKIII furlers are suitable for cruising boats from 50 to 120 feet (15-36.6 m) with headstays of up to 1-inch wire (25 mm) or -115 rod (22.2 mm).

Worldwide parts and service.

# DETAILS MAKE THE DIFFERENCE

0

# **TORLON® BALL BEARINGS**

Large-diameter Torlon<sup>®</sup> ball bearings in halyard and tack swivel minimize friction, require no lubrication or isolating seals.

### **HEADSTAY ADJUSTMENT SYSTEM**

The winch handle system for headstay adjustment and tensioning uses a self-locking bevel gear leadscrew.

# **CARBON HYDRAULIC JIB REEFING AND FURLING**

Proven in the extreme conditions found in around-theworld sailing, carbon hydraulic jib reefing and furling systems combine the beauty of stainless with the elegant finish of carbon. Single groove foils are filament-wound with standard modulus carbon fiber that maximizes torsional strength and saves 30 to 200 pounds (13-90 kg). The lower unit features a carbon fiber torque tube and cowling. Call for availability. 1. Independent Swivels Independent head and tack swivels improve sail shape when partially furled.

### 2. Strong Foils

Aerodynamic Air Foils<sup>®</sup> handle extreme reefing loads. Tough triple-interlock foil joints withstand years of torque loading.

- 3. Stainless Steel Gear Housing Stainless steel investment-cast gear housing features hardened steel gears running in oil.
- 4. Manual Override System MKIII hydraulic furlers feature a unique manual override system. Fluid is automatically diverted when a winch handle is inserted for safe manual operation.
- 5. Soft Attachment for Halyard, Head and Tack on Carbon Units Soft line attachment is extremely strong and takes the place of heavy stainless steel shackles.
- 6. Filament-Wound Carbon Foils Maximized torsional resistance foils save weight forward and aloft where it is critical. Smooth elegant carbon fiber finish is UV resistant.



# Unit 3

| Wire Ø (            | 1 x 19 SS)          | Rod Ø                                                | Clevis Pin Ø             |
|---------------------|---------------------|------------------------------------------------------|--------------------------|
| 7/16", 1/2" (       | 11, 12 mm)          | -22, -30 (9.53, 11.10 mm)                            | 3/4", 7/8" (19, 22.2 mm) |
| Headstay Length     | Standard 75'6" (23  | 3.01 m); max 82'6" (25.15 m)                         |                          |
| Part No.            | Description         |                                                      |                          |
| 1027                | Furling system wit  | h Sta-Lok®/Norseman® terminal                        |                          |
| 1028                | Furling system for  | rod terminal (specify Navtec <sup>®</sup> or Riggarn | a®)                      |
| 958                 | Extra 7' (2.13 m) I | uff foil extrusion                                   |                          |
| 960                 | Extra 10" (254 mm   | 1) connector*                                        |                          |
| 997                 | Extra 10" (254 mm   | 1) connector* for -22 rod                            |                          |
| *Order one for each | foil astrucion Ma   | v Duform® aize 7/" or 10 mm, required a              | nagial tarminal          |

\*Order one for each foil extrusion Max Dyform<sup>®</sup> size 7/16" or 12 mm; requires special terminal

# **Unit 3.25**

| Wire Ø (1 x 19 SS)          |                                                                               | Rod Ø                            | Clevis Pin Ø                          |
|-----------------------------|-------------------------------------------------------------------------------|----------------------------------|---------------------------------------|
| 9/16" (1                    | 14 mm)                                                                        | -40 (12.70 mm)                   | <sup>7</sup> /8", 1" (22.2, 25.40 mm) |
| Headstay Length             | Standard 75'6" (23.01 r                                                       | m); max 89'6" (27.28 m)          |                                       |
| Part No.                    | Description                                                                   |                                  |                                       |
| 1044                        | 1044 Furling system with Sta-Lok <sup>®</sup> /Norseman <sup>®</sup> terminal |                                  |                                       |
| 1045 Furling system for rod |                                                                               | terminal (specify Navtec® or Rig | garna®)                               |
| 958                         | Extra 7' (2.13 m) luff fo                                                     | il extrusion                     |                                       |
| 1032                        | Extra 10" (254 mm) cor                                                        | nnector*                         |                                       |
| 960                         | Extra 10" (254 mm) cor                                                        | nnector* for rod and 1/2" (12 mm | n) Dyform®                            |

\*Order one for each foil extrusion Max Dyform® size 1/2" or 12 mm; requires special terminal

# <u>Unit 3.5</u>

| Wire Ø (                              | 1 x 19 SS)       | Rod Ø                                                     | Clevis Pin Ø                                                     |
|---------------------------------------|------------------|-----------------------------------------------------------|------------------------------------------------------------------|
| <sup>5</sup> /8", <sup>3</sup> /4" (1 | l6, 19 mm)       | -48 (14.30 mm)                                            | <sup>7</sup> /8", 1", 1 <sup>1</sup> /8" (22.2, 25.40, 28.60 mm) |
| Headstay Length                       | Standard 77'4"   | (23.57 m); max 95'4" (29.06 m)                            |                                                                  |
| Part No.                              | Description      |                                                           |                                                                  |
| 1063                                  | Furling system   | with Sta-Lok <sup>®</sup> /Norseman <sup>®</sup> terminal |                                                                  |
| 1064                                  | Furling system   | for rod terminal (specify Navtec® or Ri                   | ggarna®/OYS)                                                     |
| 1079                                  | Extra 9' (2.74 r | n) luff foil extrusion                                    |                                                                  |
| 1066                                  | Extra 10" (254   | mm) connector*                                            |                                                                  |

\*Order one for each foil extrusion Max Dyform® size %16" or 14 mm; requires special terminal

# <u>Unit 4</u>

| Wire Ø (1 x 19 SS) |                    | Rod Ø                                         | Clevis Pin Ø                         |
|--------------------|--------------------|-----------------------------------------------|--------------------------------------|
| 7/8" (2            | 22 mm)             | -60, -76 (16.80, 17.90 mm)                    | 1 <sup>1</sup> /4" (31.80 mm)        |
| Headstay Length    | Standard 87'11"    | (26.80 m); max 114'11" (35.03 m)              |                                      |
| Part No.           | Description        |                                               |                                      |
| 1067               | Furling system w   | rith Sta-Lok®/Norseman® terminal              |                                      |
| 1068               | Furling system for | r rod terminal (specify Navtec® or Riggarna®/ | OYS). If rod is sectional order 4.5. |
| 1086               | Extra 9' (2.74 m)  | luff foil extrusion                           |                                      |
| 1069               | Extra 12" (305 m   | m) connector*                                 |                                      |

\*Order one for each foil extrusion Max Dyform<sup>®</sup> size <sup>3</sup>/<sub>4</sub>" or 19 mm requires special terminal

# <u>Unit 4.5</u>

| Wire Ø                                                          | 1 x 19 SS)           | Rod Ø                                                | Clevis Pin Ø                                                |
|-----------------------------------------------------------------|----------------------|------------------------------------------------------|-------------------------------------------------------------|
| 1" (2                                                           | 5 mm)                | -76, -91, -115                                       | 1 <sup>1</sup> /4", 1 <sup>3</sup> /8", 1 <sup>9</sup> /16" |
|                                                                 |                      | (17.90, 19.50, 22.20 mm)                             | (31.80, 34.90, 39.70 mm)                                    |
| Headstay Length Standard 102'7" (31.27 m); max 126'7" (38.58 m) |                      |                                                      |                                                             |
| Part No.                                                        | Part No. Description |                                                      |                                                             |
| 1072 Furling system with St                                     |                      | Sta-Lok <sup>®</sup> /Norseman <sup>®</sup> terminal |                                                             |
| 1073 Furling system for roo                                     |                      | od terminal (specify Navtec® or Rigga                | irna®/OYS)                                                  |
| 1050 Extra 12' (3.66 m) luff foil extrusion                     |                      |                                                      |                                                             |
| 1051 Extra 13 <sup>1</sup> /2" (343 mm) connector               |                      | n) connector*                                        |                                                             |

\*Order one for each foil extrusion



**Optional Parts** 



# **Ordering Information**

|               |                                |                                        | Headst           | ay Length           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | Luff tape                    |    |
|---------------|--------------------------------|----------------------------------------|------------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|------------------------------|----|
| Unit          | Wire Ø*                        | Rod Ø**                                | Standard         | Max                 | Clevis pin Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | # | in                           | mm |
| 3             | 7/16", 1/2"                    | -22, 9.53 mm                           | 75'6"            | 82'6"               | <sup>3</sup> /4" (19.10 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 | <sup>6</sup> / <sub>32</sub> | 5  |
|               | 11, 12 mm                      | -30, 11.10 mm                          | 23.01 m          | 25.15 m             | ²/₃" (22.20 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                              |    |
| 3.25          | <sup>9</sup> / <sub>16</sub> " | -40, 12.70 mm                          | 75'6"            | 89'6"               | <sup>7</sup> /8" (22.20 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 | <sup>6</sup> /32             | 5  |
|               | 14 mm                          |                                        | 23.01 m          | 27.28 m             | 1" (25.40 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |   |                              |    |
| 3.5           | 5/8", 3/4"                     | -48,14.30 mm                           | 77'4"            | 95'4"               | <sup>7</sup> /8" (22.20 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6 | <sup>6</sup> / <sub>32</sub> | 5  |
|               | 16, 19 mm                      |                                        | 23.57 m          | 29.06 m             | 1" (25.40 mm), 1 <sup>1</sup> / <sub>8</sub> " (28.60 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                              |    |
| 4             | 7/8"                           | -60, 16.80 mm                          | 87'11"           | 114'11"             | 11/4" (31.80 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 | <sup>6</sup> / <sub>32</sub> | 5  |
|               | 22 mm                          | <b>-76‡</b> , 17.90 mm                 | 26.80 m          | 35.03 m             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   |                              |    |
| 4.5           | 1"                             | -76, 17.90 mm                          | 102'7"           | 126'7"              | 11/4" (31.80 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6 | <sup>6</sup> / <sub>32</sub> | 5  |
|               | 25 mm                          | -91, 19.50 mm, -115, 22.20 mm          | 31.27 m          | 38.58 m             | 1³/₅" (34.90 mm), 1°/₁₅" (39.70 mm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                              |    |
| * Cince de ne | templete Defense®              | uine **Contect   lenkon® if other them | Nitropie® 50 red | Carbon unite une re | a sub the set of the s |   | A E                          |    |

\* Sizes do not apply to Dyform<sup>®</sup> wire \*\*Contact Harken<sup>®</sup> if other than Nitronic<sup>®</sup> 50 rod. Carbon units use rod only **‡Continuous rod only. If sectional order 4.5** 

# **Furling Dimensions**

| Unit | Α       | В                   | C                                       | D                                      | E                   | F                   | G                                      | Н                         |                                         | J       |
|------|---------|---------------------|-----------------------------------------|----------------------------------------|---------------------|---------------------|----------------------------------------|---------------------------|-----------------------------------------|---------|
| 3    | 341/2"  | 24 <sup>1</sup> /8" | 205/8"                                  | <b>9</b> <sup>1</sup> / <sub>2</sub> " | 10 <sup>3</sup> /4" | 12"                 | 71/4"                                  | 75/8"                     | 7 <sup>3</sup> /4"                      | 12"     |
|      | 876 mm  | 613 mm              | 524 mm                                  | 241 mm                                 | 273 mm              | 305 mm              | 184 mm                                 | 200 mm                    | 197 mm                                  | 305 mm  |
| 3.25 | 35"     | 24 <sup>5</sup> /8" | 21 <sup>1</sup> /8"                     | 10"                                    | 11¼"                | 12 <sup>1</sup> /2" | 7 <sup>3</sup> /4"                     | 75/8"                     | 7 <sup>3</sup> /4"                      | 12"     |
|      | 889 mm  | 625 mm              | 537 mm                                  | 254 mm                                 | 286 mm              | 318 mm              | 197 mm                                 | 200 mm                    | 197 mm                                  | 305 mm  |
| 3.5  | 373/4"  | 25"                 | <b>21</b> <sup>1</sup> / <sub>2</sub> " | 10³/s"                                 | <b>11⁵</b> ⁄₀"      | 127/8"              | 75/16"                                 | 711/16"                   | <b>9</b> <sup>3</sup> / <sub>16</sub> " | 133/16" |
|      | 959 mm  | 635 mm              | 546 mm                                  | 264 mm                                 | 295 mm              | 327 mm              | 194 mm                                 | 195 mm                    | 233 mm                                  | 335 mm  |
| 4    | 471/4"  | 31³/8"              | 27 <sup>1</sup> /4"                     | 14"                                    | 15"                 | 17"                 | <b>8</b> <sup>1</sup> / <sub>2</sub> " | 95/8"                     | 105/8"                                  | 151/4"  |
|      | 1200 mm | 797 mm              | 692 mm                                  | 357 mm                                 | 381 mm              | 432 mm              | 216 mm                                 | 244 mm                    | 270 mm                                  | 387 mm  |
| 4.5  | 485/8"  | 32 <sup>1</sup> /2" | 281/4"                                  | 147/8"                                 | 15 <sup>7</sup> /8" | 17 <sup>7</sup> /8" | <b>8</b> <sup>1</sup> /2 <sup>#</sup>  | <b>9</b> <sup>5</sup> /8" | 14"                                     | 181/8"  |
|      | 1235 mm | 826 mm              | 718 mm                                  | 378 mm                                 | 403 mm              | 454 mm              | 216 mm                                 | 244 mm                    | 356 mm                                  | 460 mm  |

# **Foil Dimensions**

| Unit | K                                      | L                                        | Foil<br>length | Luff<br>tape             |
|------|----------------------------------------|------------------------------------------|----------------|--------------------------|
| 3    | <b>1</b> <sup>1</sup> / <sub>4</sub> " | <b>1</b> <sup>11</sup> / <sub>16</sub> " | 7'             | #6                       |
|      | 33 mm                                  | 43 mm                                    | 2.13 m         | <sup>6</sup> /₃₂" (5 mm) |
| 3.25 | 11/4"                                  | <b>1</b> <sup>11</sup> / <sub>16</sub> " | 7'             | #6                       |
|      | 33 mm                                  | 43 mm                                    | 2.13 m         | ⁵⁄₃₂" (5 mm)             |
| 3.5  | <b>1</b> %16                           | <b>1</b> <sup>15</sup> / <sub>16</sub> " | 9'             | #6                       |
|      | 40 mm                                  | 49 mm                                    | 2.74 m         | ⁰/₃₂" (5 mm)             |
| 4    | 2"                                     | 27/16"                                   | 9'             | #6                       |
|      | 50 mm                                  | 61 mm                                    | 2.74 m         | ⁰/₃₂" (5 mm)             |
| 4.5  | 2 <sup>11</sup> / <sub>16</sub> "      | 33/16"                                   | 12'            | #6                       |
|      | 68 mm                                  | 81 mm                                    | 3.66 m         | ⁵/₃₂" (5 mm)             |





0

Е







# **Furling Accessories**

# **Carbo Furling Lead Block Assemblies**

Harken recommends equipping every system with Carbo lead blocks for safe furling from the cockpit. The 7404 kit's lightweight, UV-stabilized Carbo blocks run exclusively on ball bearings for fast trimming under any load.

A 7402 ratchet maintains tension when spooling so the unit can furl smoothly and easily. The 7403 outboard assembly allows furling line to travel outboard of the stanchion to keep the sidedeck clear. Block mounts with a strong four-screw clamp without removing the stanchion or lifelines. Use the 7401 40 mm block on the bow pulpit as an inboard lead. Both the 7401, 7402 have ball and socket bases to align blocks for smooth leads aft. The 7404 lead block kit provides a complete system for most boats.

### **Stanchion Mount Bases**

The 061 and 319 bases for Classic blocks leads furling line inside the stanchion.

### **Halyard Restrainers**

Halyard restrainers prevent the halyard from wrapping around the foil on boats where the swivel isn't mounted near the masthead. Stainless steel brackets feature Hardkote-anodized aluminum sheaves that accommodate both wire and rope. Halyard restrainers should not be used unless required.

### **Prefeeders and Snap Shackles**

Prefeeders and snap shackles facilitate fast sail changes. The 7006 prefeeder features Hardkote-anodized rollers with low-friction bushings.







| Part |                                         | She                                  | eave<br>Ø | We       | iaht     | Мах       | cline<br>Ø | Maxi<br>workin | mum<br>la load |                                               |
|------|-----------------------------------------|--------------------------------------|-----------|----------|----------|-----------|------------|----------------|----------------|-----------------------------------------------|
| No.  | Description                             | in                                   | mm        | OZ       | g        | in        | mm         | lb             | kg             | Use with                                      |
| 061  | Stanchion mount base                    | _                                    | _         | 2        | 57       | _         | _          | 350            | 159            | <sup>7</sup> /8", 1" (22, 25 mm) stanchions** |
| 319  | Stanchion mount double lead             | <b>1</b> ½                           | 38        | 6        | 170      | _         | _          | 350            | 159            | 7/8", 1" (22, 25 mm) stanchions               |
| 448  | Fixed lead for bulwark                  | <b>1</b> ½                           | 38        | 2.1      | 60       | 3/8       | 10         | 300            | 136            | 0/1/2                                         |
| 449  | Fixed lead for bulwark                  | <b>1</b> ³/8                         | 35        | 2.1      | 60       | 3/8       | 10         | 500            | 227            | 3/3.25                                        |
| 884  | Snap shackle                            | —                                    | —         | 2.3      | 65       | —         | _          | 1500           | 680            | 00AL/0/1                                      |
| 885  | Snap shackle                            | —                                    | —         | 5        | 141      | —         | —          | 2300           | 1040           | 2                                             |
| 944  | Halyard restrainer‡                     | <sup>15</sup> / <sub>16</sub>        | 25        | 3        | 85       | —         | —          | _              | —              | 00AL/0/1                                      |
| 945  | Halyard restrainer‡                     | <b>1</b> 1/4                         | 31        | 6        | 170      | —         | —          | _              | —              | 2/3/3.25                                      |
| 947  | Prefeeder                               | —                                    | —         | 1        | 28       | —         | —          | —              | —              | All                                           |
| 7006 | Carbo racing foil prefeeder             | —                                    | —         | 3        | 85       | —         | —          | —              | —              | All                                           |
| 7401 | 40 mm Carbo lead block assembly         | <b>1</b> 9/16                        | 40        | 3.7      | 106      | 3/8       | 10         | 485            | 220            | 1" (25 mm) stanchions                         |
| 7402 | 57 mm Carbo ratchet lead block assembly | <b>2</b> <sup>1</sup> / <sub>4</sub> | 57        | 5.4      | 152      | 3/8       | 10         | 500            | 227            | 1" (25 mm) stanchions                         |
| 7403 | 29 mm Outboard lead block assembly      | <b>1</b> <sup>1</sup> /8             | 29        | 3.0      | 84       | 3/8       | 10         | _              | _              | 1" (25 mm) stanchions                         |
| 7/0/ | Lead block kit***                       | Kit ind                              | Judae 3 v | 7/03/1 v | 7401/1 v | 7402/1 cl | aat        |                |                | 1" (25 mm) stanchions                         |

t#10 RH (5 mm) \*\*Fits Classic Bullet/Big Bullet/2.25"/ratchet blocks with swivel post \*\*\*Max line Ø: 3/8" (10 mm); Weight: 19.2 oz (544 g)







HARKEN ITALY'S TECHNICAL DIRECTOR ANDREA MERELLO TELLS THE INSIDE STORY BEHIND THE DEVELOPMENT OF RADIAL WINCHES

*Editor's Note:* Harken entered the winch business in 1987, adapting original Barbarossa designs for Harken's standard line and adding a pure Grand Prix racing line. Grand Prix racers have always demanded constant innovation, but most sailors just wanted solid, efficient winches that would last for 30 years. Now sailors and boatbuilders want all that and more—faster installations, easier maintenance, and simpler upgrades.

"We started from a blank sheet of paper, addressing the needs of specific types of sailors."

> — Andrea Merello Technical Director

### A Blank Sheet of Paper

Radial winches were designed from the deck up with three key ideas in mind: safety and long-lasting performance, streamlined installations, and hydraulic and electric upgrades as integral parts of the design rather than afterthoughts. We started from a blank sheet of paper, addressing the needs of specific types of sailors. For example, racers mainly want the most

HARKEN

power for the lightest weight. A cruiser with a child on the other hand asks, "Wait a minute, if my kid puts hands on the winch while the electric power is turning it ..." They are more concerned with safety.

# Radial **REVOLUTION**



### **New Product, New Process**

No winch line has ever been designed with yacht builders in mind. No one asked, "What can we do to help boatbuilders who assemble in bigger quantities?" That's because if you went to a boatbuilding yard 10 years ago, they weren't using the highly efficient "lean" assembly systems used in automotive companies. These days, there's a bigger focus on the time required to install a winch, the weight and ease-of-handling from a worker's point of view, and the complexity of the assembly process.

# Grip with a Twist

The grip is one of the most critical areas of a winch. With a high-friction drum there will be more line wear, so designers must balance the need for controlled easing with line longevity. We also have to consider that the winch is interfacing with a product we don't make-we needed to find a grip that

performed as well with high-tech line as with older cordage. So while we were happy with the sandblasting and knurling we had before, we wanted to find out if there was more we could do.

The new grip is very different from other winches with grooves or ribs. Other winches tend "The Radial grip works more like a screw, driving the wraps down when easing [for] the best control."

> — Andrea Merello **Technical Director**

to push the line wraps up when easing. The Radial grip works more like a screw, driving the wraps down when easing to keep them on the part of the drum where you have the best control.



20 SERIES 35 SERIES 40 SERIES 46 SERIES



### Winch Abuse

Each size of each winch had to pass a minimum of 13 tests covering things such as wet and dry line grip, pulling power versus number of wraps, stress deformation,

ease of servicing, and safety. The most grueling test was the endurance test, where our parameter was to have little to no wear after thousands of nonstop pulls at the Maximum Working Load.

**Combating Corrosion** 

Extensive testing helped us determine weak points for corrosion, where we needed to either replace or strengthen the materials we were using. We even removed the drum and

lubrication for certain tests to see how well the internal components resisted corrosion from saltwater spray. The results of these tests are why we're using more stainless and one of several reasons we use composites in Radials. For example, the extremely strong "metal replacement" material we use in the roller bearings is completely nonreactive to saltwater and most chemicals, has very good wear and abrasion resistance under tremendous loads, doesn't require lubrication, and doesn't gall or seize. Its low friction and hardness properties make it ideal for high-efficiency bearing systems.

### **The Future**

"No comments! No comments!" I can't go into details of course, but I can say we designed the Radial to be flexible and may add more options for end customers. Beyond the Radial, we're working on some totally new ideas at Harken for needs that aren't addressed by current winches. The prototypes haven't completed testing yet, but keep an eye out in the upcoming months.



**50 SERIES** 

**60 SERIES** 



**70 SERIES** 



"We implemented a

approach."

very simple 'zero defect'

— Adriano Rubinaccio

Production Director

HARKE

**80 SERIES** 



### What Lean Manufacturing Means For You

By Adriano Rubinaccio Production Director

When we started talking about this project our aim was to use it as an opportunity to dramatically improve not just the product, but also the process. We wanted to actually change the company's manufacturing culture so we could increase production speed and eliminate waste while maintaining—even improving—the level of quality. We adopted "lean manufacturing" principles to increase speed and implemented a very simple "zero defect" approach. No defective components or products are allowed to move to the next step in the process. Any worker can stop a product moving through the process if a problem

appears, and every worker is directly responsible for customer satisfaction.

# Winch #001

Product tracking is one benefit of the new process. Every molded component has a batch number, allowing for much tighter quality control. In addition, each finished product has a serial number (#001 is already in the museum). Customers calling in for support benefit directly because we can access very specific information on that customer's winch.

**Complete Radial Line:** aluminum and chrome; plain-top and self-tailing; electric and hydraulic; UniPower; Quattro

# **Radial Winches**



# POWERFUL, EFFICIENT, DEPENDABLE

We have reached a new level of performance with the introduction of our Radial Winch line. Details you'll like include reduced wear on the line: the gripping surfaces of Radial Winches are shaped and do not depend on friction to hold the line. Also, we've completely covered the winch tops so fingers and clothing don't get caught in moving parts. Seasonal maintenance is now exceptionally easy the top lifts out as a single unit, making reassembly quick and mistake-free.

# **DETAILS MAKE THE DIFFERENCE**

# **MULTIPLE STYLES AND FINISHES**

Radial winches are available in aluminum alloy and chrome. Choices include 1-, 2-, and 3-speed self-tailing or plain-top styles; and manual, electric or hydraulic drives.

# **INTEGRATED STRIPPER ARM**

The strong, one-piece stripper arm completely covers the winch top for a stable platform that prevents fingers and clothing from catching in moving parts—an important safety feature, particularly when operating powered winches. The arm can be adjusted to multiple positions after the winch is mounted, and is shaped to smoothly feed line into and out of the self-tailing jaws.

# LIGHTWEIGHT, HIGH-STRENGTH MATERIALS

Composite roller bearings and bushings reduce friction under load, have excellent corrosion resistance, and don't require lubrication.

Snap-fit design keeps bearings captive in high-strength Delrin<sup>®</sup> cage when drum is removed for maintenance.

Load-carrying gears and pins are 17-4PH stainless steel for strength and durability.

Weight savings of 25 to 50 percent compared to the Classic Harken line.

# EASY TO SERVICE AND MAINTAIN

Winches can be disassembled and serviced on deck. The socket, washer, and screw-top snap-fit together to simplify maintenance and for mistake-free assembly.



# 1. Power-Grip Jaws

Composite self-tailing jaws of long-glass fiber are shaped for easy line entry and optimum gripping power.

The spring-loaded upper jaw adjusts under line pressure to accept a variety of line sizes. Teeth grip evenly with or without load.

### 2. Radial Shaped Surface Grip

The drum's gripping surface is shaped for each winch size and drum material and features diagonal ribs (rather than textured abrasive materials) to maximize gripping power and greatly reduce line wear. When easing, the angle of the ribs stops line from rising, preventing overrides and providing a smooth controlled release as the line exits the winch.

### **3. Quick Installation**

Patent-pending stud-bolt mounting system allows one person to quickly install a winch without removing the drum.

- a. Snap off the skirt at the base of the winch.
- b. Slide bolts through the slots in the winch base and snap the plastic skirt back on.
- c. Place the stud bolts into the predrilled holes on the deck and tighten from belowdeck.

# **Ordering Winches**

# 1. Choose Drum Material, Speed & Style

**Aluminum:** Aluminum Radial winches in 1-, 2-, and 3-speed self-tailing or plain-top.

Aluminum Classic single-speed, plain-top winches in sizes 6 and 8; 2- and 3-speed self-tailing winches sizes 980 and up in aluminum or aluminum/stainless.

**Chrome:** Chrome Radial winches feature chrome drums with black composite bases and tops; 1-, 2-, and 3-speed self-tailing.

All-chrome Classic winches have chrome bases, drums, and tops; 1-, 2- and 3-speeds; self-tailing or plain-top.

**Stainless Steel:** Stainless steel winches have stainless bases, drums, and tops; 2-, and 3-speed self-tailing; 4-speed winches in some larger sizes.

Bronze: Bronze winches in 1-, 2- and 3-speeds; self-tailing or plain-top styles.

**Carbon Fiber:** Carbon fiber winches in 2- and 3-speed self-tailing or top-cleating.

To order large cruising, Megayacht and Grand Prix racing winches, please contact Harken.

**Powered Winches:** Choose electric or hydraulically driven winches and components. To order hydraulic winches, please contact Harken.

### 2. Determine size

The **Sizing Chart** selects winches for different applications and rig dimensions. If unsure of the dimensions, use the **Typical Dimensions** graphs. To order large Grand Prix and Megayacht winches, please contact Harken.

### 3. Choose Ball Bearing Handle

Plain or lock-in handles in chromed bronze, bronze and aluminum; Speedgrip and Standard styles in 8- and 10-inch (203- and 254-mm) lengths.



# **Sizing Chart**

|       |                              | Gen                               | oa  |      |                           |                          | Mai | nsail |    |      |                    |                   | Spini | naker |               |                  | Sta | ysail             |
|-------|------------------------------|-----------------------------------|-----|------|---------------------------|--------------------------|-----|-------|----|------|--------------------|-------------------|-------|-------|---------------|------------------|-----|-------------------|
|       | Sh                           | ieet                              | Hal | yard | End-b<br>mains            | oom<br>sheet             | Hal | yard  | R  | eef  | Sh                 | eet               | Hal   | yard  | Toppi<br>fore | ng lift/<br>eguy | Ha  | yard              |
| Winch | Max sa<br>100% for<br>(I x J | ail area<br>retriangle<br>l x .5) | Ma  | ax I | 4:1 S<br>max sa<br>(P x E | heet<br>il area<br>x .5) | Ма  | ax P  | Ma | ax P | Max sa<br>(I x J : | il area<br>x 1.8) | Ma    | ax I  | M             | ax I             | Ma  | ax I <sub>2</sub> |
| size  | ft²                          | m²                                | ft  | m    | ft <sup>2</sup>           | m²                       | ft  | m     | ft | m    | ft²                | m²                | ft    | m     | ft            | m                | ft  | m                 |
| 6     | 75                           | 7                                 | 25  | 7.6  |                           |                          | 25  | 7.6   | 34 | 10.4 | 500                | 46.5              | 25    | 7.6   | 35            | 10.7             | 25  | 7.6               |
| 8     | 115                          | 10.5                              | 36  | 11   | 150                       | 14                       | 32  | 9.8   | 40 | 12.2 | 800                | 74                | 36    | 11    | 44            | 13.4             | 37  | 11.3              |
| 16    | 155                          | 14.5                              | 42  | 12.8 | 230                       | 21                       | 38  | 11.6  | 46 | 14   | 975                | 91                | 42    | 12.8  | 50            | 15.2             | 42  | 12.8              |
| 20    | 155                          | 14.5                              | 42  | 12.8 | 230                       | 21                       | 38  | 11.6  | 46 | 14   | 975                | 91                | 42    | 12.8  | 50            | 15.2             | 42  | 12.8              |
| 32    | 225                          | 21                                | 48  | 14.6 | 335                       | 30                       | 43  | 13.1  | 53 | 16.2 | 1135               | 105               | 48    | 14.6  | 56            | 17               | 48  | 14.6              |
| 35    | 225                          | 21                                | 48  | 14.6 | 335                       | 30                       | 43  | 13.1  | 53 | 16.2 | 1135               | 105               | 48    | 14.6  | 56            | 17               | 48  | 14.6              |
| 40    | 270                          | 25                                | 54  | 16.5 | 410                       | 38                       | 49  | 14.9  | 57 | 17.4 | 1240               | 115               | 54    | 16.5  | 61            | 18.6             | 54  | 16.5              |
| 44    | 340                          | 31.5                              | 64  | 19.5 | 560                       | 52                       | 59  | 18    | 68 | 20.7 | 1400               | 130               | 64    | 19.5  | 73            | 22.2             | 64  | 19.5              |
| 46    | 365                          | 34                                | 69  | 21   | 625                       | 58                       | 64  | 19.5  | 73 | 22.2 | 1530               | 142               | 68    | 20.7  | 78            | 23.8             | 69  | 21                |
| 48    | 390                          | 36                                | 73  | 22.2 | 700                       | 65                       | 68  | 20.7  | 78 | 23.8 | 1750               | 162               | 74    | 22.5  | 82            | 25               | 73  | 22.2              |
| 50    | 390                          | 36                                | 73  | 22.2 | 700                       | 65                       | 68  | 20.7  | 78 | 23.8 | 1750               | 162               | 74    | 22.5  | 82            | 25               | 73  | 22.2              |
| 53    | 435                          | 40                                | 77  | 23.5 | 765                       | 72                       | 73  | 22.2  | 85 | 25.9 | 1960               | 182               | 79    | 24    | 90            | 27.4             | 77  | 23.5              |
| 60    | 525                          | 49                                | 82  | 25   | 850                       | 79                       | 80  | 24.4  | 92 | 28   | 2200               | 204               | 85    | 25.9  | 98            | 29.9             | 82  | 25                |
| 70    | 590                          | 55                                | 86  | 26.2 | 1000                      | 93                       | 85  | 25.9  | 97 | 29.6 | 3000               | 279               | 91    | 27.7  | 108           | 33               | 86  | 26.2              |
| 74    | 950                          | 88                                | 100 | 30.5 | 1350                      | 125                      | 102 | 31.1  | _  | _    |                    | _                 | 105   | 32    | _             | _                |     | _                 |
| 80    | 950                          | 88                                | 100 | 30.5 | 1350                      | 125                      | 102 | 31.1  | _  | _    | —                  | _                 | 105   | 32    | _             | _                | _   | _                 |

**RADIAL WINCH LINE** 

# Aluminum Radial

Aluminum Radial winches are designed for sailors who want lightweight, extremely strong winches with plenty of power.

The drum's gripping surface is shaped for each winch size and drum material and features diagonal ribs (rather than textured abrasive materials) to maximize gripping power and greatly reduce line wear. When easing, the angle of the ribs stops line from rising, preventing overrides and providing a smooth controlled release as the line exits the winch. Aluminum drums and high-strength composite self-tailing jaws and skirt save weight. Composite roller bearings reduce friction under load and don't require lubrication. Loadcarrying gears and pins are 17-4PH stainless steel for strength and durability.

Small boat winches are available in single speed. Self-tailing models sizes 60 and up come in two or three speeds.



Series 20 Radial winches use composite bushings to handle high loads in a small package.



**RADIAL PLAIN-TOP** 



**RADIAL SELF-TAILING** 



1. Roller Bearings Snap-fit design keeps bearings captive in a high-strength Delrin® cage when drum is removed for

Composite roller bearings don't require lubrication.

2. Gripping surface

maintenance.

Each winch size has its own radial grip shape to optimize holding power and for smooth, controlled easing.



| Ø                 |                   |       |                                       |       |                                        |        |      |      | Line                                                                                                                                                    | entrv   | Lin                                                         | e Ø     | Fast              | ener | Faste                            | ners   |      |           |       |       |          |       |
|-------------------|-------------------|-------|---------------------------------------|-------|----------------------------------------|--------|------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------|---------|-------------------|------|----------------------------------|--------|------|-----------|-------|-------|----------|-------|
| Part              | Drun              | n (D) | Base                                  | e (B) | Heigh                                  | it (H) | We   | ight | heigh                                                                                                                                                   | it (LE) | (Min -                                                      | Max)    | cir               | cle  | (SH o                            | r HH)  | 6    | Gear rati | 0     | P     | ower rat | tio   |
| No.               | in                | mm    | in                                    | mm    | in                                     | mm     | lb   | kg   | in                                                                                                                                                      | mm      | in                                                          | mm      | in                | mm   | in                               | mm     | 1    | 2         | 3     | 1     | 2        | 3     |
| <b>Classic P</b>  | ain-To            | p     |                                       |       |                                        |        |      |      |                                                                                                                                                         |         |                                                             |         |                   |      |                                  |        |      |           |       |       |          |       |
| B6A               | 23/8              | 60    | 3%16                                  | 90    | 31/4                                   | 82     | 1.5  | .7   | <b>1</b> ∮16                                                                                                                                            | 33      | _                                                           | _       | 2%16              | 65   | 6 x ¼*                           | 6 x 6* | 1    | —         | _     | 8.4   | _        | _     |
| B8A               | 211/16            | 68    | 41/2                                  | 115   | 3%16                                   | 90     | 2.4  | 1.1  | 11/2                                                                                                                                                    | 38      | _                                                           | _       | 3%16              | 90   | 4 x 5⁄16*                        | 4 x 8* | 1    | _         | _     | 7.5   | _        | _     |
| <b>Radial Pla</b> | nin-Top           | )     |                                       |       |                                        |        |      |      |                                                                                                                                                         |         |                                                             |         |                   |      |                                  |        |      |           |       |       |          |       |
| 20.2PTA           | 27/8              | 73    | 5 <sup>3</sup> /8                     | 137   | 51/16                                  | 128    | 4.4  | 2.0  | 2 <sup>3</sup> /8                                                                                                                                       | 61      | _                                                           | _       | 4 <sup>3</sup> /8 | 110  | 5 x 1/4                          | 5 x 6  | 1    | 2.76      | _     | 6.95  | 19.20    | _     |
| 35.2PTA           | 31/8              | 80    | 57/8                                  | 149   | 5 <sup>13</sup> /16                    | 148    | 6.8  | 3.1  | <b>3</b> <sup>1</sup> /8                                                                                                                                | 79      | _                                                           | _       | 47/8              | 123  | 5 x 1/4                          | 5 x 6  | 2.13 | 5.65      | _     | 13.50 | 35.90    | _     |
| 40.2PTA           | 3 <sup>1</sup> /8 | 80    | <b>6</b> <sup>3</sup> / <sub>16</sub> | 157   | 6                                      | 153    | 7.7  | 3.5  | <b>3</b> <sup>1</sup> / <sub>4</sub>                                                                                                                    | 82      | _                                                           |         | 47/8              | 123  | 5 x <sup>1</sup> / <sub>4</sub>  | 5 x 6  | 2.13 | 6.28      | _     | 13.50 | 39.90    | _     |
| 46.2PTA           | 37/8              | 100   | 7 <sup>1</sup> /4                     | 184   | 71/16                                  | 179    | 11.3 | 5.1  | 39/16                                                                                                                                                   | 90      | _                                                           | _       | 57/8              | 150  | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 2.30 | 9.17      | _     | 11.70 | 46.50    | _     |
| 50.2PTA           | 45/16             | 110   | 75/8                                  | 194   | 71/2                                   | 190    | 13.0 | 5.9  | 37/8                                                                                                                                                    | 97      | _                                                           | _       | 57/8              | 150  | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 2.40 | 10.90     | _     | 10.90 | 50.40    | _     |
| <b>Radial Se</b>  | lf-Taili          | ng    |                                       |       |                                        |        |      |      |                                                                                                                                                         |         |                                                             |         |                   |      |                                  |        |      |           |       |       |          |       |
| 20STA             | 27/8              | 73    | 5 <sup>3</sup> /8                     | 137   | 5 <sup>13</sup> /16                    | 148    | 5.3  | 2.4  | 2 <sup>3</sup> /8                                                                                                                                       | 61      | 1/4 - 1/2                                                   | 6 - 12  | 4 <sup>3</sup> /8 | 110  | 5 x <sup>1</sup> / <sub>4</sub>  | 5 x 6  | 2.76 |           | _     | 19.20 | _        | _     |
| 35.2STA           | 31/8              | 80    | 57/8                                  | 149   | 611/16                                 | 170    | 7.9  | 3.6  | 3 <sup>1</sup> /8                                                                                                                                       | 79      | 5/16 - 1/2                                                  | 8 - 12  | 47/8              | 123  | 5 x 1/4                          | 5 x 6  | 2.13 | 5.65      | _     | 13.50 | 35.90    | _     |
| 40.2STA           | 3 <sup>1</sup> /8 | 80    | 6 <sup>3</sup> /16                    | 157   | 67/8                                   | 175    | 8.4  | 3.8  | <b>3</b> <sup>1</sup> / <sub>4</sub>                                                                                                                    | 82      | 5/16 - 1/2                                                  | 8 - 12  | 47/8              | 123  | 5 x <sup>1</sup> / <sub>4</sub>  | 5 x 6  | 2.13 | 6.28      | _     | 13.50 | 39.90    |       |
| 46.2STA           | 37/8              | 100   | 71/4                                  | 184   | 715/16                                 | 201    | 11.5 | 5.2  | 39/16                                                                                                                                                   | 90      | <sup>5</sup> / <sub>16</sub> - <sup>9</sup> / <sub>16</sub> | 8 - 14  | 57/8              | 150  | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 2.30 | 9.17      | _     | 11.70 | 46.50    | _     |
| 50.2STA           | 45/16             | 110   | 75/8                                  | 194   | 81/8                                   | 206    | 13.2 | 6.0  | 37/8                                                                                                                                                    | 97      | 5/16 - 9/16                                                 | 8 - 14  | 57/8              | 150  | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 2.40 | 10.90     | _     | 10.90 | 50.40    | _     |
| 60.2STA           | 43/4              | 120   | 9 <sup>1</sup> /8                     | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 22.5 | 10.2 | 49/16                                                                                                                                                   | 116     | <sup>5</sup> / <sub>16</sub> - <sup>5</sup> / <sub>8</sub>  | 8 - 16  | 8                 | 204  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 4.80 | 14.40     | _     | 20.30 | 61.00    | _     |
| 60.3STA           | 43/4              | 120   | 9 <sup>1</sup> / <sub>8</sub>         | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 25.8 | 11.7 | 49/16                                                                                                                                                   | 116     | 5/16 - 5/8                                                  | 8 - 16  | 8                 | 204  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 2 20 | 4 80      | 14 40 | 9 20  | 20.30    | 61 00 |
| 70 2STA           | 51/8              | 130   | 97/16                                 | 240   | 101/16                                 | 256    | 24.9 | 11.3 | 41/2                                                                                                                                                    | 115     | 3/8 = 11/16                                                 | 10 - 18 | 81/8              | 205  | 6 x 5/16                         | 6 x 8  | 5 70 | 18.50     |       | 22 20 | 72 00    |       |
| 70.3STA           | 51/6              | 130   | Q7/16                                 | 240   | 10 <sup>1</sup> /16                    | 256    | 28.3 | 12.8 | <u></u> | 115     | 3/0 = 11/10                                                 | 10 - 18 | 81/.              | 205  | 6 x 5/16                         | 6 x 8  | 2 30 | 5 70      | 18 50 | 9.00  | 22.20    | 72 00 |
| 80 2STA           | 67/2              | 175   | 115/16                                | 287   | 129/10                                 | 320    | 46.8 | 21.2 | 67/16                                                                                                                                                   | 164     | 3/0 = 13/10                                                 | 10 - 20 | Q3/16             | 233  | 8 x 3/o                          | 8 x 10 | 9.40 | 28 10     |       | 32 10 | 93.00    |       |
| 80.3STA           | 67/8              | 175   | 115/16                                | 287   | 129/16                                 | 320    | 50.1 | 22.7 | 67/16                                                                                                                                                   | 164     | 3/8 = 13/16                                                 | 10 - 20 | 93/16             | 233  | 8 x <sup>3</sup> / <sub>2</sub>  | 8 x 10 | 2 23 | 9 40      | 28 10 | 6.50  | 32 10    | 93.00 |

\*Classic plain-top winches use flat head (FH) fasteners

# Aluminum Radial Quattro

The patented Quattro is an innovative all-in-one winch used on boats that require extremely fast winches to handle large asymmetrical spinnakers, but also need power to trim the genoa upwind.

Radial Quattro winches are offered in lightweight aluminum alloy and feature composite self-tailing jaws and skirt to save weight. High-strength composite roller bearings reduce friction under load and don't require lubrication. Load-carrying gears and pins are 17-4PH stainless steel for strength and durability.

The Quattro features two drum diameters and four line speeds. The upper drum features Harken's new shaped radial grip for reduced sheet wear and controlled easing. The wide-diameter lower drum has a sand-blasted gripping surface used for fast trimming.



The upper drum's gripping surface is shaped for each winch size to reduce line wear and to provide maximum gripping power for smooth, controlled easing.

photo

V070

Team Heiner 38.

| Part  | Gear | ratio | Powe  | r ratio | Fast<br>cir       | ener<br>cle | Fasto<br>(SH o                   | eners<br>or HH) |
|-------|------|-------|-------|---------|-------------------|-------------|----------------------------------|-----------------|
| No.   | 1    | 2     | 1     | 2       | in                | mm          | in                               | mm              |
| 40STQ | 2.13 | 6.28  | 13.50 | 39.90   | 47/8              | 123         | 5 x 1/4                          | 5 x M6          |
| 46STQ | 2.30 | 9.17  | 11.70 | 46.50   | 5 <sup>7</sup> /8 | 150         | 5 x <sup>5</sup> / <sub>16</sub> | 5 x M8          |
|       |      |       |       |         |                   |             |                                  |                 |

|       |                                | Dru | mØ                                   |     | Ba                                   | ase |        |      |      |      |                              | Lin | e Ø                          |     |                                       | Line en | ry height                            |     |
|-------|--------------------------------|-----|--------------------------------------|-----|--------------------------------------|-----|--------|------|------|------|------------------------------|-----|------------------------------|-----|---------------------------------------|---------|--------------------------------------|-----|
| Part  | Lower                          |     | Up                                   | per |                                      | Ø   | He     | ight | We   | ight | M                            | lin | N                            | lax | Lo                                    | wer     | Up                                   | per |
| No.   | in                             | mm  | in                                   | mm  | in                                   | mm  | in     | mm   | lb   | kg   | in                           | mm  | in                           | mm  | in                                    | mm      | in                                   | mm  |
| 40STQ | 6 <sup>1</sup> / <sub>16</sub> | 154 | <b>3</b> <sup>1</sup> / <sub>8</sub> | 80  | 7 <sup>1</sup> /8                    | 180 | 67/8   | 175  | 10.2 | 4.6  | <sup>5</sup> / <sub>16</sub> | 8   | 1/2                          | 12  | <b>1</b> <sup>5</sup> / <sub>16</sub> | 34      | <b>3</b> <sup>1</sup> / <sub>4</sub> | 82  |
| 46STQ | 713/32                         | 188 | 315/16                               | 100 | <b>8</b> <sup>1</sup> / <sub>2</sub> | 218 | 715/16 | 201  | 13.7 | 6.2  | <sup>5</sup> / <sub>16</sub> | 8   | <sup>9</sup> / <sub>16</sub> | 14  | <sup>15</sup> / <sub>16</sub>         | 23      | 39/16                                | 90  |

# **Aluminum Combinations**

These self-tailing winches raise and trim sails on the largest yachts. They are available in 2 or 3 speeds, and come in marine-grade aluminum, or with aluminum base, stainless drum, and aluminum top combinations to maximize durability and corrosion resistance. Load-carrying gears are 17-4PH stainless steel. Self-tailing jaws accept a wide range of line sizes.

Modern-style winches integrate the stripper support arm into the self-tailing jaw assembly for a clean, smooth look. Classic winches are traditionally styled with a one-piece stripper arm that attaches to the top of the winch, encompassing the self-tailing jaws.

Winches have power ratios of up to 100:1 and are often used with either hydraulic or electric drives. The 3-speed 1140ST features a backwind to ease the loads on the winch before the sheet is released.



B990.2STA B990.3STA MODERN SELF-TAILING

B1145.3STA



*B990, B1130 and B1145 are available in grey-anodized aluminum by special order. Contact Harken Italy.* 



B1150STASA CLASSIC SELF-TAILING



|                         |                                         |       | Ø                                      |       |                                        |        |       |      | Line                                  | entry   | Fast                                  | ener |               |              |      |          |       |       |          |       |
|-------------------------|-----------------------------------------|-------|----------------------------------------|-------|----------------------------------------|--------|-------|------|---------------------------------------|---------|---------------------------------------|------|---------------|--------------|------|----------|-------|-------|----------|-------|
| Part                    | Drun                                    | 1 (D) | Base                                   | e (B) | Heig                                   | ht (H) | Wei   | ght  | heigl                                 | nt (LÉ) | cir                                   | cle  | Faste         | eners        | G    | iear rat | io    | Po    | ower rat | io    |
| No.                     | in                                      | mm    | in                                     | mm    | in                                     | mm     | lb    | kg   | in                                    | mm      | in                                    | mm   | in            | mm           | 1    | 2        | 3     | 1     | 2        | 3     |
| <b>Classic Self-Tai</b> | ling                                    |       |                                        |       |                                        |        |       |      |                                       |         |                                       |      |               |              |      |          |       |       |          |       |
| B1000.2STA              | 67/8                                    | 175   | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287   | 133/16                                 | 335    | 46.8  | 21.2 | 67/16                                 | 164     | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x 3/8 SH/HH | 8 x 10 SH/HH | 9.40 | 28.10    | —     | 32.10 | 93.00    | _     |
| B1000.3STA              | 67/8                                    | 175   | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287   | <b>13</b> <sup>3</sup> /16             | 335    | 50.1  | 22.7 | 67/16                                 | 164     | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x 3/8 SH/HH | 8 x 10 SH/HH | 2.23 | 9.40     | 28.10 | 6.50  | 32.10    | 93.00 |
| B1120STASA              | <b>11</b> <sup>13</sup> / <sub>16</sub> | 300   | 16 <sup>15</sup> /32                   | 418   | <b>14</b> <sup>9</sup> / <sub>16</sub> | 370    | 127.8 | 58   | 613/32                                | 163     | 14 <sup>3</sup> /8                    | 365  | 12 x 3/8 SH   | 12 x 10 SH   | 2.0  | 11.4     | 33.3  | 3.4   | 19.3     | 56.3  |
| B1140STASA              | <b>14</b> <sup>3</sup> / <sub>16</sub>  | 360   | 221/8                                  | 562   | <b>18</b> <sup>3</sup> / <sub>16</sub> | 462    | 299.9 | 136  | 811/32                                | 212     | 181/8                                 | 460  | 8 x 1/2 SH    | 8 x 12 SH    | 2.9  | 11.6     | 42.6  | 4.0   | 16.4     | 60.1  |
| B1150STASA              | 165/32                                  | 410   | 25 <sup>3</sup> /16                    | 640   | <b>19</b> <sup>3</sup> / <sub>4</sub>  | 502    | 485   | 220  | 827/32                                | 225     | 22 <sup>1</sup> / <sub>16</sub>       | 560  | 12 x 1/2 SH   | 12 x 12 SH   | 3.4  | 15.3     | 64.9  | 4.2   | 19       | 80.4  |
| Modern Self-Tai         | ling                                    |       |                                        |       |                                        |        |       |      |                                       |         |                                       |      |               |              |      |          |       |       |          |       |
| B990.2ST*               | 8                                       | 203   | <b>11</b> <sup>1</sup> / <sub>32</sub> | 280   | <b>11</b> <sup>9</sup> / <sub>16</sub> | 294    | 43.2  | 19.6 | 5 <sup>31</sup> / <sub>32</sub>       | 151.7   | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x ⅔ SH      | 8 x 10 SH    | 9.9  | 40.0     | _     | 24.8  | 100      | _     |
| B990.3ST*               | 8                                       | 203   | <b>11</b> <sup>1</sup> / <sub>32</sub> | 280   | <b>11</b> <sup>9</sup> / <sub>16</sub> | 294    | 43.2  | 19.6 | 5 <sup>31</sup> / <sub>32</sub>       | 151.7   | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x ⅔ SH      | 8 x 10 SH    | 1.0  | 9.9      | 40.0  | 2.5   | 24.8     | 100   |
| B1110STASA              | 1031/32                                 | 279   | 1311/32                                | 339   | <b>9</b> <sup>3</sup> / <sub>4</sub>   | 246.5  | _     | —    | <b>3</b> <sup>1</sup> / <sub>2</sub>  | 89      | 1023/32                               | 272  | 8 x ⅔ SH      | 8 x 10 SH    | 1.0  | 9.43     | 43.6  | 1.8   | 17.2     | 79.4  |
| B1130.3ST*              | 12 <sup>3</sup> /4                      | 324   | 16 <sup>3</sup> /32                    | 409   | 12 <sup>1</sup> /8                     | 308    | 86.0  | 39.0 | 417/32                                | 115     | 12 <sup>3</sup> /4                    | 324  | 9 x 1/2 SH    | 9 x 12 SH    | 1.0  | 10.8     | 55.2  | 1.6   | 16.9     | 86.6  |
| B1135.3STASA            | 123/4                                   | 324   | 16 <sup>5</sup> /32                    | 410   | 12 <sup>1</sup> /8                     | 308    | 220.5 | 100  | 411/32                                | 110     | 12 <sup>3</sup> /4                    | 324  | 9 x 1/2 SH    | 9 x 12 SH    | 1.1  | 10.8     | 55.2  | 1.6   | 16.9     | 86.5  |
| B1145.3ST*              | <b>14</b> <sup>1</sup> / <sub>4</sub>   | 362   | 21 <sup>3</sup> /16                    | 538   | 16 <sup>1</sup> /2                     | 419    | 192.9 | 87.5 | <b>8</b> <sup>3</sup> / <sub>16</sub> | 208     | 17 <sup>3</sup> /4                    | 450  | 14 x 1/2 SH   | 14 x 12 SH   | 2.9  | 11.9     | 53.6  | 4.1   | 16.6     | 75.6  |

\*Available in black-anodized or grey-anodized aluminum. For black add A to part number. For grey-anodized add GGG

# **Chrome Radial**

Chrome Radial Winches are designed for sailors that want the elegance of mirror-polished chrome to enhance their yacht's lines. They feature chrome drums, black composite bases and tops, and come in 1-, 2-, or 3-speed self-tailing styles.

The drum's gripping surface is shaped for each winch size and drum material and features diagonal ribs (rather than textured abrasive materials) to maximize gripping power and greatly reduce line wear. When easing, the angle of the ribs stops line from rising, preventing overrides and providing a smooth controlled release as the line exits the winch. Highstrength composite self-tailing jaws and skirt save weight. Composite roller bearings reduce friction under load and don't require lubrication. Load-carrying gears and pins are 17-4PH stainless steel for strength and durability.

Small Boat winches are available in single speed. Self-tailing models sizes 60 and up come in two or three speeds.





### WHY DOES MY CHROME RADIAL WINCH HAVE A DIFFERENT GRIP PATTERN THAN AN ALUMINUM RADIAL?

Chrome has a more slippery finish than aluminum, so the ribs on chrome Radial winches are spaced closer together to increase friction. This optimizes your grip for trimming as well as for easing the sail in a smooth, controlled manner.



|         |                                      |       | ~                                      |       |                                        |        |      |      |                                      |         |                                                             |         |                                       |       |                                  |        |      |           |       |       |          |       |
|---------|--------------------------------------|-------|----------------------------------------|-------|----------------------------------------|--------|------|------|--------------------------------------|---------|-------------------------------------------------------------|---------|---------------------------------------|-------|----------------------------------|--------|------|-----------|-------|-------|----------|-------|
|         |                                      |       | Ø                                      |       |                                        |        |      |      | Line                                 | entry   | Lin                                                         | e Ø     | Fast                                  | tener | Fast                             | eners  |      |           |       |       |          |       |
| Part    | Drun                                 | n (D) | Base                                   | e (B) | Heigh                                  | nt (H) | We   | ight | heigh                                | nt (LÉ) | (Min ·                                                      | · Max)  | cir                                   | cle   | (SH c                            | or HH) | 0    | lear rati | 0     | P     | ower rat | tio   |
| No.     | in                                   | mm    | in                                     | mm    | in                                     | mm     | lb   | kg   | in                                   | mm      | in                                                          | mm      | in                                    | mm    | in                               | mm     | 1    | 2         | 3     | 1     | 2        | 3     |
| 20STC   | 27/8                                 | 73    | 5 <sup>3</sup> /8                      | 137   | 5 <sup>13</sup> /16                    | 148    | 7.5  | 3.4  | 2 <sup>3</sup> /8                    | 61      | 1/4 - 1/2                                                   | 6 - 12  | 4 <sup>3</sup> /8                     | 110   | 5 x 1/4                          | 5 x 6  | 2.76 | _         | _     | 19.20 |          | _     |
| 35.2STC | 31/8                                 | 80    | 57/8                                   | 149   | <b>6</b> <sup>11</sup> / <sub>16</sub> | 170    | 10.6 | 4.8  | 31/8                                 | 79      | 5/16 - 1/2                                                  | 8 - 12  | 47/8                                  | 123   | 5 x 1/4                          | 5 x 6  | 2.13 | 5.65      | _     | 13.50 | 35.90    | _     |
| 40.2STC | 31/8                                 | 80    | <b>6</b> <sup>3</sup> / <sub>16</sub>  | 157   | 67/8                                   | 175    | 11.9 | 5.4  | 31/4                                 | 82      | 5/16 - 1/2                                                  | 8 - 12  | 47/8                                  | 123   | 5 x 1/4                          | 5 x 6  | 2.13 | 6.28      | _     | 13.50 | 39.90    | _     |
| 46.2STC | 37/8                                 | 100   | 7 <sup>1</sup> /4                      | 184   | 715/16                                 | 201    | 17.2 | 7.8  | 39/16                                | 90      | <sup>5</sup> / <sub>16</sub> - <sup>9</sup> / <sub>16</sub> | 8 - 14  | 5 <sup>7</sup> /8                     | 150   | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 2.30 | 9.17      | —     | 11.70 | 46.50    | —     |
| 50.2STC | 45/16                                | 110   | 7 <sup>5</sup> /8                      | 194   | <b>8</b> <sup>1</sup> / <sub>8</sub>   | 206    | 20.3 | 9.2  | 37/8                                 | 97      | <sup>5</sup> / <sub>16</sub> - <sup>9</sup> / <sub>16</sub> | 8 - 14  | 5 <sup>7</sup> /8                     | 150   | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 2.40 | 10.90     | _     | 10.90 | 50.40    | _     |
| 60.2STC | <b>4</b> <sup>3</sup> / <sub>4</sub> | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 30.7 | 13.9 | 49/16                                | 116     | <sup>5</sup> / <sub>16</sub> - <sup>5</sup> / <sub>8</sub>  | 8 - 16  | 8                                     | 204   | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 4.80 | 14.40     | _     | 20.30 | 61.00    | —     |
| 60.3STC | <b>4</b> <sup>3</sup> / <sub>4</sub> | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 34.0 | 15.4 | 49/16                                | 116     | <sup>5</sup> / <sub>16</sub> - <sup>5</sup> / <sub>8</sub>  | 8 - 16  | 8                                     | 204   | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 2.20 | 4.80      | 14.40 | 9.20  | 20.30    | 61.00 |
| 70.2STC | 5 <sup>1</sup> /8                    | 130   | <b>9</b> <sup>7</sup> / <sub>16</sub>  | 240   | <b>10</b> <sup>1</sup> / <sub>16</sub> | 256    | 33.3 | 15.1 | <b>4</b> <sup>1</sup> / <sub>2</sub> | 115     | <sup>3</sup> /8 - <sup>11</sup> / <sub>16</sub>             | 10 - 18 | <b>8</b> <sup>1</sup> / <sub>8</sub>  | 205   | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 5.70 | 18.50     | —     | 22.20 | 72.00    | _     |
| 70.3STC | 5 <sup>1</sup> /8                    | 130   | <b>9</b> <sup>7</sup> / <sub>16</sub>  | 240   | 101/16                                 | 256    | 36.6 | 16.6 | 41/2                                 | 115     | 3/8 - 11/16                                                 | 10 - 18 | <b>8</b> <sup>1</sup> / <sub>8</sub>  | 205   | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 2.30 | 5.70      | 18.50 | 9.00  | 22.20    | 72.00 |
| 80.2STC | 67/8                                 | 175   | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287   | 12 <sup>9</sup> /16                    | 320    | 63.4 | 28.7 | 67/16                                | 164     | <sup>3</sup> /8 - <sup>13</sup> / <sub>16</sub>             | 10 - 20 | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233   | 8 x <sup>3</sup> /8              | 8 x 10 | 9.40 | 28.10     | _     | 32.10 | 93.00    | _     |
| 80.3STC | 67/8                                 | 175   | 11 <sup>5</sup> /16                    | 287   | 12 <sup>9</sup> /16                    | 320    | 66.7 | 30.2 | 67/16                                | 164     | <sup>3</sup> /8 - <sup>13</sup> /16                         | 10 - 20 | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233   | 8 x <sup>3</sup> /8              | 8 x 10 | 2.23 | 9.40      | 28.10 | 6.50  | 32.10    | 93.00 |

HARKEN

# **Stainless Steel & All-Chrome**

Stainless steel and all-chrome winches combine the elegance of highly-polished finishes with the dependable, low-friction pulling power of Harken gearing systems.

Stainless steel self-tailing winches come in 2- or 3-speed self-tailing and feature polished marine-grade stainless bases, drums and tops to maximize durability and corrosion resistance.

All-chrome winches come in 1-, 2-, and 3-speeds, in self-tailing or plain-top styles, with polished marine-grade chrome bases, drums, and tops. Single-speed, plain-top chrome winches use a Delrin® sleeve bearing.

Both stainless steel and all-chrome winches feature 17-4PH stainless steel gears for strength. 2- and 3-speed self-tailing winches feature stainless steel roller bearings for strength and durability.

Power ratios range from 40:1 in the 2-speed winches to 80:1 in the wide-body threespeed models, which are often used with electric or hydraulic drives to handle sheets and halvards on the largest vachts. The wide drums provide extra surface area to hold high loads and for fast retrieval speed when sheeting. Wide-body modern-style winches integrate the stripper support arm into the self-tailing jaw assembly for a clean, smooth look. Classic winches are traditionally-styled with a one-piece stripper arm that attaches to the top of the winch, encompassing the self-tailing jaws.



Self-tailing jaws accept a wide range of line sizes



B6CCA B8CCA B32.2CCC

**PLAIN-TOP CHROME** 



B48.2ST

**CLASSIC SELF-TAILING CHROME OR STAINLESS STEEL** 



B60.2ST B60.3ST



**MODERN SELF-TAILING STAINLESS STEEL** 

**CLASSIC SELF-TAILING STAINLESS STEEL** 

# Bronze

Bronze winches enhance your yacht's classic look, while providing the low-friction pulling power of Harken's gearing systems. They come in 1, 2, and 3 speeds, with wide or standard drums, and in both plain-top and self-tailing configurations.

Marine-grade, polished-bronze materials maximize durability and corrosion resistance. Strong load-carrying gears are 17-4PH stainless steel for strength. Stainless self-tailing jaws accept a wide range of line sizes.

Single-speed, plain-top winches use Delrin<sup>®</sup> bearing sleeves. 2- and 3-speed winches feature 17-4PH stainless steel roller bearings for strength and durability.

Power ratios range from 40:1 in the 2-speed winches to 80:1 in the wide-body 3-speed models which are often used with electric or hydraulic drives to handle sheet and halyards on the largest yachts. The wide drums provide extra surface area to hold high loads and fast retrieval speed when sheeting.





PLAIN-TOP



SELF-TAILING
| <b>Ordering Information:</b><br>Specify material by adding<br>letter code to part number.<br>See chart for availability. |          |
|--------------------------------------------------------------------------------------------------------------------------|----------|
|                                                                                                                          |          |
| Stainless Steel,<br>All-Chrome,                                                                                          | & Bronze |

|     | BBB | Letter: Top     | uminum        | med bronze    | nless steel   | nless steel     | luminum        | shed bronze    |
|-----|-----|-----------------|---------------|---------------|---------------|-----------------|----------------|----------------|
|     | BBA | n 3rd           | e A           | e Chro        | e Stai        | Sta             | A              | e Polis        |
|     | SSS | nd Letter: Drui | Chromed bronz | Chromed bronz | Chromed bronz | Stainless steel | olished bronze | olished bronze |
| A A | CCS | : Base 2        | oronze (      | oronze (      | oronze (      | steel           | oronze I       | oronze F       |
|     | CCC | 1st Letter:     | Chromed t     | Chromed t     | Chromed t     | Stainless       | Polished t     | Polished t     |
|     | CCA | Letter code     | CCA           | CCC           | CCS           | SSS             | BBA            | <b>BBB</b>     |

т

|             |             | 2     |                  |                 |
|-------------|-------------|-------|------------------|-----------------|
| Letter code | 1st Letter: | Base  | 2nd Letter: Drum | 3rd Letter: Top |
| CCA         | Chromed b   | ronze | Chromed bronze   | Aluminum        |
| CCC         | Chromed b   | ronze | Chromed bronze   | Chromed bronze  |
| CCS         | Chromed b   | ronze | Chromed bronze   | Stainless steel |
| SSS         | Stainless   | steel | Stainless steel  | Stainless steel |
| BBA         | Polished b  | ronze | Polished bronze  | Aluminum        |
| BBB         | Polished b  | ronze | Polished bronze  | Polished bronze |
|             |             |       |                  |                 |
| ntru Eacto  | ner.        |       |                  |                 |

| Part                |           |        | Materials      | 6     |       | Drun                | ) (D) u | 0<br>Bast           | 9 (B) | Height              | (H)   | CCA/BB | A CC    | Weight<br>3/CCC/BB |        | SSS    | (Min                | ne Ø<br>- Max) | Line (             | sntry<br>(LE) | Fasten               | er                     | Fastener              | ŝ       | Gea   | ır ratio |         | Power  | atio |
|---------------------|-----------|--------|----------------|-------|-------|---------------------|---------|---------------------|-------|---------------------|-------|--------|---------|--------------------|--------|--------|---------------------|----------------|--------------------|---------------|----------------------|------------------------|-----------------------|---------|-------|----------|---------|--------|------|
| No.                 | CCA C     | 200    | CCS SS         | S BB  | A BBB | .=                  | E E     | .⊑                  | m     | .⊑                  | mm    | a<br>A | =<br>D  | b kg               | đ      | kg     | . <b>E</b>          | mm             | °.⊑                | Ē             | i<br>u               | ш<br>і                 | E                     | mm      | -     | 2        | 3       | 2      | ო    |
| <b>Classic Plai</b> | n-Top     |        |                |       |       |                     |         |                     |       |                     |       |        |         |                    |        |        |                     |                |                    |               |                      |                        |                       |         |       |          |         |        |      |
| B6                  | <b> </b>  |        |                | >     |       | 2¾                  | 60      | 39/16               | 60    | 31/4                | 82    | 2.9 1  | ن<br>ا  |                    |        |        | 1                   |                | 15/16              | 33            | 2 <sup>9/16</sup> 6  | 35 6 X 1               | 4 FH 6.               | x 6 FH  | -     |          | 8.      |        | 1    |
| B8                  | <b> </b>  |        |                | >     |       | 2 <sup>11/16</sup>  | 68      | 41/2                | 115   | 3 <sup>9/16</sup>   | 06    | 4.6 2  | -<br> - |                    |        |        | 1                   |                | 11/2               | 38            | 39/16 5              | 30 4 × 5               | 16 FH 4               | x 8 FH  | -     |          | - 7.5   |        | 1    |
| B16.2               |           | 2      |                |       | 2     | 23/4                | 20      | 43/4                | 120   | 47/16               | 112   |        | 8.      | 2 3.7              | -      |        |                     |                | 2                  | 50            | 39/16 5              | 30 5 x                 | /4 FH 5               | x 6 FH  | -     | 2.3 -    | - 7.2   | 2 16.  |      |
| B32.2               |           | 2      |                |       | 7     | 2 <sup>15/16</sup>  | 74      | $5^{13/32}$         | 137   | 51/4                | 134   |        | - 10    | .4 4.7             |        |        |                     |                | $2^{3/4}$          | 70            | 41/8 1               | 05 5 X                 | /4 FH 5               | x 6 FH  | +     | 4.7 -    | - 6.8   | 32.    |      |
| B40.2               |           | 2      |                |       | 7     | с                   | 76      | 5 <sup>11/16</sup>  | 145   | 5 <sup>13/16</sup>  | 148   |        | - 13    | .2 6               |        |        |                     |                | $2^{3/4}$          | ·<br>20       | 4 <sup>7/16</sup> 1  | 12 5 X ]               | /4 FH 5               | x 6 FH  | +     | 6.1 -    | - 6.7   | 7 40.  |      |
| B980.2              |           |        |                |       | 7     | 67/8                | 175     | $10^{7/16}$         | 265   | 113/4               | 298   |        | - 94    | .8 43.             | 0      |        |                     |                | $5^{13}/_{16}$     | 148           | 87/8 2               | 25 6 X                 | <sup>/</sup> 8 FH 6 × | (10 FH  | 7.3 2 | 27.8 -   | - 21.   | 2 80.  | Ι    |
| B980.3              |           |        |                |       | 7     | 67/8                | 175     | 107/16              | 265   | 113/4               | 298   |        | - 94    | .8 43.             | 0      | 1      | 1                   |                | $5^{13}/_{16}$     | 148           | 87/8 2               | 25 6 X                 | / <sub>8</sub> FH 6 × | 10 FH   | 2.75  | 7.3 2    | 7.8 8   | 21.    | 80.7 |
| B1111.3PT           |           |        |                |       | 7     | 111/32              | 280     | 143/16              | 360   | 99/32               | 236   |        |         |                    |        |        | 1                   |                | 35/32              | 80 1          | 0 <sup>15/16</sup> 2 | 78 8 X ∮               | <sup>%</sup> SH 8 ×   | 10 SH   |       | 9.7 4/   | 4.7 1.8 | 3 17.  | 81.1 |
| <b>Classic Self</b> | f-Tailin  | 6      |                |       |       |                     |         |                     |       |                     |       |        |         |                    |        |        |                     |                |                    |               |                      |                        |                       |         |       |          |         |        |      |
| B16ST               |           | 1      | <b>7</b>       |       | 7     | 2¾                  | 20      | 43/4                | 120   | 5%16                | 142   |        |         | 9 4.1              |        |        | 1/4 - 1/2           | 6 - 12         | 2                  | 50            | 39/16 5              | 30 5 X                 | /₄ FH 5.              | x 6 FH  | 2.3   |          | - 16.   | 9      | !    |
| B32.2ST             |           |        | 7              |       | 7     | 2 <sup>15/16</sup>  | 74      | 57/16               | 139   | 6 <sup>7/16</sup>   | 164   |        | 12      | .1 5.5             |        |        | 5/16 - 1/2          | 8 - 12         | $2^{3/4}$          | 70            | 41/8 1               | 05 5 X                 | /4 FH 5               | x 6 FH  | 2.4   | 4.7 -    | - 16.   | 4 32.  | Ι    |
| B40.2ST             |           |        | 7              |       | 7     | ო                   | 76      | 9                   | 152   | 6 <sup>15/16</sup>  | 176   |        | -       | 5 6.8              | 3 14.8 | 3 6.7  | 5/16 - 1/2          | 8 - 12         | 23/4               | 20            | 47/16 1              | 12 5 X ]               | /4 FH 5               | x 6 FH  | 2     | - 9      | - 13.   | 4 40.  |      |
| B44.2ST             |           |        | 7<br>7         |       | 7     | 35/8                | 92      | 63/4                | 172   | 73/4                | 196   |        | - 20    | .9 9.5             | 5 20.5 | 5 9.3  | 5/16 - 9/16         | 8 - 14         | 3%                 | 85            | 5 <sup>1/16</sup> 1  | 28 5×5                 | 16 FH 5.              | x 8 FH  | 2.5   | -<br>80  | - 13.   | 8 44.  |      |
| B46.2ST             |           |        | <b>7</b>       |       | 7     | 4                   | 102     | 6 <sup>15/16</sup>  | 176   | 85/16               | 210   |        | - 25    | 5 11.5             | 55 —   | 1      | 5/16 - 9/16         | 8 - 14         | 3 <sup>9/16</sup>  | 06            | 51/2 1               | 40 5×5                 | 16 FH 5.              | x 8 FH  | 2.5   | 9.1 -    | - 12.   | 4 45.  |      |
| B48.2ST             |           |        | 7              |       | 7     | 4                   | 102     | 77/16               | 189   | 83/4                | 222   |        | 3       | 0 13.0             | 6 29.8 | 3 13.5 | 5/16 - 9/16         | 8 - 14         | 315/16             | 100           | 61/8 1               | 55 6×5                 | 16 FH 6.              | x 8 FH  | 2.5   | 9.7 -    | - 12.   | 4 48.  |      |
| B53.2ST             |           |        | 7              |       | 7     | 47/16               | 112     | 8 <sup>11/16</sup>  | 221   | 9 <sup>11/16</sup>  | 245   |        | ا<br>ى  | 9 17.              | 7 —    |        | 5/16 - 9/16         | 8 - 14         | 4 <sup>3/16</sup>  | 105           | 71/16 1              | 80 6×5                 | '16 FH 6.             | x 8 FH  | 3.1   | 12 -     | - 14    | 53     | Ι    |
| B60.2ST             |           |        | 7              |       | 7     | 43/4                | 120     | 87/8                | 225   | 10%                 | 270   |        |         |                    | . 53.6 | 3 24.3 | 5/16 - 5/8          | 8 - 16         | 4 <sup>15/16</sup> | 125 7         | 711/16 1             | 95 6×5                 | '16 FH 6.             | x 8 FH  | 4.8 1 | 4.4 -    | - 20.   | 3 61   | Ι    |
| B60.3ST             |           |        | 7              |       | 7     | 43/4                | 120     | 87/8                | 225   | 105/8               | 270   |        | - 40    | .8 18.             | 5      | Ι      | 5/16 - 5/8          | 8 - 16         | $4^{15}/_{16}$     | 125 7         | 711/16 1             | 95 6×5,                | ' <sub>16</sub> FH 6. | x 8 FH  | 2.2   | 4.8 1/   | 4.4 9.3 | 3 20.3 | 61   |
| B70.2ST             |           |        | 7              |       | 7     | 51/8                | 130     | 95/8                | 245   | 121/8               | 308   |        |         |                    |        | Ι      | 3/8 - 3/4           | 10 - 18        | 57/8               | 150           | 81/4 2               | 10 5 x                 | <sup>/</sup> 8 FH 5 × | : 10 FH | 5.7   | 18       | - 22.   | 3 70   | I    |
| B70.3ST             |           | 1      | <b>7</b>       |       | 7     | 51/8                | 130     | 9 <sup>5/8</sup>    | 245   | 121/8               | 308   |        | - 58    | .4 26.             | 5      |        | 3/8 - 3/4           | 10 - 18        | 57/8               | 150           | 81/4 2               | 10 5 X <sup>3</sup>    | /8 FH 5 >             | (10 FH  | 2.7   | 5.7 1    | 8 10.   | 6 22.3 | 20   |
| B74.2ST             |           | 1      | 7<br>7         |       | 7     | 57/8                | 150     | $10^{7/16}$         | 265   | 11 <sup>13/16</sup> | 300   |        |         |                    |        |        | 3/8 - 13/16         | 10 - 20        | 57/8               | 150           | 87/8 2               | 25 6 X                 | / <sub>8</sub> FH 6 x | 10 FH   | 7.3 2 | 21.7 -   | - 24.   | 7 74   | !    |
| B74.3ST             |           |        | 7              |       | 7     | 57/8                | 150     | 1 0 <sup>7/16</sup> | 265   | 11 <sup>13/16</sup> | 300   |        | - 72    | .1 32.             | 7 —    |        | 3/8 - 13/16         | 10 - 20        | 57/8               | 150           | 87/8 2               | 25 6×3                 | /8 FH 6 >             | < 10 FH | 2.7   | 7.3 2    | 1.7 9.5 | 5 24.  | 73.5 |
| B980.2ST            |           |        |                |       | 7     | 67/8                | 175     | $10^{7/16}$         | 265   | 11 <sup>13/16</sup> | 300   |        | - 92    | .6 42.             | 0 88.4 | 40     | 3/8 - 13/16         | 10 - 20        | $5^{13}/_{16}$     | 148           | 87/8 2               | 25 6 X                 | <sup>/</sup> 8 FH 6 × | (10 FH  | 7.3 2 | 27.8 -   | - 21.   | 2 80.  | Ι    |
| B980.3ST            |           |        |                |       | 7     | 67/8                | 175     | $10^{7/16}$         | 265   | 11 <sup>13/16</sup> | 300   |        | - 92    | .6 42.0            | 0      |        | 3/8 - 13/16         | 10 - 20        | $5^{13}/_{16}$     | 148           | 87/8 2               | 25 6 X                 | <sup>/</sup> 8 FH 6 × | 10 FH   | 2.75  | 7.3 2    | 7.8 8   | 21.    | 80.7 |
| B1120ST             |           |        | <br>  <b>)</b> |       |       | 1113/16             | 300     | $16^{15}/_{32}$     | 418   | 14 <sup>9/16</sup>  | 370   |        |         |                    |        |        | <sup>9/16</sup> - 1 | 14 - 25        | $6^{13}/_{32}$     | 163 i         | 143/8 3              | 65 12 x                | 3/8 SH 12 ;           | x 10 SH | 5     | 1.4 3    | 3.3 3.4 | 19.    | 56.3 |
| B1140ST             |           |        |                |       |       | 143/16              | 360     | 221/8               | 562   | 18 <sup>3/16</sup>  | 462   |        |         |                    |        | Ι      | 3/4 - 11/4          | 19 - 32        | 811/32             | 212           | 181/8 4              | 60 8 x <sup>1</sup>    | <sup>1</sup> 2 SH 8 X | 12 SH   | 2.9 1 | 1.6 4    | 2.6 4   | 16.    | 60.1 |
| B1150ST             |           |        |                |       |       | 165/32              | 410     | 25 <sup>3/16</sup>  | 640   | 193/4               | 502   |        |         |                    |        |        | <sup>9/16</sup> - 1 | 14 - 25        | 827/32             | 225 2         | 21/16 5              | 60 12 x                | 1/2 SH 12 ;           | x 12 SH | 3.4 1 | 5.3 6    | 4.9 4.2 | 19     | 80.4 |
| Modern Sel          | f-Tailin  | ß      |                |       |       |                     |         |                     |       |                     |       |        |         |                    |        |        |                     |                |                    |               |                      |                        |                       |         |       |          |         |        |      |
| B1110ST             |           |        |                |       |       | 10 <sup>31/32</sup> | 279     | 1311/32             | 339   | 93/4 2              | 246.5 |        |         |                    | 74.2   | 2 33.6 | 5/8 - 7/8           | 16 - 22        | 31/2               | 89 1          | 0 <sup>23/32</sup> 2 | 72 8 x                 | /8 SH 8 X             | 10 SH   | 1     | 9.43 4;  | 3.6 1.8 | 3 17.  | 79.4 |
| B1130.3ST*          |           |        |                |       |       | 123/4               | 324     | $16^{3/32}$         | 409   | 121/8               | 308   |        |         |                    |        |        | 5/8 - 1             | 16 - 25        | $4^{17}/_{32}$     | 115 7         | 123/4 3              | '24 9 x <sup>1</sup> , | <sup>2</sup> SH 9 x   | 12 SH   | -     | 0.8 5!   | 5.2 1.6 | 16.9   | 86.6 |
| B1135.3ST*          |           |        |                |       |       | 123/4               | 324     | 163/32              | 409   | 121/8               | 308   |        |         |                    |        |        | 5/8 - 1             | 16 - 25        | $4^{17}/_{32}$     | 115           | 123/4 3              | '24 9 x <sup>1</sup> , | <sup>2</sup> SH 9 x   | 12 SH   | -     | 0.8 5!   | 5.2 1.6 | 16.9   | 86.6 |
| *4-Speed opti       | ion avail | lable. | Contact        | Harke | ц     |                     |         |                     |       |                     |       |        |         |                    |        |        |                     |                |                    |               |                      |                        |                       |         |       |          |         |        |      |

# **Carbon Fiber**

Carbon winches are standard in many racing classes and are also the choice of performanceoriented fast cruisers.

Winches feature carbon skirts and tops, aluminum drums, and strong composite jaws with one-piece sculpted line guide and peeler. PEEK® roller bearings are low-maintenance, reliable, and efficient. They ride in large-diameter cages, allowing more bearings to carry the load. Stainless steel drive gears are strong and durable. The AC versions of the 65.3ST and 65.2ST winches feature titanium gears for extremely high strength-to-weight ratios and exceptional resistance to corrosion.

Carbon winches come with up to three speeds and can be driven by handle, pedestal, or by electric or hydraulic motors. Harken's 50.3STR is the smallest three-speed direct drive self-tailing winch in the industry.

Options include self-tailing arms, top cleats, free-spinning or ratcheting base sheave additions, and left-handed rotation.

If class rules dictate, winches are also available in all-aluminum with stainless steel gears.



**B55.3TCR** 

B50.3STR

**B500.3TCR** 

B650.3TCR



B65.3TCR

HARKEN B65.2STAC

ompany





B500.2STR

HARKEN B55.2STR

B650.3STR

/EOLIA

# **Carbon Fiber**

These powerful carbon winches are aboard large megayachts, performance cruisers, and racing monohulls and multihulls over 60 feet (18 m).

Winches feature carbon skirts and tops, aluminum drums, and strong composite jaws with one-piece sculpted line guide and peeler. PEEK<sup>®</sup> roller bearings are low-maintenance, reliable and efficient. They ride in large-diameter cages, allowing more bearings to carry the load. Stainless steel drive gears are strong and durable. The AC versions of the 1111PT and 990.3ST winches feature titanium gears for extremely high strength-to-weight ratios and exceptional resistance to corrosion.

Drives are pedestal, electric or hydraulic. Widediameter drums provide extra surface area to hold line securely under high loads. Fewer wraps speed line retrieval when sheeting.

Other options include self-tailing, top cleats, four speeds, free-spinning or ratcheting base sheave additions, and left-handed rotation.

If class rules dictate, winches are also available in all-aluminum with stainless steel gears.







B880.3VTOP





B990.3STAC



B880.3STR





B1125STR



B1130.3TCR



B1135.3STR



B1145.3TCR

B1145.3STR

B1130.3STR

# **Carbon Fiber**







Base riser required to mount B50, B55, and B65 winches above deck. Specify above deck or flush deck version when ordering.

č



Use base sheaves for cross-sheeting and lazy sheets. Availability varies by winch size.

|        |           | 4          | I       | 1                  |                    | 1                  | 1                  | 1                  | 1                   | I                   | I                   | 1                   | 1                   |                     |                     | 1                   |                     | 1                   | Ι                    | I         |                      | 1                   |                     | 1                   |                     | 81:1                | 81:1                | 92.6:1               |              |                                  |                     | 1                 | 1                    |                      |
|--------|-----------|------------|---------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|-----------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|--------------|----------------------------------|---------------------|-------------------|----------------------|----------------------|
| :      | ver ratio | m          | 1 43:1  |                    | 1 49.8:1           |                    | 1 44.5:1           | 1 47:1             |                     |                     | 1 55.6:1            | 1 55.6:1            |                     |                     | 1 65.5:1            | 1 65.5:1            | 1 65.5:1            | 1 65.5:1            | 1 100:1              | 1 100:1   | 1 80:1               | 1 79.5:1            | 1 79.5:1            | 1 81:1              | 1 81:1              | 17.6:1              | 17.6:1              | 22.8:1               | 1 86.6:1     | 1 86.6:1                         | 1 86.6:1            | 1 86.6:1          | 1 60.1:1             | 1 75.6:1             |
| ľ      | Pov       | 7          | 10.8    | 1 50.7:            | 11.7:              | 1 50.7:            | 10.4:              | 12.1:              | 1 55.6:             | 1 55.6:             | 15.7:               | 15.7:               | 1 65.5:             | 1 65.5:             | 15.7:               | 15.7:               | 15.7:               | 15.7:               | 24.8:                | 24.8:     | 24.8:                | 19.7:               | 19.7:               | 17.6:-              | 17.6:               | 5.4:1               | 5.4:1               | 1 6.8:1              | 16.9:        | 16.9:                            | 16.9:               | 16.9:             | 16.4:                | 16.6                 |
|        |           | -          | 4.2:1   | 11.7:              | 4.4:1              | 11.7:              | 3.9:1              | 3.9:1              | 15.7:               | 15.7:               | 3.4:1               | 3.4:1               | 15.7:               | 15.7:               | 3.4:1               | 3.4:1               | 3.4:1               | 3.4:1               | 2.5:1                | 2.5:1     | 2.5:1                | 5:1                 | 5:1                 | 1.8:1               | 1.8:1               | 1.8:1               | 1.8:1               | 1.69:                | 1.6:1        | 1.6:1                            | 1.6:1               | 1.6:1             | 4:1                  | 4.1:1                |
|        |           | 4          | Ι       | Ι                  | Ι                  | 1                  | 1                  | 1                  | 1                   | 1                   | Ι                   | Ι                   | I                   | Ι                   | Ι                   | Ι                   |                     |                     |                      | Ι         | Ι                    |                     | Ι                   | 1                   |                     | 44.7:               | 44.7:               | 54.7:                | Ι            | Ι                                | Ι                   | Ι                 | 1                    | 1                    |
| ;      | r ratio   | m          | 10:1    | I                  | 11.4:1             | 1                  | 11.4:1             | 12:1               | 1                   | 1                   | 16.3:1              | 16.3:1              | 1                   | Ι                   | 19.2:1              | 19.2:1              | 19.2:1              | 19.2:1              | 40:1                 | 40:1      | 32:1                 | 40.1:1              | 40.1:1              | 44.7:1              | 44.7:1              | 9.7:1               | 9.7:1               | 13.5:1               | 55.2:1       | 55.2:1                           | 55.2:1              | 55.2:1            | 42.6:1               | 53.6:1               |
| (      | Gea       | 2          | 2.5:1   | 11.4:1             | 2.7:1              | 11.4:1             | 2.7:1              | 3.1:1              | 16.3:1              | 16.3:1              | 4.6:1               | 4.6:1               | 19.2:1              | 19.2:1              | 4.6:1               | 4.6:1               | 4.6:1               | 4.6:1               | 9.9:1                | 9.9:1     | 9.9:1                | 9.9:1               | 9.9:1               | 9.7:1               | 9.7:1               | 3:1                 | 3:1                 | 4:1                  | 10.8:1       | 10.8:1                           | 10.8:1              | 10.8:1            | 11.6:1               | 11.9:1               |
|        |           | -          | 1:1     | 2.7:1              | 1:1                | 2.7:1              | 1:1                | ÷                  | 4.6:1               | 4.6:1               | 1:1                 | 1:1                 | 4.6:1               | 4.6:1               | 1:1                 | 1:1                 | 1:1                 | 1:1                 | 1:1                  | 1:1       | 1:1                  | 2.5:1               | 2.5:1               | 1:1                 | 1:1                 | 1:1                 | 1:1                 | 1:1                  | 1:1          | 1:1                              | 1:1                 | 1:1               | 2.9:1                | 2.9:1                |
|        | S         | m          | x 8 HH  | X 8 FH             | X 8 FH             | X 8 FH             | X 8 FH             | × 8 HH             | × 8 FH              | × 8 FH              | X 8 FH              | X 8 FH              | × 8 FH              | X 8 FH              | X 8 FH              | X 8 FH              | × 8 FH              | X 8 FH              | × 8 FH               | x 8 FH    | × 8 FH               | X 8 FH              | X 8 FH              | x 10 SH             | x 10 SH             | x 10 SH             | x 10 SH             | x 12 SH              | x 12 SH      | x 12 SH                          | x 12 SH             | x 12 SH           | x 12 SH              | x 12 SH              |
|        | Fastene   | _          | 9 HH 9  | 16 FH 6            | 16 FH 6            | 16 FH 6            | 16 FH 6            | 6 HH 6             | 16 FH 6             | 16 FH 6             | 16 FH 6             | 16 FH 6             | <sup>16</sup> FH 6  | 16 FH 6             | 16 FH 6             | 16 FH 6             | 16 FH 6             | 16 FH 6             | <sup>6</sup> FH 8    | 16 FH 8   | <sup>6</sup> FH 8    | I6 FH 8             | I6 FH 8             | 8 HS                | 8 HS                | 8 HS                | 8 HS                | 32 SH 9              | 2 SH 9       | <sup>2</sup> SH 9                | 2 SH 9              | <sup>2</sup> SH 9 | 2 SH 8               | /2 SH 14             |
|        |           | .5         | 6 X ∜1  | 6 x 5/1            | 6 X 5/1            | 6 × 5/1            | 6 X 5/1            | 6 X ¾              | 6 X 5/-             | 6 × 5/1             | 6 × 5/1             | 6 x 5/1             | 6 X 5/-             | 6 X 5/1             | 6 X <sup>5</sup> /1 | 6 X 5/1             | 6 × <sup>5</sup> /1 | 6 x 5/1             | 8 X 5/1              | 8 X 5/1   | 8 X ∜1               | 8 X 5/1             | 8 X 5/1             | 8 X ¾               | 8 × ¾               | 8 × ¾               | 8 × ¾               | 9 x <sup>15</sup> /  | 9 × ¹/       | 9 × 1/                           | 9 × ¹/              | /₁×6              | 8 × 1/               | 14 X 1               |
| stener | Ircle     | m          | 155     | 164                | 164                | 164                | 164                | 180                | 226                 | 226                 | 226                 | 226                 | 226                 | 226                 | 226                 | 226                 | 226                 | 226                 | 305                  | 305       | 305                  | 272                 | 272                 | 271                 | 271                 | 271                 | 271                 | 303                  | 324          | 324                              | 324                 | 324               | 460                  | 450                  |
| Fa     |           | . <b>E</b> | 61/8    | 6 <sup>15/32</sup> | 6 <sup>15/32</sup> | 6 <sup>15/32</sup> | 6 <sup>15/32</sup> | 73/32              | 829/32              | 829/32              | 829/32              | 829/32              | 829/32              | 829/32              | 829/32              | 829/32              | 829/32              | 829/32              | 12                   | 12        | 12                   | 10 <sup>23/32</sup> | 10 <sup>23/32</sup> | 10 <sup>21/32</sup> | 1011/16             | 10 <sup>21/32</sup> | 10 <sup>21/32</sup> | 11 <sup>15/16</sup>  | 123/4        | 12¾                              | 123/4               | 12¾               | 181/8                | $17^{3/4}$           |
| entry  | ht (LE)   | m          | 92      | 65                 | 65                 | 65                 | 55                 | 111                | 83                  | 85                  | 83                  | 83                  | 83                  | 85                  | 83                  | 83                  | 83                  | 83                  | 98                   | 98        | 98                   | 70                  | 70                  | 94                  | 94                  | 94                  | 94                  | 105                  | 115          | 115                              | 115                 | 115               | 212                  | 208                  |
| Line   | heig      | . <u>=</u> | 35/8    | 2 <sup>9/16</sup>  | $2^{9/16}$         | 2 <sup>9/16</sup>  | 25/32              | 43/8               | 31/4                | 311/32              | 31/4                | 31/4                | 31/4                | 311/32              | 31/4                | 31/4                | 31/4                | 31/4                | $3^{27}/_{32}$       | 327/32    | $3^{27/32}$          | 23/4                | $2^{3/4}$           | 311/16              | 311/16              | 311/16              | 311/16              | 41/8                 | $4^{17/32}$  | $4^{17/32}$                      | $4^{17}/_{32}$      | $4^{17}/_{32}$    | 811/32               | 8 <sup>3/16</sup>    |
| ;      | Мах       | mm         | Ι       | 14                 | 14                 | 14                 | 14                 | 1                  | 16                  | 16                  | 16                  | Ι                   | 16                  | 16                  | 16                  | Ι                   | 16                  | 1                   | 19                   | 19        | Ι                    | 19                  |                     | 19                  |                     | 1                   | 19                  | 19                   | 25           | Ι                                | 25                  | Ι                 | 25                   | 22                   |
| Ine M  |           | .⊑<br>     | 1       | <sup>9/16</sup>    | <sup>9</sup> /16   | 9/16               | 9/16               |                    | 5/8                 | 5/8                 | 5/8                 |                     | 5/8                 | 5/8                 | 5/8                 |                     | 5/8                 |                     | 3/4                  | 3/4       |                      | 3/4                 |                     | 3/4                 |                     |                     | 3/4                 | 3/4                  | 1            |                                  | 1                   |                   | -                    | 3 11/16              |
| -      | MIN       | Ē          | 1       | °                  | 6<br>8             | و<br>8             | و<br>8             |                    | 8                   | 8                   | و<br>8              |                     | °0                  | <sub>6</sub><br>8   | <sub>6</sub> 8      |                     | <sub>6</sub><br>8   |                     | 6 1-                 | 6 1-      |                      | 1(                  |                     | -                   |                     |                     | 6 1-                | 6 1-                 | 16           |                                  | 16                  |                   | 16                   | 16                   |
|        |           | i<br>i     | 6.      | .3 5/1             | .2 5/1             | ·/ <sub>2</sub> 0. | .2 5/1             |                    | .5 5/1              | - 5/1               | 1.8 5/1             | l.5<br>             | .5 5/1              | - 5/1               | 1.8 5/1             | 1.5                 | .7 5/1              | .3                  | 0.3 7/1              | - 7/1     | 3.8                  | 3.3 %               | - 2.7               | 2.8 7/1             | 3.6 —               |                     | - 7/1               | - 1/ <sub>2</sub>    | 3/s 0.6      | - 0.6                            | 2.0 5/ <sub>8</sub> | <u> </u>          | 3.0 5/8              | 7.5 5/5              |
|        | Weight    | a<br>a     | .4 7    | .7 5               | 8.7 6              | .0 5               | 8.7 6              | 3.8 1(             | 9.0                 |                     | 6 1-                | .4 1-               | 9.0                 |                     | 6 1-                | .4 1-               | .3 9                | .6 9                | 1.8 2(               |           | .5 18                | .4 18               | 3.6 17              | .3 22               | .0 18               |                     |                     | -                    | 36 36        | 36 36                            | .6 42               | .0 35             | 9.2 11               | 2.9 8                |
|        | -<br>-    | E          | 38 17   | 58 11              | 75 15              | 58 11              | 75 15              | 43 25              | <u> 39 2(</u>       | - 66                | 26 2                | 26 25               | <u> 39 2(</u>       | - 66                | 26 2                | 26 25               | 26 21               | 26 2(               | 41 44                | 40 -      | 40 41                | 12 4(               | 12 35               | 36 5(               | 14 70               | 18                  | 36 -                | 49 -                 | <u>38 86</u> | <u>93 86</u>                     | 38 92               | 93 77             | 52 24                | 19 19                |
|        | Height (h | u<br>U     | 3/16 2, | 11 11              | 7/8 1              | <sup>5/8</sup> 1   | 7/8 1              | <sup>9/16</sup> 2. | <sup>13/16</sup> 1: | <sup>13/16</sup> 1: | <sup>39/32</sup> 2. | <sup>29/32</sup> 2. | <sup>13/16</sup> 1: | <sup>13/16</sup> 1: | <sup>39/32</sup> 2. | <sup>29/32</sup> 2. | <sup>39/32</sup> 2. | <sup>29/32</sup> 2. | 11/2 2.              | 7/16 2·   | 7/16 2.              | 11/32 2             | 11/32 2             | <sup>5/16</sup> 2,  | 5/32 21             | <sup>19/32</sup> 2  | <sup>9/32</sup> 2.  | <sup>13/16</sup> 2.  | 21/8 31      | <sup>17</sup> / <sub>32</sub> 2: | 21/8 31             | 17/32 2:          | 33/16 41             | 51/2 4               |
|        | _         | E          | 88 8    | 84 6               | 84 6               | 84 6               | 84 6               | 18 9               | 55 7                | 55 7                | 55 8                | 55 8                | 55 7                | 55 7                | 55 8                | 55 8                | 55 8                | 55 8                | 74 9                 | 14 9      | 74 9                 | 44 8                | 44 8                | 60 9                | 60 8                | 60 8                | 60 9                | - 6                  | 09 1:        | 09 11                            | 09 1:               | 09 11             | 62 18                | 38                   |
| ļ      | Base (B   | u<br>u     | 13/32 1 | 71/4 1             | 71/4 1             | 71/4 1             | 71/4 1             | <sup>9/16</sup> 2  | 10 2                | 10 2                | 10 2                | 10 2                | 10 2                | 10 2                | 10 2                | 10 2                | 10 2                | 10 2                | ) <sup>13/16</sup> 2 | 23/8 3    | ) <sup>13/16</sup> 2 | 317/32 3            | 317/32 3            | 1 <sup>3/16</sup> 3 | 1 <sup>3/16</sup> 3 | 1 <sup>3/16</sup> 3 | 1 <sup>3/16</sup> 3 |                      | 33/32 4      | 33/32 4                          | 33/32 4             | 33/32 4           | 21/8 5               | 1 <sup>3/16</sup> 5. |
| ּג     | -<br>-    | E          | 20 71   | 16 7               | 16 7               | 16 7               | 30 7               | 30 8               | 49 1                | 49 1                | 49 1                | 49 1                | 49 1                | 49 1                | 49 1                | 49 1                | 49 1                | 49 1                | 03 10                | 03 12     | 03 10                | 54 13               | 54 13               | 80 14               | 80 14               | 80 14               | 80 14               | - 00                 | 24 16        | 24 16                            | 24 16               | 24 16             | 60 2                 | 62 21                |
| į      | Drum (D   | E<br>u     | 3/4 1   | <sup>9/16</sup> 1  | 3/16 1             | 9/16 1             | 1/8 1:             | 1/8 1:             | 7/8 1-              | 7/8 1-              | 7/8 1.              | 7/8 1-              | 7/8 1-              | 7/8 1-              | 7/8 1-              | 7/8 1.              | 7/8 1-              | 7/8 1-              | 8 2                  | 8 2       | 8 2                  | 0 2                 | 0 2                 | 1/32 2              | 1/32 2              | 1/32 2              | 1/32 2              | <sup>13</sup> /16 31 | 23/4 3.      | 2%4 3.                           | 23/4 3.             | 2%4 3.            | 1 <sup>3/16</sup> 31 | 11/4 3I              |
|        |           | -          | 4       | 4                  | 4                  | 4                  | 3                  | 2                  | 2                   | 2                   | 5                   | 5                   | 5                   | 3                   | 5                   | 5                   | 3                   | 3 5                 | ~                    | 5         | ~                    | -                   | P                   | 3* 11               | R 11                | C* 11               | 1C 11               | 11                   | <b>R</b> 12  | <b>R</b> 1;                      | 3* 12               | <b>R</b>          | <b>R</b> 14          | <b>R</b>             |
|        | Part      | No.        | B480TCR | B50.2STR           | B50.3STR           | B500.2STI          | B500.3TCF          | B530TCR            | B55.2STR            | B55.2STAt           | B55.3STR            | B55.3TCR            | B65.2STR            | B65.2STAU           | B65.3STR            | B65.3TCR            | B650.3STF           | B650.3TCF           | B990.3STF            | B990.3STA | B990.3TCF            | B880.3STF           | B880.3VT0           | B1111.3STF          | B1111.3TC           | B1111.3PTA          | B1111.3ST/          | B1125                | B1130.3ST    | B1130.3TC                        | B1135.3STF          | B1135.3TC         | B1140.3ST            | B1145.3ST            |

# **Racing Pedestals**

Harken<sup>®</sup> racing pedestals allow crew members to trim from powerful standing positions. Customized to meet each vacht's requirements, these pedestal systems can be linked together, allowing crew to work in tandem to produce more power for faster, more efficient maneuvers.

### **Belt-Drive Pedestals**

Harken<sup>®</sup> belt-drive pedestals are molded from carbon fiber and epoxy. Prepred lamination and autoclave curing maximize stiffness and strength. Components are made of Hardkote-anodized aluminum and 17-4PH stainless steel. Roller bearings, thermoplastic belt sprockets, and carbon-fiber reinforced drive belts result in the lowest possible weight.

Below-deck belt-drive pedestals are also offered in abovedeck/middrive styles. These pedestals can be removed and winches converted to manual operation to make more room in the cockpit during a long-distance race or cruise.

### **MX** Pedestals

Harken's MX carbon pedestals drive winches on small Grand-Prix racers like GP42s, GP52s and Open 60s. The patented overdrive system features two chains inside the pedestal, eliminating the weight of an external overdrive box. Two drive sprockets allow trimmers to select the gear ratio, switching between the 1:1 direct-drive and the fast 1:3 drive chain without reversing grinding directions.



Pedestal Handles Pedestal handles are offered in aluminum or carbon fiber and in single-, double-, or SpeedGrip styles.

A SpeedGrip pedestal handle is a great solution for solo sailors because it frees up a hand for another task. SpeedGrip winch handles can be special-ordered from Harken.

MX Pedestal: The red shaft of the left button indicates the 1:3 overdrive is engaged. Every turn of the handle produces three turns of the winch.





1:3 chain engaged

1:1 chain engaged

Twisted **Belt-Drive Pedestal:** Harken's twisted beltdrive pedestal eliminates the weight of the 90° gear box when grinder faces fore and aft.

Straight Belt-Drive Pedestal: A disconnect lever for an abovedeck/mid-drive belt pedestal system is available.

Angled Belt-Drive Pedestal: An angled pedestal is customized to optimize the deck lavout or tailored to the grinder for maximum comfort.

# Racing Pedestal Drive Components

### **Gear Boxes**

The bevel gear box is the basic building block of belt-drive pedestal systems. The B606 gear box is designed for up to a six-man, three-pedestal input. The B701 accommodates up to an eight-man, three-plus pedestal input.

Gear box housings are CNC-machined from a solid piece of aluminum, Hardkote-anodized for strength and durability. Gears, shafts, and rollers are 17-4PH stainless steel and are lubricated in a sealed oil bath for minimal maintenance.

### **Drive Shafts**

Harken<sup>®</sup> offers two types of drive shafts. Extruded, splined, aluminum drive shafts may be cut to length. Carbon tubular drive shafts are available with bonded end fittings for U-joints or spherical CV joints. Shaft choice is determined by load, cost, and weight considerations. Your Harken<sup>®</sup> representative can provide details on the best drive shaft for your boat.

### Disconnects

System disconnects can be activated with either levers and control lines for hand operation, or a two-position push button for foot activation. The Harken foot button has fewer than 10 components, compared to almost 100 in other buttons, minimizing the possibility of losing or breaking parts. Foot button tops come in red, black or blue to distinguish functions above deck.

### **Support Shafts**

To space and support a gear box beneath a winch, Harken<sup>®</sup> supplies tubes for the B606 and B701 series gear boxes. Tubes are made to length from carbon fiber/ epoxy with bonded aluminum ends. B606

AMIN

Universal Joint

B701

B606 with overdrive



# **Powered Radial Winches**



Powered Radial winches allow crew to trim any size sail with the push of a button. Winches mount in minutes without removing the drum and can be quickly disassembled and serviced on deck. Seasonal maintenance is painless. Snap-fit socket, washer and screw top lift out as a unit, making reassembly fast and mistake free, with no leftover or misplaced parts to worry about.

### **DETAILS MAKE THE DIFFERENCE**

### **MULTIPLE STYLES AND FINISHES**

Winches available in aluminum alloy, chrome and in 2- and 3-speed self-tailing. Powered electric or hydraulic.

### EASY TO CONVERT, INSTALL, SERVICE

The same drilling pattern is used to mount manual and electric winches of the same size. Other manufacturers must uninstall the existing manual winch, fill the old holes, and drill new holes before converting to electric winch power.

Builders can pre-drill a 3.00 inch (7.6 cm) gear shaft hole into the deck to simplify future conversion from manual to electric. Harken offers removable gaskets to seal the holes until upgrades are made.

Patent-pending stud-bolt mounting option allows quick installation without removing the drum.

Socket, washer, and screw-top snap-fit together to simplify maintenance and for mistake-free assembly.

### **INTEGRATED STRIPPER ARM**

The strong, one-piece stripper arm completely covers the winch top for a stable platform that prevents fingers and clothing from catching in moving parts—an important safety feature, particularly when operating powered winches. The arm can be adjusted to multiple positions after the winch is mounted, and is shaped to smoothly feed line into and out of the self-tailing jaws.

1. Manual Override A Harken® locking handle inserted into an unloaded winch automatically disconnects the motor gear for manual operation.

Other Brands

1

Harker

### 2. More Efficient Operation

Harken motors attach to the central drive shaft and drive through the winch gears for a two-speed mechanical advantage—the low-power first gear for fast trimming, the higher-power second gear for fine-tuning loaded sheets. The result is reduced battery drain, allowing more efficient use of the motor.

### 3. Reliable Switches

Winches operate with waterproof switches and reliable easy-to-service electric controls.

### 4. Winch Load Controller

This electronic system protects Harken® winches from overload by temporarily interrupting the power supply to the winch. The Load Controller comes installed with standard overload settings, but can be customized by request.

# **Electric Radial**

Electric Radial winches let you relax in luxury and trim any size sail with the push of a button.

Lightweight aluminum or mirror-finished chrome drums, and high-strength composite self-tailing jaws and skirt save weight. Composite roller bearings reduce friction under load and don't require lubrication. Load-carrying gears and pins are 17-4PH stainless steel for strength and durability.

Manual Radials easily convert to power. They don't require an adapter plate, and the identical stud pattern means no filling old holes and drilling new ones. Boatbuilders can make upgrades even easier by precutting and sealing a 3.00 in (7.6 cm) drive-shaft hole into the boat.

Winches can be mounted vertically or horizontally and operate using waterproof switches located near the winch. A locking handle inserted into an unloaded winch automatically disconnects the motor gear for manual operation.

Size 40 available in 12 volt only. Sizes 46 through 80 available in 12 or 24 volts.



HORIZONTAL





Harken motors attach to the central drive shaft and drive through the winch gears for a two-speed mechanical advantage—the low power first gear for fast trimming, the higher power second gear for fine-tuning loaded sheets. The result is reduced battery drain, allowing more efficient use of the motor.

VERTICAL

|            |                                      |       | Ø                                      |       |                                        |        |      | We   | ight |      | Fast                                  | ener | Faste                            | eners  | Line                                  | entrv  |      |           |       |       |          |       |
|------------|--------------------------------------|-------|----------------------------------------|-------|----------------------------------------|--------|------|------|------|------|---------------------------------------|------|----------------------------------|--------|---------------------------------------|--------|------|-----------|-------|-------|----------|-------|
| Part       | Drur                                 | n (D) | Base                                   | e (B) | Heigh                                  | nt (H) |      | A    | -    | C    | Cir                                   | cle  | (SH o                            | r HH)  | heigh                                 | t (LE) | (    | Gear rati | 0     | Р     | ower rat | tio   |
| No.        | in                                   | mm    | in                                     | mm    | in                                     | mm     | lb   | kg   | lb   | kg   | in                                    | mm   | in                               | mm     | in                                    | mm     | 1    | 2         | 3     | 1     | 2        | 3     |
| Horizontal |                                      |       |                                        |       |                                        |        |      |      |      |      |                                       |      |                                  |        |                                       |        |      |           |       |       |          |       |
| 40.2STEH   | 3 <sup>1</sup> /8                    | 80    | 6 <sup>3</sup> /16                     | 157   | 67/8                                   | 175    | 29.7 | 13.5 | 33.2 | 15.1 | 47/8                                  | 123  | 5 x 1/4                          | 5 x 6  | <b>3</b> <sup>1</sup> / <sub>4</sub>  | 82     | 2.13 | 6.28      | _     | 13.50 | 39.90    | _     |
| 46.2STEH   | 37/8                                 | 100   | 7 <sup>1</sup> /4                      | 184   | 715/16                                 | 201    | 32.8 | 14.9 | 38.5 | 17.5 | 57/8                                  | 150  | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 3 <sup>9</sup> /16                    | 90     | 2.30 | 9.17      | _     | 11.70 | 46.50    | _     |
| 50.2STEH   | 45/16                                | 110   | 75/8                                   | 194   | 81/8                                   | 206    | 37.1 | 16.8 | 44.2 | 20.0 | 5 <sup>7</sup> /8                     | 150  | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 37/8                                  | 97     | 2.40 | 10.90     | _     | 10.90 | 50.40    | _     |
| 60.2STEH   | 4 <sup>3</sup> /4                    | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 46.4 | 21.0 | 54.5 | 24.7 | 8                                     | 204  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 4 <sup>9</sup> / <sub>16</sub>        | 116    | 4.80 | 14.40     | _     | 20.30 | 61.00    | —     |
| 60.3STEH   | <b>4</b> <sup>3</sup> / <sub>4</sub> | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 49.7 | 22.5 | 57.8 | 26.2 | 8                                     | 204  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 4 <sup>9</sup> / <sub>16</sub>        | 116    | 2.20 | 4.80      | 14.40 | 9.20  | 20.30    | 61.00 |
| 70.2STEH   | 5 <sup>1</sup> /8                    | 130   | 97/16                                  | 240   | <b>10</b> <sup>1</sup> / <sub>16</sub> | 256    | 48.8 | 22.1 | 57.2 | 25.9 | 81/8                                  | 205  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115    | 5.70 | 18.50     | _     | 22.20 | 72.00    | —     |
| 70.3STEH   | 5 <sup>1</sup> /8                    | 130   | 97/16                                  | 240   | <b>10</b> <sup>1</sup> / <sub>16</sub> | 256    | 52.1 | 23.6 | 60.5 | 27.4 | 81/8                                  | 205  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115    | 2.30 | 5.70      | 18.50 | 9.00  | 22.20    | 72.00 |
| 80.2STEH   | 67/8                                 | 175   | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287   | <b>12</b> <sup>9</sup> /16             | 320    | 70.6 | 32.0 | 87.2 | 39.5 | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x <sup>3</sup> /8              | 8 x 10 | 67/16                                 | 164    | 9.40 | 28.10     | —     | 32.10 | 93.00    | —     |
| 80.3STEH   | 67/8                                 | 175   | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287   | <b>12</b> <sup>9</sup> /16             | 320    | 74.0 | 33.5 | 90.5 | 41.0 | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x <sup>3</sup> /8              | 8 x 10 | 67/16                                 | 164    | 2.23 | 9.40      | 28.10 | 6.50  | 32.10    | 93.00 |
| Vertical   |                                      |       |                                        |       |                                        |        |      |      |      |      |                                       |      |                                  |        |                                       |        |      |           |       |       |          |       |
| 46.2STEV   | 37/8                                 | 100   | 7 <sup>1</sup> /4                      | 184   | 715/16                                 | 201    | 36.9 | 16.7 | 42.6 | 19.3 | 57/8                                  | 150  | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | <b>3</b> <sup>9</sup> / <sub>16</sub> | 90     | 2.30 | 9.17      | _     | 11.70 | 46.50    | —     |
| 50.2STEV   | 45/16                                | 110   | 7 <sup>5</sup> /8                      | 194   | 81/8                                   | 206    | 38.6 | 17.5 | 45.7 | 20.7 | 57/8                                  | 150  | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 37/8                                  | 97     | 2.40 | 10.90     | _     | 10.90 | 50.40    | —     |
| 60.2STEV   | <b>4</b> <sup>3</sup> / <sub>4</sub> | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 47.9 | 21.7 | 56.1 | 25.4 | 8                                     | 204  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 4 <sup>9</sup> / <sub>16</sub>        | 116    | 4.80 | 14.40     | _     | 20.30 | 61.00    | —     |
| 60.3STEV   | 4 <sup>3</sup> /4                    | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 51.2 | 23.2 | 59.4 | 26.9 | 8                                     | 204  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 49/16                                 | 116    | 2.20 | 4.80      | 14.40 | 9.20  | 20.30    | 61.00 |
| 70.2STEV   | 5 <sup>1</sup> /8                    | 130   | 97/16                                  | 240   | 101/16                                 | 256    | 50.3 | 22.8 | 58.7 | 26.6 | 81/8                                  | 205  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115    | 5.70 | 18.50     | —     | 22.20 | 72.00    | —     |
| 70.3STEV   | 5 <sup>1</sup> /8                    | 130   | 97/16                                  | 240   | 101/16                                 | 256    | 53.6 | 24.3 | 62.0 | 28.1 | 81/8                                  | 205  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115    | 2.30 | 5.70      | 18.50 | 9.00  | 22.20    | 72.00 |
| 80.2STEV   | 67/8                                 | 175   | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287   | 12 <sup>9</sup> /16                    | 320    | 72.2 | 32.7 | 88.7 | 40.2 | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x <sup>3</sup> /8              | 8 x 10 | 67/16                                 | 164    | 9.40 | 28.10     | _     | 32.10 | 93.00    | —     |
| 80.3STEV   | 67/2                                 | 175   | 115/16                                 | 287   | 129/16                                 | 320    | 75.5 | 34.2 | 92.1 | 417  | Q3/16                                 | 233  | 8 x 3/0                          | 8 x 10 | 67/16                                 | 164    | 2 23 | 9 40      | 28 10 | 6 50  | 32 10    | 93 00 |



### Dimensions

| Part     | E                                    |    | F                                    | -   | G                                    | ì   | L                  | -   | 1                                    | N   |
|----------|--------------------------------------|----|--------------------------------------|-----|--------------------------------------|-----|--------------------|-----|--------------------------------------|-----|
| No.      | in                                   | mm | in                                   | mm  | in                                   | mm  | in                 | mm  | in                                   | mm  |
| 40.2STEH | <b>1</b> <sup>3</sup> / <sub>4</sub> | 43 | 61/8                                 | 155 | 87/8                                 | 227 | _                  | —   | —                                    | _   |
| 46.2STEH | <b>1</b> <sup>3</sup> / <sub>4</sub> | 43 | 61/8                                 | 155 | 87/8                                 | 227 | —                  | —   | —                                    | _   |
| 46.2STEV | —                                    | —  | —                                    | _   | —                                    | —   | 15 <sup>3</sup> /8 | 391 | <b>6</b> <sup>1</sup> / <sub>8</sub> | 157 |
| 50.2STEH | <b>1</b> <sup>3</sup> / <sub>4</sub> | 43 | <b>6</b> <sup>1</sup> / <sub>8</sub> | 155 | <b>9</b> <sup>5</sup> / <sub>8</sub> | 244 | _                  | —   | —                                    | _   |
| 50.2STEV | —                                    | —  | _                                    | _   | —                                    | —   | 15 <sup>3</sup> /8 | 391 | 6 <sup>1</sup> /8                    | 157 |
| 60.2STEH | <b>1</b> <sup>3</sup> / <sub>4</sub> | 43 | <b>6</b> <sup>1</sup> / <sub>8</sub> | 155 | <b>9</b> <sup>5</sup> / <sub>8</sub> | 244 | _                  | —   | —                                    | _   |
| 60.2STEV | —                                    | —  | _                                    | _   | —                                    | —   | 15 <sup>3</sup> /8 | 391 | 6 <sup>1</sup> /8                    | 157 |
| 60.3STEH | <b>1</b> <sup>3</sup> / <sub>4</sub> | 43 | <b>6</b> <sup>1</sup> / <sub>8</sub> | 155 | <b>9</b> <sup>5</sup> / <sub>8</sub> | 244 | _                  | —   | —                                    | _   |
| 60.3STEV | —                                    | —  | _                                    | _   | _                                    | —   | 15 <sup>3</sup> /8 | 391 | 6 <sup>1</sup> /8                    | 157 |
| 70.2STEH | <b>1</b> <sup>3</sup> / <sub>4</sub> | 43 | 61/8                                 | 155 | 95/8                                 | 244 | —                  | —   | —                                    | _   |
| 70.2STEV | —                                    | —  | _                                    | _   | —                                    | —   | 15 <sup>3</sup> /8 | 391 | <b>6</b> <sup>1</sup> / <sub>8</sub> | 157 |
| 70.3STEH | <b>1</b> <sup>3</sup> / <sub>4</sub> | 43 | 61/8                                 | 155 | 95/8                                 | 244 | —                  | —   | —                                    | _   |
| 70.3STEV | —                                    | —  | —                                    | _   | —                                    | —   | 15 <sup>3</sup> /8 | 391 | 6 <sup>1</sup> /8                    | 157 |
| 80.2STEH | 33/16                                | 81 | 811/16                               | 221 | 1011/16                              | 272 | _                  | —   | _                                    | _   |
| 80.2STEV | _                                    | _  | _                                    | _   | _                                    | _   | 16 <sup>3</sup> /4 | 425 | 65/16                                | 160 |
| 80.3STEH | 33/16                                | 81 | 811/16                               | 221 | 1011/16                              | 272 | _                  | _   | _                                    | _   |
| 80.3STEV | _                                    | _  | _                                    |     | _                                    | _   | 16 <sup>3</sup> /4 | 425 | 65/16                                | 160 |

# WINCH

### CAN I USE A WINCH HANDLE TO MANUALLY OPERATE MY ELECTRIC WINCH?

Yes. Inserting the winch handle into an unloaded winch automatically disconnects the electric motor and allows you to use 1st and 2nd speeds just like a manual winch. This is important if you've lost power on the boat. If power is restored, the lockout prevents the winch handle from turning.

|             | Motor con             | iguration       | Current              | voltage               | Power | in Watts |
|-------------|-----------------------|-----------------|----------------------|-----------------------|-------|----------|
| Winch size  | Horizontal (STEH)     | Vertical (STEV) | 12 V                 | 24 V                  | 12 V  | 24 V     |
| 40.2        | V                     | _               | ~                    | _                     | 700   | _        |
| 46.2        | <ul> <li>✓</li> </ul> | V               | <b>v</b>             | <ul> <li>✓</li> </ul> | 700   | 900      |
| 50.2        | V                     | ~               | ~                    | ~                     | 1500  | 2000     |
| 60.2 - 60.3 | V                     | ~               | ~                    | ~                     | 1500  | 2000     |
| 70.2 - 70.3 | V                     | ~               | ~                    | ~                     | 1500  | 2000     |
| 80.2 - 80.3 | V                     | V               | <ul> <li></li> </ul> | V                     | 1500  | 2000     |

### **Wire Gauges**

|               |                    |                      |                  |                       | Total distance b  | etween winch and      | battery            |                       |                    |
|---------------|--------------------|----------------------|------------------|-----------------------|-------------------|-----------------------|--------------------|-----------------------|--------------------|
| Winch<br>size | Current<br>voltage | Under 16.4 ft<br>AWG | Under 5 m<br>mm² | 16.4 - 32.8 ft<br>AWG | 5 m - 10 m<br>mm² | 32.8 - 49.2 ft<br>AWG | 10 m - 15 m<br>mm² | 49.2 - 65.6 ft<br>AWG | 15 m - 20 m<br>mm² |
| 40.2          | 12 V               | 2                    | 32               | 0                     | 50                | 00                    | 70                 | 000                   | 95                 |
| 46.2          | 12 V               | 2                    | 32               | 0                     | 50                | 00                    | 70                 | 000                   | 95                 |
| 46.2          | 24 V               | 5                    | 16               | 3                     | 25                | 2                     | 35                 | 0                     | 50                 |
| 50.2          | 12 V               | 2                    | 32               | 0                     | 50                | 00                    | 70                 | 000                   | 95                 |
| 50.2          | 24 V               | 5                    | 16               | 3                     | 25                | 2                     | 35                 | 0                     | 50                 |
| 60.2 - 60.3   | 12 V               | 2                    | 32               | 0                     | 50                | 00                    | 70                 | 000                   | 95                 |
| 60.2 - 60.3   | 24 V               | 5                    | 16               | 3                     | 25                | 2                     | 35                 | 0                     | 50                 |
| 70.2 - 70.3   | 12 V               | 2                    | 32               | 0                     | 50                | 00                    | 70                 | 000                   | 95                 |
| 70.2 - 70.3   | 24 V               | 5                    | 16               | 3                     | 25                | 2                     | 35                 | 0                     | 50                 |
| 80.2 - 80.3   | 12 V               | 2                    | 32               | 0                     | 50                | 00                    | 70                 | 000                   | 95                 |
| 80.2 - 80.3   | 24 V               | 5                    | 16               | 3                     | 25                | 2                     | 35                 | 0                     | 50                 |

# **UniPower Radial**

The UniPower is a single-speed winch that combines the advantages of a low-profile manual winch with the power of a 12-volt or 24-volt, low-amp-draw motor. What makes it unique is that the motor is partially imbedded inside the drum, so that it extends only 4 1/8 inches (105 mm) below the winch base—a critical feature for small boats where space under the cabin top is limited.

Winch drums come in durable lightweight aluminum or mirrorfinished chrome. High-strength composite self-tailing jaws and skirt save weight. Composite roller bearings reduce friction under load and don't require lubrication. The stripper arm and load-carrying gears on both aluminum and chrome versions are 17-4PH stainless steel for strength and durability.

The UniPower is designed with a maximum pull of 900 kg (1,984 lb). Harken's WLC200R load controller keeps the winch from exceeding this limit. In case the boat loses power, the winch can be operated manually using a winch handle.

The UniPower winch package includes a winch, one-speed control box, WLC200R Harken load controller, and a waterproof switch.





### I'D LIKE TO MOUNT AN ELECTRIC WINCH ON THE CABIN TOP, BUT IT LIMITS SPACE BELOW. ANY SUGGESTIONS?

The motor on the Harken UniPower winch is partially embedded inside the drum and extends only 4 1/8 inches (105 mm) below the base. This gives crew more headroom as well as space to move around.

|        |      | ĺ     | )                                    |       |                                      | He    | ight              |       |      | We   | ight |      | Lin                                                         | e Ø    | Fast  | ener | Faste   | ners  | Line   | entry  |       |       |
|--------|------|-------|--------------------------------------|-------|--------------------------------------|-------|-------------------|-------|------|------|------|------|-------------------------------------------------------------|--------|-------|------|---------|-------|--------|--------|-------|-------|
| Part   | Drur | n (D) | Base                                 | e (B) | Abov                                 | edeck | Belov             | wdeck | - 1  | 1    | (    | C    | (Min -                                                      | Max)   | Ciı   | cle  | (SH o   | r HH) | heigh  | t (LE) | Gear  | Power |
| No.    | in   | mm    | in                                   | mm    | in                                   | mm    | in                | mm    | lb   | kg   | lb   | kg   | in                                                          | mm     | in    | mm   | in      | mm    | in     | mm     | ratio | ratio |
| 900UPW | 37/8 | 100   | <b>7</b> <sup>1</sup> / <sub>2</sub> | 190   | <b>8</b> <sup>1</sup> / <sub>2</sub> | 215   | 4 <sup>1</sup> /8 | 105   | 26.5 | 12.0 | 32.0 | 14.5 | <sup>5</sup> / <sub>16</sub> - <sup>9</sup> / <sub>16</sub> | 8 - 14 | 65/16 | 160  | 5 x 1/4 | 5 x 6 | 315/16 | 100    | 100   | 9.75  |

# Electric Components

Each electric winch requires one control box, one breaker, and two switches. Harken recommends adding an optional load controller. For winches larger than B980, please contact Harken. Hydraulic units require two switches.

### Switches

Harken<sup>®</sup> offers simple, waterproof switches for electric and hydraulic winches. Order two switches for each winch.

### **Electrical Control Boxes**

Electric control boxes contain solenoids to operate the winches. Based on winch size and voltage, select one control box for each electric winch.

### **High-Amperage Circuit Breakers**

Harken<sup>®</sup> offers five panel-mount, high-amperage circuit breakers. They are compact, waterproof, weather-resistant, and ignition-protected. Circuit breakers are available for 12 or 24 volts DC systems.

### **Load Controllers**

The winch load controller is an electronic system that protects Harken<sup>®</sup> winches from overload by temporarily interrupting the power supply to the winch. The Load Controller comes installed with standard overload settings, but can be customized on request. Use WLC200R with Radial winches. For further information contact Harken<sup>®</sup> Italy.



BRS104/P

BRS102/P

BRS102/S

HCP1717

HCP1718

HCP1719

HCP1720



BEB500.12.1 BEB1000.12.1 BEB1000.24.1





# Q&A

### DOES IT MATTER WHETHER I HAVE A 12- OR 24-VOLT SYSTEM?

Yes. Check your system and specify voltage before ordering. A 24-volt system requires half as much amperage, so the wire and circuit breaker (fuse) can have lower amperage rating. Larger winches, such as the 1110, 1120 and 1140, are available in 24-volt. Most boats in the USA are 12-volt. Boats using 24-volt systems are more common in Europe.

### **Deck Switches**

| Part        |                       | Len    | igth | Wi                              | dth | He                            | ight | We  | ight |
|-------------|-----------------------|--------|------|---------------------------------|-----|-------------------------------|------|-----|------|
| No.         | Description           | in     | mm   | in                              | mm  | in                            | mm   | 0Z  | g    |
| BR\$102/P/S | Remote switch w/guard | 211/16 | 68   | 2 <sup>11</sup> / <sub>16</sub> | 68  | <sup>13</sup> / <sub>16</sub> | 21   | 4.5 | 128  |
| BRS104/P    | Remote switch w/guard | 33/8   | 85   | 3                               | 76  | 3/4                           | 19   | 3.4 | 95   |
|             |                       |        |      |                                 |     |                               |      |     |      |

### **Electric Control Boxes**

| Part         |         | Ler                                  | ngth | Wi                             | dth | Hei                                    | ight | We   | ight | Use with                                                    |
|--------------|---------|--------------------------------------|------|--------------------------------|-----|----------------------------------------|------|------|------|-------------------------------------------------------------|
| No.          | Voltage | in                                   | mm   | in                             | mm  | in                                     | mm   | 0Z   | g    | winch                                                       |
| BEB500.12.1  | 12      | 5 <sup>1</sup> /2                    | 140  | 35/32                          | 80  | 411/32                                 | 110  | 35.3 | 1000 | Classic: B40.2STEH                                          |
| BEB1000.12.1 | 12      | 5 <sup>1</sup> /2                    | 140  | 3 <sup>5</sup> / <sub>32</sub> | 80  | <b>4</b> <sup>11</sup> / <sub>32</sub> | 110  | 35.3 | 1000 | Radial: 40.2STE to 70.2STE<br>Classic: B44.2STE to 980.2STE |
| BEB1000.24.1 | 24      | <b>5</b> <sup>1</sup> / <sub>2</sub> | 140  | 35/32                          | 80  | 411/32                                 | 110  | 35.3 | 1000 | Radial: 46.2STE to 70.2STE<br>Classic: B44 2STE to 980 2STE |

### **Circuit Breakers**

| Max<br>amps | Power<br>watts                | Use with<br>winch                                                                                                         |
|-------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|             |                               |                                                                                                                           |
|             |                               |                                                                                                                           |
| 80          | 2000                          | Radial: 46.2STE to 70.2STE<br>Classic: B44.2STE to B980.2STE                                                              |
|             |                               |                                                                                                                           |
| 80          | 500                           | Radial: 40.2STE & 46.2STE<br>Classic: B40.2STE                                                                            |
| 100         | 1500                          | Classic: B44.2STE to B60.2STE                                                                                             |
| 150         | 1500                          | Classic: B70.2STE to B980.2STE                                                                                            |
| 135         | 1500                          | Radial: 50.2STE to 70.2STE                                                                                                |
|             | 80<br>80<br>100<br>150<br>135 | 80         2000           80         500           100         1500           150         1500           135         1500 |

### **Load Controllers**

| Part             | Use with |         | Motor power | Cut-of              | f load*   | Len                                    | igth | Wi                                    | dth | Hei                      | ight | We  | ight |
|------------------|----------|---------|-------------|---------------------|-----------|----------------------------------------|------|---------------------------------------|-----|--------------------------|------|-----|------|
| No.              | winch    | Voltage | watts       | lb                  | kg        | in                                     | mm   | in                                    | mm  | in                       | mm   | OZ  | g    |
| Radial           |          |         |             |                     |           |                                        |      |                                       |     |                          |      |     |      |
| WLC200R.40.12    | 40       | 12      | 700         | 1320                | 600       | 311/32                                 | 85   | 27/32                                 | 56  | 13/8                     | 35   | 7.4 | 210  |
| WLC200R.46.12    | 46       | 12      | 700         | 1740                | 790       | <b>3</b> <sup>11</sup> / <sub>32</sub> | 85   | 27/32                                 | 56  | 13/8                     | 35   | 7.4 | 210  |
| WLC200R.46.24    | 46       | 24      | 900         | 1740                | 790       | <b>3</b> <sup>11</sup> / <sub>32</sub> | 85   | 27/32                                 | 56  | 13/8                     | 35   | 7.4 | 210  |
| WLC200R.50.12    | 50       | 12      | 1500        | 1880                | 850       | 3 <sup>11</sup> / <sub>32</sub>        | 85   | 27/32                                 | 56  | 1 <sup>3</sup> /8        | 35   | 7.4 | 210  |
| WLC200R.50.24    | 50       | 24      | 2000        | 1880                | 850       | 3 <sup>11</sup> / <sub>32</sub>        | 85   | <b>2</b> <sup>7</sup> / <sub>32</sub> | 56  | <b>1</b> <sup>3</sup> /8 | 35   | 7.4 | 210  |
| WLC200R.60-70.12 | 60/70    | 12      | 1500        | 2535/3530           | 1150/1600 | 3 <sup>11</sup> / <sub>32</sub>        | 85   | <b>2</b> <sup>7</sup> / <sub>32</sub> | 56  | 1 <sup>3</sup> /8        | 35   | 7.4 | 210  |
| WLC200R.60-70.24 | 60/70    | 12      | 2000        | 2535/3530           | 1150/1600 | <b>3</b> <sup>11</sup> / <sub>32</sub> | 85   | 27/32                                 | 56  | 13/8                     | 35   | 7.4 | 210  |
| Classic          |          |         |             |                     |           |                                        |      |                                       |     |                          |      |     |      |
| WLC200.12.1      | B40      | 12      | 500         | 1210                | 550       | <b>3</b> <sup>11</sup> / <sub>32</sub> | 85   | 27/32                                 | 56  | 13/8                     | 35   | 7.4 | 210  |
| WLC200.12.2      | B44/B46  | 12      | 1500        | 1985/2051           | 900/930   | <b>3</b> <sup>11</sup> / <sub>32</sub> | 85   | 27/32                                 | 56  | 13/8                     | 35   | 7.4 | 210  |
| WLC200.24.1      | B44/B46  | 24      | 2000        | 1985/2051           | 900/930   | <b>3</b> <sup>11</sup> / <sub>32</sub> | 85   | 2 <sup>7</sup> /32                    | 56  | 1 <sup>3</sup> /8        | 35   | 7.4 | 210  |
| WLC200.12.3      | B48/B53  | 12      | 1500        | 2205/2425           | 1000/1100 | 311/32                                 | 85   | 27/32                                 | 56  | 1 <sup>3</sup> /8        | 35   | 7.4 | 210  |
| WLC200.24.2      | B48/B53  | 24      | 2000        | 2205/2425 1000/1100 |           | 3 <sup>11</sup> /32                    | 85   | 2 <sup>7</sup> /32                    | 56  | 1 <sup>3</sup> /8        | 35   | 7.4 | 210  |

\*Contact Harken Italy for customized load presets

# Electric Systems

Battery voltage and winch size determine which control boxes, circuit breakers, and load controllers you should use. For winches size B1110 and above, contact Harken for appropriate components.

### **Electric Winch Kits**

Kits are offered for the most common winches. Kits include the winch and a horizontal motor, a control box, a circuit breaker, and two BRS104/P switches. Please include the full part number of the winch, including materials code and voltage, when ordering a kit.





| Winch Control box Circuit breaker (optional)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| size 12 V 24 V 12 V 24 V 12 V 24 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kit**            |
| Radial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| <b>40.2STE</b> BEB1000.12.1 — HCP1717 — WLC200R.40.12 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K40.2STE         |
| 46.2STE BEB1000.12.1 BEB1000.24.1 HCP1717 HCP1717 WLC200R.46.12 WLC200R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.24 K46.2STE   |
| 50.2STE BEB1000.12.1 BEB1000.24.1 HCP1720 HCP1717 WLC200R.50.12 WLC200R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.24 K50.2STE   |
| 60.2STE BEB1000.12.1 BEB1000.24.1 HCP1720 HCP1717 WLC200R.60-70.12 WLC200R.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-70.24 K60.2STE |
| <b>60.3STE</b> BEB1000.12.1 BEB1000.24.1 HCP1720 HCP1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K60.3STE         |
| <b>70.2STE</b> BEB1000.12.1 BEB1000.24.1 HCP1720 HCP1717 WLC200R.60-70.12 WLC200R.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D-70.24 K70.2STE |
| <b>70.3STE</b> BEB1000.12.1 BEB1000.24.1 HCP1720 HCP1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K70.3STE         |
| <b>80.2STE</b> BEB1000.12.1 BEB1000.24.1 HCP1720 HCP1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K80.2STE         |
| <b>80.3STE</b> BEB1000.12.1 BEB1000.24.1 HCP1720 HCP1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K80.3STE         |
| Classic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| <b>B40.2STE</b> BEB500.12.1 — HCP1717 — WLC200.12.1 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BK40.2STE        |
| B44.2STE BEB1000.12.1 BEB1000.24.1 HCP1718 HCP1716 WLC200.12.2 WLC200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.1 BK44.2STE   |
| B46.2STE BEB1000.12.1 BEB1000.24.1 HCP1718 HCP1716 WLC200.12.2 WLC200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.1 BK46.2STE   |
| B48.2STE BEB1000.12.1 BEB1000.24.1 HCP1718 HCP1716 WLC200.12.3 WLC200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.2 BK48.2STE   |
| <b>B53.2STE</b> BEB1000.12.1 BEB1000.24.1 HCP1718 HCP1716 WLC200.12.3 WLC200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.2 BK53.2STE   |
| B60.2STE BEB1000.12.1 BEB1000.24.1 HCP1718 HCP1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BK60.2STE        |
| <b>B70.2STE</b> BEB1000.12.1 BEB1000.24.1 HCP1719 HCP1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BK70.2STE        |
| <b>B74.2STE</b> BEB1000.12.1 BEB1000.24.1 HCP1719 HCP1717 — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BK74.2STE        |
| B980.2STE         BEB1000.12.1         BEB1000.24.1         HCP1719         HCP1717         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         … <th>—</th> | —                |
| B980.3STE         BEB1000.12.1         BEB1000.24.1         HCP1719         HCP1717         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         …         …         …         …         …         …         …         … <th>_</th> | _                |

\*Load controller not included in kit \*\*Kits not available from all dealers

# **Hydraulic Radial**

Hydraulic Radial winches let you relax in luxury and trim any size sail with the push of a button.

Lightweight aluminum or mirror-finished chrome drums, and high-strength composite self-tailing jaws and skirt save weight. Composite roller bearings reduce friction under load and don't require lubrication. Load-carrying gears and pins are 17-4PH stainless steel for strength and durability.

Manual Radials easily convert to power. They don't require an adapter plate and the identical stud pattern means no filling and drilling holes. Boatbuilders can make future upgrades even easier by precutting and sealing a 3.00 inch (7.6 cm) drive shaft hole.

Winches mount vertically and operate using waterproof switches located near the winch. A locking handle inserted into an unloaded winch automatically disconnects the motor gear for manual operation.



Sunreef 70

Harken motors attach to the central drive shaft and drive through the winch gears for a two-speed mechanical advantage—the lowpower first gear for fast trimming, the higher-power second gear for fine-tuning loaded sheets. This results in a smaller, more efficient motor that saves weight and cost.

| Part    | Line<br>heigh                         | entry<br>t (LE) |                                      | L   |                   | N   |
|---------|---------------------------------------|-----------------|--------------------------------------|-----|-------------------|-----|
| No.     | in                                    | mm              | in                                   | mm  | in                | mm  |
| 46.2STH | <b>3</b> <sup>9</sup> / <sub>16</sub> | 90              | <b>9</b> <sup>1</sup> / <sub>4</sub> | 234 | 5 <sup>1</sup> /8 | 130 |
| 50.2STH | 37/8                                  | 97              | <b>9</b> <sup>1</sup> / <sub>4</sub> | 234 | 5 <sup>1</sup> /8 | 130 |
| 60.2STH | 49/16                                 | 116             | <b>9</b> <sup>1</sup> / <sub>4</sub> | 234 | 5 <sup>1</sup> /8 | 130 |
| 60.3STH | 49/16                                 | 116             | <b>9</b> <sup>1</sup> / <sub>4</sub> | 234 | 5 <sup>1</sup> /8 | 130 |
| 70.2STH | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115             | <b>9</b> <sup>1</sup> / <sub>4</sub> | 234 | 5 <sup>1</sup> /8 | 130 |
| 70.3STH | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115             | <b>9</b> <sup>1</sup> / <sub>4</sub> | 234 | 5 <sup>1</sup> /8 | 130 |
| 80.2STH | 67/16                                 | 164             | <b>9</b> <sup>7</sup> / <sub>8</sub> | 250 | 5 <sup>1</sup> /8 | 130 |
| 80.3STH | 67/16                                 | 164             | <b>9</b> <sup>7</sup> / <sub>8</sub> | 250 | 5 <sup>1</sup> /8 | 130 |



|         |                                      | ļ     | Ø                                      |       |                                        |        |      | We   | ight |      | Lin                                                         | e Ø     | Fast                                  | ener | Faste                | eners  |      |           |       |       |         |       |
|---------|--------------------------------------|-------|----------------------------------------|-------|----------------------------------------|--------|------|------|------|------|-------------------------------------------------------------|---------|---------------------------------------|------|----------------------|--------|------|-----------|-------|-------|---------|-------|
| Part    | Drun                                 | n (D) | Base                                   | e (B) | Heigh                                  | nt (H) |      | A    | (    | C    | (Min -                                                      | Max)    | cir                                   | cle  | (SH o                | r HH)  | G    | lear rati | 0     | Po    | wer rat | io    |
| No.     | in                                   | mm    | in                                     | mm    | in                                     | mm     | lb   | kg   | lb   | kg   | in                                                          | mm      | in                                    | mm   | in                   | mm     | 1    | 2         | 3     | 1     | 2       | 3     |
| 46.2STH | 37/8                                 | 100   | 7 <sup>1</sup> /4                      | 184   | 715/16                                 | 201    | 28.0 | 12.7 | 33.8 | 15.3 | <sup>5</sup> / <sub>16</sub> - <sup>9</sup> / <sub>16</sub> | 8 - 14  | 5 <sup>7</sup> /8                     | 150  | 5 x <sup>5</sup> /16 | 5 x 8  | 2.30 | 9.17      | _     | 11.70 | 46.50   | —     |
| 50.2STH | 45/16                                | 110   | 75/8                                   | 194   | 81/8                                   | 206    | 29.8 | 13.5 | 36.9 | 16.7 | <sup>5</sup> / <sub>16</sub> - <sup>9</sup> / <sub>16</sub> | 8 - 14  | 57/8                                  | 150  | 5 x 5/16             | 5 x 8  | 2.40 | 10.90     | _     | 10.90 | 50.40   | —     |
| 60.2STH | <b>4</b> <sup>3</sup> / <sub>4</sub> | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 39.1 | 17.7 | 47.2 | 21.4 | <sup>5</sup> / <sub>16</sub> - <sup>5</sup> / <sub>8</sub>  | 8 - 16  | 8                                     | 204  | 6 x <sup>5</sup> /16 | 6 x 8  | 4.80 | 14.40     | _     | 20.30 | 61.00   | _     |
| 60.3STH | <b>4</b> <sup>3</sup> / <sub>4</sub> | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 42.4 | 19.2 | 50.6 | 22.9 | <sup>5</sup> / <sub>16</sub> - <sup>5</sup> / <sub>8</sub>  | 8 - 16  | 8                                     | 204  | 6 x <sup>5</sup> /16 | 6 x 8  | 2.20 | 4.80      | 14.40 | 9.20  | 20.30   | 61.00 |
| 70.2STH | 5 <sup>1</sup> /8                    | 130   | <b>9</b> <sup>7</sup> / <sub>16</sub>  | 240   | <b>10</b> <sup>1</sup> / <sub>16</sub> | 256    | 41.5 | 18.8 | 49.9 | 22.6 | <sup>3</sup> /8 - <sup>11</sup> / <sub>16</sub>             | 10 - 18 | <b>8</b> <sup>1</sup> / <sub>8</sub>  | 205  | 6 x <sup>5</sup> /16 | 6 x 8  | 5.70 | 18.50     | _     | 22.20 | 72.00   | —     |
| 70.3STH | 5 <sup>1</sup> /8                    | 130   | <b>9</b> <sup>7</sup> / <sub>16</sub>  | 240   | <b>10</b> <sup>1</sup> / <sub>16</sub> | 256    | 44.8 | 20.3 | 53.2 | 24.1 | <sup>3</sup> /8 - <sup>11</sup> / <sub>16</sub>             | 10 - 18 | <b>8</b> <sup>1</sup> / <sub>8</sub>  | 205  | 6 x <sup>5</sup> /16 | 6 x 8  | 2.30 | 5.70      | 18.50 | 9.00  | 22.20   | 72.00 |
| 80.2STH | 67/8                                 | 175   | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287   | <b>12</b> <sup>9</sup> /16             | 320    | 66.4 | 30.1 | 83.0 | 37.6 | <sup>3</sup> /8 - <sup>13</sup> / <sub>16</sub>             | 10 - 20 | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x <sup>3</sup> /8  | 8 x 10 | 9.40 | 28.10     | _     | 32.10 | 93.00   | —     |
| 80.3STH | 67/8                                 | 175   | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287   | 12 <sup>9</sup> /16                    | 320    | 69.8 | 31.6 | 86.3 | 39.1 | <sup>3</sup> /8 - <sup>13</sup> / <sub>16</sub>             | 10 - 20 | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x <sup>3</sup> /8  | 8 x 10 | 2.23 | 9.40      | 28.10 | 6.50  | 32.10   | 93.00 |

# Captive Reel Winches

Harken<sup>®</sup> Captive Reel winches, produced by James Nilsson Winchmakers, provide a convenient pushbutton solution for megayachts and large cruising boats. Featuring a one- or two-speed hydraulic motor, they are noted for their reliable design, detailed construction, and guality materials.

### **Components**

Modular construction allows servicing without removing the winch assembly. The Hardkoteanodized frame and components are marine-grade 5083 and 6000 aluminum. Lubricated bearings are sealed and dry-run bearings are made with low-maintenance synthetics.

### Gearbox

The hub-drive gearbox inside the 316 stainless steel drum uses precision gearing to time the lead screw for exact line placement.

### Switches

Proximity switches prevent over-travel. Automatic failsafe switches shut down the winch completely.

### Valve block and tensioner

Mounted onto or independently from the winch, the valve block incorporates a counterbalance valve, brake operating shuttle, and line tensioner. The tensioner spools line onto the drum evenly and keeps it clear of the winch housing. Precise gearing provides even line take-up and release

Automatic disc brake between motor and gearbox is always locked unless system is activated

Choice of port or starboard lead exits

Line tensioner removes slack when spooling and unspooling



Redundant proximity switches prevent over-travel

Lead screw and sheave allow line to lie smoothly on the drum even when slack



### **Power/Sheet Size Guide**

| Part<br>No.         Pull         Hold         Min         Max         Max pressure         Flow rate           No.         Ib         kg         in         mm         in         mm         PSI         Bar         gal/min         L/min           CR22SL         3300         1500         3900         1800         ½         12         %is         14         2247         155         14.74         56           CR27SL         5292         2400         6615         3000         ½         12         %s         16         3045         210         15.79         60           CR33SLLT         2205         1000         2646         1200         ½         12         %s         16         2465         170         10.00         38           CR33SL         8820         4000         11025         5000         ½         12 <sup>13</sup> / <sub>16</sub> 20         3480         240         23.68         90           CR33SLHD         11025         5000         15436         7000         ½         12 <sup>13</sup> / <sub>16</sub> 20         2683         185         36.84         140           CR33SLHD         11025         5000         14000                                                     |          |       |       |       |       |     | Lin | e Ø                                   |    |        |        |         |       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------|-------|-------|-------|-----|-----|---------------------------------------|----|--------|--------|---------|-------|
| No.         Ib         kg         in         mm         in         mm         PSI         Bar         gal/min         L/min           CR22SL         3300         1500         3900         1800         ½         12         %6         14         2247         155         14.74         56           CR27SL         5292         2400         6615         3000         ½         12         %8         16         3045         210         15.79         60           CR33SLLT         2205         1000         2646         1200         ½         12         %8         16         2465         170         10.00         38           CR33SL         8820         4000         11025         5000         ½         12 <sup>13</sup> / <sub>16</sub> 20         3480         240         23.68         90           CR33SLHD         11025         5000         ½         12 <sup>13</sup> / <sub>16</sub> 20         2683         185         36.84         140           CR33SLHD         11025         5000         ½         12 <sup>13</sup> / <sub>16</sub> 20         2683         185         36.84         140                                                                                                     | Part     | P     | ull   | Ho    | bld   | N   | lin | M                                     | ax | Max pr | essure | Flow    | rate  |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | No.      | lb    | kg    | lb    | kg    | in  | mm  | in                                    | mm | PSI    | Bar    | gal/min | L/min |
| CR27SL         5292         2400         6615         3000         ½         12         ½         16         3045         210         15.79         60           CR33SLLT         2205         1000         2646         1200         ½         12         ½         16         2465         170         10.00         38           CR33SL         8820         4000         11025         5000         ½         12 <sup>13</sup> / <sub>16</sub> 20         3480         240         23.68         90           CR33SLHD         11025         5000         ½         12 <sup>13</sup> / <sub>16</sub> 20         2683         185         36.84         140           CR33SLHD         11025         5000         15436         7000         ½         12 <sup>13</sup> / <sub>16</sub> 20         2683         185         36.84         140                                                                                                                                                                                                                                                                                                                                                                                    | CR22SL   | 3300  | 1500  | 3900  | 1800  | 1/2 | 12  | 9/16                                  | 14 | 2247   | 155    | 14.74   | 56    |
| CR33SLLT         2205         1000         2646         1200         ½         12         ½         16         2465         170         10.00         38           CR33SL         8820         4000         11025         5000         ½         12         1³/16         20         3480         240         23.68         90           CR33SLHD         11025         5000         ½         12         1³/16         20         3480         240         23.68         90           CR33SLHD         11025         5000         15436         7000         ½         12         1³/16         20         2683         185         36.84         140           CR430SL         11025         5000         15436         7000         ½         12         13/16         20         2683         185         36.84         140                                                                                                                                                                                                                                                                                                                                                                                                     | CR27SL   | 5292  | 2400  | 6615  | 3000  | 1/2 | 12  | <sup>5</sup> /8                       | 16 | 3045   | 210    | 15.79   | 60    |
| CR33SL         8820         4000         11025         5000         ½         12 <sup>13</sup> / <sub>16</sub> 20         3480         240         23.68         90           CR33SLHD         11025         5000         15436         7000         ½         12 <sup>13</sup> / <sub>16</sub> 20         2683         185         36.84         140           CR30SLHD         13000         12         12 <sup>13</sup> / <sub>16</sub> 20         2683         185         36.84         140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CR33SLLT | 2205  | 1000  | 2646  | 1200  | 1/2 | 12  | <sup>5</sup> /8                       | 16 | 2465   | 170    | 10.00   | 38    |
| CR33SLHD         11025         5000         15436         7000         1/2         12         13/16         20         2683         185         36.84         140           CR40PL         17C40         2000         14000         14         10         2114         2114         2114         2114         2114         2114         2114         2000         2114         2000         2114         2000         2114         2000         2114         2000         2114         2000         2114         2000         2114         2000         2114         2000         2114         2000         2114         2000         2000         2000         2000         2114         2000         2114         2000         2114         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2000         2 | CR33SL   | 8820  | 4000  | 11025 | 5000  | 1/2 | 12  | <sup>13</sup> / <sub>16</sub>         | 20 | 3480   | 240    | 23.68   | 90    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CR33SLHD | 11025 | 5000  | 15436 | 7000  | 1/2 | 12  | <sup>13</sup> / <sub>16</sub>         | 20 | 2683   | 185    | 36.84   | 140   |
| <b>CR4USL</b> 17640 8000 24256 10000 % 16 1 26 3118 215 52.63 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CR40SL   | 17640 | 8000  | 24256 | 10000 | 5/8 | 16  | 1                                     | 26 | 3118   | 215    | 52.63   | 200   |
| CR40SLHD         24256         11000         28666         13000         %         16         1         26         3698         255         52.63         200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CR40SLHD | 24256 | 11000 | 28666 | 13000 | 5/8 | 16  | 1                                     | 26 | 3698   | 255    | 52.63   | 200   |
| CR50SL         26461         12000         30871         14000         ¥4         18         1¥16         30         3118         215         68.42         260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CR50SL   | 26461 | 12000 | 30871 | 14000 | 3/4 | 18  | <b>1</b> <sup>3</sup> / <sub>16</sub> | 30 | 3118   | 215    | 68.42   | 260   |
| CR50SLHD         33076         15000         39691         18000         ¾         18         1¾ <sub>16</sub> 30         3408         235         68.42         260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CR50SLHD | 33076 | 15000 | 39691 | 18000 | 3/4 | 18  | <b>1</b> <sup>3</sup> / <sub>16</sub> | 30 | 3408   | 235    | 68.42   | 260   |

Loads and converted sizes are guides only. Winches are customized to application. Line speeds can vary with each winch and power configuration

### Active Line Storage Guide

| Lin                                   | e Ø | CR2 | 2SL | CR2 | 7SL | CR33 | SLLT | CR3 | 3SL | CR33 | SLHD | CR4 | OSL | CR40 | SLHD | CR5 | OSL | CR50 | SLHD |
|---------------------------------------|-----|-----|-----|-----|-----|------|------|-----|-----|------|------|-----|-----|------|------|-----|-----|------|------|
| in                                    | mm  | ft  | m   | ft  | m   | ft   | m    | ft  | m   | ft   | m    | ft  | m   | ft   | m    | ft  | m   | ft   | m    |
| 1/2                                   | 12  | 56  | 17  | 115 | 35  | 131  | 40   | 157 | 48  | 213  | 65   | _   | _   | _    | _    | _   | _   | _    | _    |
| <sup>9</sup> / <sub>16</sub>          | 14  | 46  | 14  | 98  | 30  | 112  | 34   | 131 | 40  | 184  | 56   | —   | _   | —    | _    | _   | _   | _    | _    |
| <sup>5</sup> /8                       | 16  | _   | _   | 89  | 27  | 98   | 30   | 115 | 35  | 161  | 49   | 200 | 61  | 276  | 84   | _   | _   | _    | —    |
| <sup>11</sup> / <sub>16</sub>         | 18  | _   | _   | —   | —   | _    | _    | 101 | 31  | 141  | 43   | 177 | 54  | 243  | 74   | 220 | 67  | 312  | 95   |
| 3/4                                   | 20  | _   | _   | —   | _   | _    | _    | 92  | 28  | 128  | 39   | 157 | 48  | 217  | 66   | 197 | 60  | 279  | 85   |
| 7/8                                   | 22  | _   | _   | _   | _   | _    | _    | _   | _   | _    | _    | 141 | 43  | 197  | 60   | 177 | 54  | 253  | 77   |
| 15/16                                 | 24  | _   | _   | _   | _   | _    | _    | _   | _   | _    | _    | 131 | 40  | 180  | 55   | 164 | 50  | 230  | 70   |
| 1                                     | 26  | _   | —   | —   | _   | _    | _    | —   | —   | —    | _    | 118 | 36  | 165  | 50   | 151 | 46  | 213  | 65   |
| 1                                     | 28  | —   | —   | —   | —   | _    | —    | —   | —   | —    | —    | —   | —   | —    | —    | 138 | 42  | 197  | 60   |
| <b>1</b> <sup>3</sup> / <sub>16</sub> | 30  | _   | _   | _   | _   | _    | _    | _   | _   | _    | _    | _   | _   | _    | _    | 131 | 40  | 184  | 56   |

Line storage lengths are guides only. Winches are customized to application

# Accessories: Ball Bearing Handles

These robust low-friction ball bearing handles match a wide range of cranking needs for both racers and cruisers. Handles feature a ball bearing grip that efficiently transmit power into the winch. All handles fit international standard winch sockets.

### Locking vs. Plain

Lock-in handles are easy to engage and release with a thumb switch. Racers prefer plain handles because they are faster to insert.

### **Handle Length**

10 in (254 mm) is the most comfortable handle length for most sailors. Published power ratios are based on this length.

8 in (203 mm) handles grind faster because they swing through a smaller circle, but power is reduced by 20%. 8 in (203 mm) handles are ideal for smaller boats and light air where speed is more important than power.

### SpeedGrip

**B8SGI** 

SpeedGrip handles are designed for the serious racer and effective in both light and heavy air conditions. The unique grip permits low-load fast cranking using the palm, and powerful two-handed grinding when loads are high. The low profile B8ASGLP is made for fast, one-handed cranking where speed is the concern, not power.

R

B8SG

B10SG

B8P

B10P

B8L

B10L



Molded urethane knob for comfortable feel and better grip when palming the handle

Handles feature an independent swivel between the knob and handle to keep the wrist straight and arms in the best power position while grinding





|           | SPEEDGRIP           |   | S       | TAND/ | ARD  |         |        |        |                                        |       |      |     |      |      |      |      |
|-----------|---------------------|---|---------|-------|------|---------|--------|--------|----------------------------------------|-------|------|-----|------|------|------|------|
|           |                     |   |         |       |      |         |        |        |                                        |       |      |     | Wei  | ght  |      |      |
| Part      |                     |   | Materia | I     | Leng | gth (L) | Heigl  | nt (H) | Rise                                   | e (R) |      | A   | I    | В    | (    | 0    |
| No.       | Description         | Α | В       | C     | in   | mm      | in     | mm     | in                                     | mm    | 0Z   | g   | 0Z   | g    | 0Z   | g    |
| SpeedGrip |                     |   |         |       |      |         |        |        |                                        |       |      |     |      |      |      |      |
| B8SGLP    | Lock-in/low-profile | ~ |         |       | 8    | 203     | 413/16 | 122    | 11/4                                   | 32    | 14.1 | 400 | _    | _    |      |      |
| B8SG      | Lock-in             | ~ | _       | ~     | 8    | 203     | 73/16  | 182    | 11/4                                   | 32    | 17.6 | 500 | _    | _    | 35.3 | 1000 |
| B10SG     | Lock-in             | ~ | _       | ~     | 10   | 254     | 77/16  | 188    | 11/2                                   | 38    | 21.2 | 600 | _    | _    | 47.6 | 1350 |
| Standard  |                     |   |         |       |      |         |        |        |                                        |       |      |     |      |      |      |      |
| B8P       | No-lock             | ~ | _       | _     | 8    | 203     | 65/8   | 168    | 11/4                                   | 32    | 14.1 | 400 | _    | _    | _    | _    |
| B8L       | Lock-in             | ~ | ~       | ~     | 8    | 203     | 65/8   | 168    | 11/4                                   | 32    | 14.1 | 400 | 31.7 | 900  | 31.7 | 900  |
| B10P      | No-lock             | ~ | _       | _     | 10   | 254     | 7      | 178    | 11/2                                   | 38    | 17.6 | 500 | _    | _    | _    |      |
| B10L      | Lock-in             | ~ | ~       | ~     | 10   | 254     | 7      | 178    | 11/2                                   | 38    | 17.6 | 500 | 45.9 | 1300 | 45.9 | 1300 |
| B10DL     | Lock-in/double-grip | ~ | _       | _     | 10   | 254     | 111/4  | 286    | <b>1</b> <sup>13</sup> / <sub>16</sub> | 46    | 21.2 | 600 | _    | _    | _    |      |

B10D

The B10DL handle features a lock-in switch and provides powerful two-handed

grinding

# Accessories: Service Kits

Simple service kits are available to permit routine maintenance of Harken<sup>®</sup> winches. Kits are available with drum screws, pawls, and springs.

Harken<sup>®</sup> winch grease is a non-aging, high-adhesive synthetic lubricant. It is resistant to both salt and fresh water and protects metal gears, roller bearings, and all moving winch parts from corrosion and wear. Note: Do not grease pawls, plastic rollers, or balls.

Installation manuals and parts lists are available online at www.harken.com.



BK4520

12

BK4515

BK4516

1 =

BK4512

BKA

BK4521

1 = .

BK4517

AWL



BK4513

13

BK4518



BK4519



photo

Maritiem b.v.

Saffier I

Maritiem 26 DaySaile

Caffior



### WHICH PARTS DO I GREASE AND WHICH DO I OIL ON MY HARKEN WINCHES?

Grease all metal gears and roller bearings with Harken Winch Grease. It's highly resistant to salt and fresh water, works in all temperatures, and protects against corrosion. NEVER grease pawls or springs because grease causes them to stick. Instead, lubricate with Harken Pawl Oil for optimal rotation. Radial winches and carbon winches have composite roller bearings that do not need to be lubricated.

| Part   |                                                 |                                                               |                                       |
|--------|-------------------------------------------------|---------------------------------------------------------------|---------------------------------------|
| No.    | Description                                     | Includes                                                      | Fits winches                          |
| BK4512 | Winch service kit                               | 10 pawls/10 springs                                           | Classic B6 - B980, All Radial winches |
| BK4513 | Winch grease                                    | 100 ml tube                                                   |                                       |
| BK4515 | Racing winch service kit/10 mm                  | 10 17-4 PH pawls/10 springs                                   | B880 - B1120                          |
| BK4516 | Racing winch service kit/8 mm                   | 10 17-4 PH pawls/10 springs                                   | B50 - B65                             |
| BK4517 | Lock-in handle repair kit                       | Lock-in knob/spring pin/lock-in spring/isolator/lock-in plate | All handles                           |
| BK4518 | Winch drum screw kit                            | 8 screws 8 mm x 20 mm/8 plastic washers                       | B48 - B980                            |
| BK4519 | Winch drum screw kit                            | 8 screws 8 mm x 20 mm/8 plastic washers                       | B16 - B46                             |
| BK4520 | Winch polish for all metal surfaces             |                                                               |                                       |
| BK4521 | Pawl Oil for pawls and springs                  |                                                               |                                       |
| BK4522 | Stainless Steel Cleaner: Use on stainless steel | to remove surface rust                                        |                                       |

Heidi Harken Photo

# HARKEN SPORT

# Men's and Women's Softshell Jacket

The thermal-regulating properties of Harken Softshell make this jacket an all-around favorite. This water-resistant midweight layer is windproof, breathable, and extremely tough. Wear it relaxing on a cool summer evening or during a fierce, wet-and-windy battle on the course.

Men's Size Range: S, M, L, XL, XXL Women's Size Range: XS, S, M, L, XL

Available Colors (Men's and Women's): Carbon/Ice

2070



a

2071



Stowable squall hood. Taped seams and water-shedding DWR treatment. 2-way stretch fabric for mobility. Flattering women's cut.

NEW

# **Ballistic Eco Shorts**

These are the extremely tough, comfortable shorts people are talking about. Made from a Harken-exclusive custom fabric, they feature 4-way-stretch fabric and a gusseted crotch so you'll never feel restricted. Naturally wicking materials and a comfortable brushed interior make these shorts perfect on land or on the water. These eco-friendly shorts are made from renewable, sustainable fabrics such as quick-drying bamboo and odor-fighting carbon.

Men's Shorts Size Range: 28, 30, 32, 34, 36, 38, 40, 42





Semi-elastic waist band and YKK<sup>®</sup> zippers. Highly abrasion-resistant ballistic nylon on rear. Soft, brushed interior. Removable hiking inserts behind the back pockets.





# **Mariner Sunglasses**

Harken sunglasses provide the highest level of protection against sun damage. Polarization blocks 100% of ultraviolet light and 99.9% of reflected glare. Tapered lenses eliminate distortion, reduce eye fatigue, and boost detail and depth perception so you can spot marks or just enjoy that perfect view. The durable frames provide a close wrap-around fit to protect against wind, water, and debris. Now in olive green.



Polarized Film **Distortion-Free Lens** Anti-Scratch Coating Hydrophobic Coating Flash MIrror Coating

ens



# HYDRAULICS



"We thought, why stick with the status quo, let's go with something new and innovative to make our product stand above the rest on the market."

> — Robbie Young Hydraulics Manager

HYDRAULICS MANAGER ROBBIE YOUNG TALKS ABOUT OUR ALL-NEW HYDRAULICS PRODUCT LINE

*Editors Note:* Hydraulic-powered systems are becoming more and more popular on smaller cruising boats, all the way up to the Megayachts. With hydraulic power, you can run winches, furlers, anchor windlasses, bow thrusters, cylinders basically any function on the boat, even the drive system. It was this increased demand that led us to develop a line of production hydraulic products.

### Why Stick with the Status Quo

When developing products you can improve a design you already have, buy a company with existing tooling, or start fresh. We chose to start fresh. And because we could go in any direction we wanted, our only parameters were that loads, pressures, and lengths had to fit within sailboat industry standards. We thought, why stick with the status quo, let's go with something new and innovative to make our product stand above the rest on the market. In the standard Harken way, we took on the hardest jobs first because when we

figured out how to do those, it would be easy to do the rest of the product line. We designed custom titanium cylinders for the +39 Challenge (2007 America's Cup) and a powered system for a 52 m Sparkman & Stephens in Turkey. This led directly into a range of cylinders: stainless steel, 6000 series aluminum, and 7000 series aluminum. These materials have different properties for different applications.



### **Materials Match Lifestyles**

The housings come in different materials to suit the sailor's needs. A cruiser might say, I want a lightweight cylinder that lasts for a long time in salt water. In that case we use Hardkote-anodized 6061 aluminum. If they want a classic look, we use the same cylinder design, but change the material to corrosion-resistant 316 stainless steel bodies with the same mirror-polished finish as the winches.

A Grand Prix racer thinks differently: I want a lightweight cylinder than can handle very high pressure. 7000 series aluminum has nearly twice the strength of 6061 so we can make the walls thinner to save weight, reduce size, and still handle high loads. On Grand Prix sailboats, crew use 7075 aluminum cylinders knowing they have only a 2-year life

"We designed cylinders for mast, sail and keel controls that fit everything from cruiser/racers up to your megayachts and Grand Prix Maxi boats." span in salt water. We won't sell a 7075 cylinder to a non- Grand Prix race boat. It's like selling a Formula 1 chassis to a person who's going to be driving down the bumpy roads of rural Wisconsin. You don't do it. It just won't last.

Titanium is also a favorite cylinder material for Grand Prix racers. It's the strongest and is corrosion resistant, but some class rules don't allow it.

### **Full Range Of Cylinders**

— Robbie Young Hydraulics Manager

We designed cylinders for mast, sail, and keel controls that fit everything from cruiser/racers (35-40 ft, 9-12 m), up to your megayachts and Grand Prix Maxi

boats. We researched pistons, seal materials, seal types, and applications, and chose bronze-filled Teflon<sup>®</sup> piston seals and graphite-filled Teflon<sup>®</sup> rod seals that are extremely low friction and more durable than polyurethane seals. We ended up with a stronger, lighter, more modern cylinder for the same length.

Cylinders include a standard clevis jaw on both ends, but can also be fitted with blocks and different eye types. Single-acting cylinders have hydraulic oil at one end and air at the other (like those used in car hatchbacks). Grand Prix cylinders come in single-acting or in double-acting designs with oil at the ends.

We have a full range of vang cylinders: standard rigid, double-acting, and are working on position indicators to tell you how far the vang extends. It's similar to technology used in the hydraulic crane world.

0



Our HydroTrim line of cylinders is used to trim mainsheets, jib sheets, or whatever function you want. As the cylinder extends, it pulls in a multiplying amount of sheet in 1:4 or 1:6 reverse purchases. These cylinders are used on cruising boats and are available in 11 sizes.

### Valves

The big question was, how do we make a good mousetrap even better? We discussed what we did and didn't like, and came up with some innovative ideas. We eliminated the large coil springs—the majority of the weight. We feel hydraulic systems should have a safety feature because in extreme conditions, you can't tell how much pressure is in the system. We built pressure release into every valve with flow controls to adjust the speed

of release. We combined pressure relief and release into one part—a patented feature. We also have dump valves for systems to quickly release pressure.

### Handles

Valve handles are molded nylon-filled, long-glass fiber like our Carbo blocks. They're contoured so sheets and lines won't wrap around the edges and your hands won't slip. Handles mount in any direction so they can be uniform throughout the boat.

> "We built pressure release into every valve with flow controls to adjust the speed of release. We combined pressure relief and release into one part—a patented feature."

> > — Robbie Young Hydraulics Manager



### Pumps

Currently, other companies have 2-speed hydraulic pumps. You push hard in first gear, then there's a shift, and it seems like you're pumping forever to get something to happen in second gear. The reason is, there's a big difference in the volume of oil between first and second gear. We decided to add a third speed to push more oil, faster and more efficiently through the system. The pump has preset points that automatically shift to the next speed. Shift points can be adjusted.

"We're using many off-the-shelf components. Spares for a cruising boat traveling around the world become minimal because these parts are available anywhere they go."

— Robbie Young Hydraulics Manager

### **Power Packs**

We have small power units that perform from 1 to 13 functions. For the larger units like those we developed for *Nazenin V*, where we're using computers and PLC's (Programmable Logic Controller), it gets a bit more involved. We've partnered with hydraulic innovators to bring technology from a variety of industries.

### **Off-The-Shelf**

We're using many off-the-shelf components. For example, a standard-size valve we buy in the U.S. can be bought anywhere on the planet. Spares for a cruising boat traveling around the world become minimal because these parts are available anywhere they go.

# **Hydraulic Cylinders**

These strong, lightweight cylinders are perfect for mast, sail, and keel controls. Harken cylinders stand up to years of high-stress use in harsh marine environments and have proven themselves on everything from race boats to bluewater cruisers and megayachts. Their efficiency, longevity, and reliability are evident in the high quality of their components and workmanship.

Cylinders are available in stainless steel or Hardkote-anodized\*, Teflon®-impregnated 6061-T6 aluminum for strength and corrosion resistance. Graphite-filled Teflon® rod seals and bronzefilled Teflon® piston seals are extremely low friction and are more durable than polyurethane seals. Performance O-rings and slant springs in the seals provide consistent seal pressure for a reliable, long-lasting fit. High-strength Nitronic 50 stainless steel rods and pins provide superior strength and corrosion resistance.

Cylinders include a standard clevis jaw on both ends, but can also be fitted with blocks and different eye types. Standard pull cylinders have air-spring returns. Cylinders include push, pull, and pull/pull styles. Custom cylinder lengths are also available.

photo

Billy Black

1

Hodgdon 65

Available.





*High-performance O-ring and spring-energized seals* 

HARDKOTE

**IARKEN** 



CLEAR-ANODIZED\* S

STAINLESS STEEL

\*Clear-anodized aluminum is available but offers less protection than Hardkote-anodized.

# **Hydraulic Cylinders**

|                      |        |             |         | Pin c   | enter   |         | Wei         | ght**    |        |                        | Diameter |                                      |              |                                      |       |                                      |          |        |        | Pull 1   | force**   | *         |           |           |        |           |           |           |           |        |        |
|----------------------|--------|-------------|---------|---------|---------|---------|-------------|----------|--------|------------------------|----------|--------------------------------------|--------------|--------------------------------------|-------|--------------------------------------|----------|--------|--------|----------|-----------|-----------|-----------|-----------|--------|-----------|-----------|-----------|-----------|--------|--------|
|                      |        | <b>64</b> - |         | len     | igth    | 606     | 51-T6       | 3        | 16     | Val                    |          | 0.                                   |              |                                      |       |                                      |          | May    |        | @ 10     | 100psi    | @ 20      | DO psi    | @ 30      | 00 psi | @ 40      | DO psi    | @ 50      | DO psi    | Brea   | iking  |
| Part                 | - Sizo | Str<br>in   | UKE     | (0105   | seu)"   | Alun    | ninum<br>ka | Stall    | ka     | VOI<br>in <sup>3</sup> | ume      | ui<br>in                             | ap/pin<br>mm | B(<br>in                             | mm    | in                                   | 00<br>mm | in     |        | 09<br>Ih | bar<br>ka | 140<br>lh | bar<br>ka | 21U<br>Ih | var    | 2/3<br>lh | bar<br>ka | 340<br>Ih | bar<br>ka | 10     | auka   |
| NU.<br>HVCS2511265   | - 3126 | 10.4        | 265     | 18.7    | 171     | 2.2     | n aa        |          | 2.00   | 7                      | 0.11     | 7/10                                 | 11 1         | 1                                    | 25    | 7/10                                 | 11       | 1.5    | 38     | 635      | 288       | 1270      | 576       | 1005      | 86/    | 25/10     | 1152      | 3175      | 1///0     | 6400   | 2003   |
| HVCS2511260          | -0     | 1/1 2       | 360     | 22 /    | 560     | 2.2     | 1 15        | 5.2      | 2.00   | 0<br>0                 | 0.11     | 7/16                                 | 11.1         | 1                                    | 25    | 7/16                                 | 11       | 1.5    | 38     | 635      | 288       | 1270      | 576       | 1905      | 864    | 2540      | 1152      | 3175      | 1//10     | 6400   | 2903   |
| HVCS2511530          | -0     | 20.0        | 530     | 22.4    | 730     | 2.0     | 1.13        | 6.5      | 2.04   | 12                     | 0.13     | 7/10                                 | 11.1         | 1                                    | 25    | 7/10                                 | 11       | 1.5    | 38     | 635      | 200       | 1270      | 576       | 1005      | 864    | 2540      | 1152      | 3175      | 1//10     | 6400   | 2903   |
| HVC\$3513250         | -10    | 0.8         | 250     | 10 /    | /03     | 3.5     | 1.44        | 7.4      | 3 37   | 13                     | 0.22     | 1/0                                  | 12.7         | 13/0                                 | 35    | 1/0                                  | 13       | 1.5    | 46     | 1280     | 58/       | 2577      | 1160      | 3866      | 1753   | 515/      | 2338      | 6//3      | 2022      | 12000  | 5851   |
| HVC\$3513350         | -10    | 13.8        | 350     | 23.4    | 50/     | 12      | 1.00        | 8.0      | 4.04   | 18                     | 0.21     | 1/0                                  | 12.7         | 13/0                                 | 35    | 1/0                                  | 13       | 1.0    | 40     | 1203     | 58/       | 2577      | 1160      | 3866      | 1753   | 5154      | 2338      | 6//3      | 2022      | 12000  | 5851   |
| HVC\$3513525         | -10    | 20.7        | 525     | 20.4    | 760     | 5.5     | 2 50        | 12 /     | 5.61   | 27                     | 0.23     | 1/0                                  | 12.7         | 13/0                                 | 35    | 1/0                                  | 13       | 1.0    | 40     | 1203     | 58/       | 2577      | 1160      | 3866      | 1753   | 5154      | 2338      | 6//3      | 2022      | 12000  | 5851   |
| HYCS4016250          | -12    | 9.8         | 250     | 19.6    | 498     | 4.6     | 2.00        | 9.4      | 4 28   | 14                     | 0.44     | 5/0                                  | 15.9         | 11/2                                 | 40    | 5/0                                  | 16       | 2.0    | 50     | 1460     | 662       | 2921      | 1325      | 4381      | 1987   | 5841      | 2650      | 7302      | 3312      | 14600  | 6622   |
| HVCS4016275          | -12    | 1/1 8       | 375     | 24.5    | 622     | 5.7     | 2.00        | 11 7     | 5 20   | 22                     | 0.24     | 5/0                                  | 15.0         | 11/2                                 | 40    | 5/0                                  | 16       | 2.0    | 50     | 1/160    | 662       | 2021      | 1325      | /1381     | 1087   | 58/1      | 2650      | 7302      | 3312      | 1/600  | 6622   |
| HVCS4016625          | -12    | 24.6        | 625     | 3/ /    | 87/     | 7.7     | 3.51        | 16.1     | 7 30   | 36                     | 0.00     | 5/0                                  | 15.0         | 11/2                                 | 40    | 5/0                                  | 16       | 2.0    | 50     | 1/160    | 662       | 2021      | 1325      | /1381     | 1087   | 58/1      | 2650      | 7302      | 3312      | 1/600  | 6622   |
| HYCS4516250          | -17    | 9.8         | 250     | 19.6    | 498     | 5.5     | 2.48        | 11.7     | 5.30   | 21                     | 0.00     | 5/0                                  | 15.9         | 13/4                                 | 45    | 5/0                                  | 16       | 2.0    | 58     | 2098     | 952       | 4197      | 1904      | 6295      | 2856   | 8394      | 3807      | 10492     | 4759      | 21000  | 9525   |
| HYCS4516375          | -17    | 14.8        | 375     | 24.5    | 623     | 6.7     | 3.03        | 14.3     | 6.51   | 31                     | 0.51     | 5/0                                  | 15.0         | 13/4                                 | 45    | 5/0                                  | 16       | 2.3    | 58     | 2000     | 952       | 4197      | 1904      | 6295      | 2856   | 8394      | 3807      | 10492     | 4759      | 21000  | 9525   |
| HYCS4516800          | -17    | 31.5        | 800     | 41.3    | 1050    | 9.1     | 4 12        | 19.7     | 8.93   | 66                     | 1.08     | 5/0                                  | 15.9         | 13/4                                 | 45    | 5/0                                  | 16       | 2.0    | 58     | 2000     | 952       | 4197      | 1904      | 6295      | 2856   | 8394      | 3807      | 10492     | 4759      | 21000  | 9525   |
| HYCS5519275          | -22    | 10.8        | 275     | 22.4    | 569     | 9.1     | 4.33        | 20.8     | 9.43   | 36                     | 0.59     | 3/4                                  | 19.1         | 23/16                                | 55    | 3/4                                  | 19       | 2.0    | 73     | 3316     | 1504      | 6633      | 3009      | 9949      | 4513   | 13266     | 6017      | 16582     | 7522      | 33200  | 15059  |
| HYCS5519400          | -22    | 15.7        | 400     | 27.3    | 693     | 11 5    | 5.20        | 25.1     | 11 39  | 52                     | 0.86     | 3/4                                  | 19.1         | 2 <sup>3</sup> /16                   | 55    | 3/4                                  | 19       | 2.0    | 73     | 3316     | 1504      | 6633      | 3009      | 9949      | 4513   | 13266     | 6017      | 16582     | 7522      | 33200  | 15059  |
| HYCS5519930          | -22    | 36.6        | 930     | 48.1    | 1223    | 19.4    | 8.80        | 43.8     | 19.89  | 121                    | 1 99     | 3/4                                  | 19.1         | 2 <sup>3</sup> /16                   | 55    | 3/4                                  | 19       | 2.0    | 73     | 3316     | 1504      | 6633      | 3009      | 9949      | 4513   | 13266     | 6017      | 16582     | 7522      | 33200  | 15059  |
| HYCS6522300          | -30    | 11.8        | 300     | 25.2    | 639     | 13.3    | 6.04        | 28.6     | 12.00  | 51                     | 0.83     | 7/8                                  | 22.2         | 21/2                                 | 65    | 7/8                                  | 22       | 3.2    | 81     | 4307     | 1954      | 8615      | 3908      | 12922     | 5861   | 17230     | 7815      | 21537     | 9769      | 43100  | 19550  |
| HYCS6522450          | -30    | 17.7        | 450     | 31.0    | 787     | 15.9    | 7 22        | 34.9     | 15.82  | 76                     | 1 25     | 7/8                                  | 22.2         | 21/2                                 | 65    | 7/8                                  | 22       | 3.2    | 81     | 4307     | 1954      | 8615      | 3908      | 12922     | 5861   | 17230     | 7815      | 21537     | 9769      | 43100  | 19550  |
| HYCS65221050         | -30    | 41.3        | 1050    | 54.6    | 1387    | 26.8    | 12 15       | 59.0     | 26 78  | 178                    | 2.92     | 7/8                                  | 22.2         | 21/2                                 | 65    | 7/8                                  | 22       | 3.2    | 81     | 4307     | 1954      | 8615      | 3908      | 12922     | 5861   | 17230     | 7815      | 21537     | 9769      | 43100  | 19550  |
| HYCS7525300          | -40    | 11.8        | 300     | 27.7    | 704     | 20.5    | 9.32        | 44.7     | 20.29  | 74                     | 1.22     | 1                                    | 25.4         | 3                                    | 75    | 1                                    | 25       | 3.8    | 97     | 6283     | 2850      | 12566     | 5700      | 18850     | 8550   | 25133     | 11400     | 31416     | 14250     | 62800  | 28486  |
| HYCS7525475          | -40    | 18.7        | 475     | 34.4    | 874     | 24.9    | 11.30       | 54.5     | 24.72  | 118                    | 1.93     | 1                                    | 25.4         | 3                                    | 75    | 1                                    | 25       | 3.8    | 97     | 6283     | 2850      | 12566     | 5700      | 18850     | 8550   | 25133     | 11400     | 31416     | 14250     | 62800  | 28486  |
| HYCS75251175         | -40    | 46.3        | 1175    | 62.0    | 1574    | 42.5    | 19.29       | 95.0     | 43.08  | 291                    | 4.76     | 1                                    | 25.4         | 3                                    | 75    | 1                                    | 25       | 3.8    | 97     | 6283     | 2850      | 12566     | 5700      | 18850     | 8550   | 25133     | 11400     | 31416     | 14250     | 62800  | 28486  |
| HYCS8025300          | -48    | 11.8        | 300     | 28.3    | 719     | 23.7    | 10.74       | 52.7     | 23.89  | 81                     | 1.33     | <b>1</b> 1/8                         | 28.6         | <b>3</b> <sup>1</sup> /8             | 80    | 1                                    | 25       | 4.1    | 103    | 6885     | 3123      | 13769     | 6246      | 20654     | 9368   | 27538     | 12491     | 34423     | 15614     | 68800  | 31207  |
| HYCS8025475          | -48    | 18.7        | 475     | 35.1    | 891     | 28.8    | 13.06       | 64.6     | 29.29  | 129                    | 2.11     | <b>1</b> <sup>1</sup> /8             | 28.6         | <b>3</b> <sup>1</sup> /8             | 80    | 1                                    | 25       | 4.1    | 103    | 6885     | 3123      | 13769     | 6246      | 20654     | 9368   | 27538     | 12491     | 34423     | 15614     | 68800  | 31207  |
| HYCS80251150         | -48    | 45.3        | 1150    | 61.7    | 1567    | 48.5    | 22.01       | 110.5    | 50.11  | 312                    | 5.11     | <b>1</b> <sup>1</sup> /8             | 28.6         | <b>3</b> <sup>1</sup> /8             | 80    | 1                                    | 25       | 4.1    | 103    | 6885     | 3123      | 13769     | 6246      | 20654     | 9368   | 27538     | 12491     | 34423     | 15614     | 68800  | 31207  |
| HYCS9032375          | -60    | 14.8        | 375     | 31.1    | 789     | 34.2    | 15.53       | 75.5     | 34.24  | 124                    | 2.03     | <b>1</b> 1/4                         | 31.8         | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90    | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32       | 4.6    | 116    | 8394     | 3807      | 16788     | 7615      | 25182     | 11422  | 33576     | 15230     | 41970     | 19037     | 83900  | 38056  |
| HYCS9032550          | -60    | 21.7        | 550     | 38.0    | 965     | 41.1    | 18.62       | 41.1     | 40.84  | 182                    | 2.98     | <b>1</b> <sup>1</sup> / <sub>4</sub> | 31.8         | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90    | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32       | 4.6    | 116    | 8394     | 3807      | 16788     | 7615      | 25182     | 11422  | 33576     | 15230     | 41970     | 19037     | 83900  | 38056  |
| HYCS9032375.W        | -76    | 14.8        | 375     | 31.1    | 789     | 34.4    | 15.65       | 75.9     | 34.47  | 124                    | 2.03     | 1 <sup>5</sup> /16 / 11              | /4 33 / 32   | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90    | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32       | 4.6    | 116    | 8394     | 3807      | 16788     | 7615      | 25182     | 11422  | 33576     | 15230     | 41970     | 19037     | 83900  | 38056  |
| HYCS9032550.W        | -76    | 21.7        | 550     | 38.0    | 965     | 41.2    | 18.70       | 41.2     | 40.97  | 182                    | 2.98     | 1 <sup>5</sup> /16 / 11              | /4 33 / 32   | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90    | <b>1</b> 1/4                         | 32       | 4.6    | 116    | 8394     | 3807      | 16788     | 7615      | 25182     | 11422  | 33576     | 15230     | 41970     | 19037     | 83900  | 38056  |
| HYCS10032400         | -90    | 15.7        | 400     | _       | _       | 48.6    | 22.04       | 48.6     | 49.57  | 179                    | 2.93     | <b>1</b> <sup>3</sup> /8             | 34.9         | 4                                    | 100   | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32       | 5.2    | 132    | 11339    | 5143      | 22678     | 10287     | 34018     | 15430  | 45357     | 20573     | 56696     | 25717     | 113400 | 51437  |
| HYCS10032625         | -90    | 24.6        | 625     | _       | _       | 58.9    | 26.72       | 58.9     | 60.10  | 279                    | 4.57     | <b>1</b> <sup>3</sup> /8             | 34.9         | 4                                    | 100   | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32       | 5.2    | 132    | 11339    | 5143      | 22678     | 10287     | 34018     | 15430  | 45357     | 20573     | 56696     | 25717     | 113400 | 51437  |
| HYCS11535475         | -110   | 18.7        | 475     | _       | _       | 71.6    | 32.48       | 71.6     | 71.46  | 270                    | 4.43     | <b>1</b> 1/2                         | 38.1         | <b>4</b> <sup>1</sup> / <sub>2</sub> | 115   | <b>1</b> <sup>3</sup> /8             | 35       | 5.8    | 147    | 14419    | 6541      | 28839     | 13081     | 43258     | 19622  | 57678     | 26162     | 72097     | 32703     | 144200 | 65408  |
| HYCS11535700         | -110   | 27.6        | 700     | _       | _       | 84.6    | 38.37       | 84.6     | 86.56  | 397                    | 6.51     | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38.1         | <b>4</b> <sup>1</sup> / <sub>2</sub> | 115   | 1 <sup>3</sup> /8                    | 35       | 5.8    | 147    | 14419    | 6541      | 28839     | 13081     | 43258     | 19622  | 57678     | 26162     | 72097     | 32703     | 144200 | 65408  |
| HYCS13038475         | -150   | 18.7        | 475     | _       | _       | 94.7    | 42.96       | 94.7     | 95.80  | 353                    | 5.79     | <b>1</b> <sup>3</sup> / <sub>4</sub> | 44.5         | 5 <sup>1</sup> /8                    | 130   | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       | 6.5    | 165    | 18862    | 8556      | 37724     | 17111     | 56585     | 25667  | 75447     | 34222     | 94309     | 42778     | 188600 | 85548  |
| HYCS13038700         | -150   | 27.6        | 700     | _       | —       | 110.8   | 50.26       | 110.8    | 110.57 | 520                    | 8.52     | <b>1</b> 3/4                         | 44.5         | 5 <sup>1</sup> /8                    | 130   | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38       | 6.5    | 165    | 18862    | 8556      | 37724     | 17111     | 56585     | 25667  | 75447     | 34222     | 94309     | 42778     | 188600 | 85548  |
| HYCS14548500         | -195   | 19.7        | 500     | _       | _       | 136.1   | 61.73       | 136.1    | 138.87 | 457                    | 7.49     | 2 <sup>1</sup> /8                    | 54           | <b>5</b> <sup>3</sup> / <sub>4</sub> | 145   | 17/8                                 | 48       | 7.4    | 188    | 23206    | 10526     | 46412     | 21052     | 69618     | 31578  | 92824     | 42104     | 116030    | 52630     | 232100 | 105279 |
| HYCS14548750         | -195   | 29.5        | 750     | _       | _       | 160.6   | 72.85       | 160.6    | 162.48 | 685                    | 11.23    | 21/8                                 | 54           | <b>5</b> <sup>3</sup> / <sub>4</sub> | 145   | 17/8                                 | 48       | 7.4    | 188    | 23206    | 10526     | 46412     | 21052     | 69618     | 31578  | 92824     | 42104     | 116030    | 52630     | 232100 | 105279 |
| HYCS16554600         | -260   | 23.6        | 600     | _       | —       | 207.4   | 94.08       | 207.4    | 206.98 | 700                    | 11.47    | 27/16                                | 61.9         | <b>6</b> <sup>1</sup> / <sub>2</sub> | 165   | 2 <sup>1</sup> /8                    | 54       | 8.4    | 213    | 29637    | 13443     | 59273     | 26886     | 88910     | 40329  | 118546    | 53772     | 148183    | 67214     | 296400 | 134445 |
| HYCS16554800         | -260   | 31.5        | 800     | —       | _       | 232.4   | 105.41      | 232.4    | 237.20 | 933                    | 15.29    | 27/16                                | 61.9         | <b>6</b> <sup>1</sup> / <sub>2</sub> | 165   | 2 <sup>1</sup> /8                    | 54       | 8.4    | 213    | 29637    | 13443     | 59273     | 26886     | 88910     | 40329  | 118546    | 53772     | 148183    | 67214     | 296400 | 134445 |
| HYCS19064600         | -320   | 23.6        | 600     | _       | _       | 283.0   | 128.37      | 283.0    | 271.41 | 928                    | 15.21    | 27/16                                | 61.9         | <b>7</b> <sup>1</sup> / <sub>2</sub> | 190   | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64       | 9.7    | 246    | 39270    | 17813     | 78540     | 35625     | 117810    | 53438  | 157080    | 71250     | 196350    | 89063     | 392700 | 178126 |
| HYCS19064800         | -320   | 31.5        | 800     | _       | _       | 316.7   | 143.65      | 316.7    | 316.03 | 1237                   | 20.28    | 27/16                                | 61.9         | <b>7</b> <sup>1</sup> / <sub>2</sub> | 190   | <b>2</b> <sup>1</sup> / <sub>2</sub> | 64       | 9.7    | 246    | 39270    | 17813     | 78540     | 35625     | 117810    | 53438  | 157080    | 71250     | 196350    | 89063     | 392700 | 178126 |
| *For pin center lend | th op  | en ado      | d strok | ke leng | th to p | in cent | ter lengt   | h closed | d **R  | od end                 | s (forks | s) includ                            | ed in weigh  | nts                                  | *** N | Aax re                               | elief se | ettina | is 5.0 | )00 psi  | / 345 b   | ar        |           |           |        |           |           |           |           |        |        |

# Valves & Manifolds

Harken's patent-pending valves and manifolds are a major update to marine hydraulics. Featuring extremely lightweight and low profile designs, Harken has a complete selection for manual systems with options like Grand Prix sculpting and double-sided manifolds.

### Valves

Valves turn different functions on and off from a cockpit-mounted valve panel. Harken's patent-pending valves are very low-profile and weigh half as much as comparable valves. Each single- or double-acting valve has its own pressure relief, letting you match hydraulic power to the maximum working loads of your individual mast and sail controls. Standard 5000 psi versions and sculpted 10000 psi Grand Prix versions are machined from Hardkote-anodized 6061-T6 aluminum.

### Manifolds

Manifolds are conduits that supply valves with oil from the pump. Harken offers single- and double-sided manifolds that accommodate up to 9 valves. Standard and sculpted Grand Prix versions are machined from Hardkote-anodized 6061-T6 aluminum.

### **Relief Valves**

Inline and manifold-mount relief valves control the maximum pressure of the entire system. Inline reliefs work with any manual system. Manifold-mount reliefs fit any Harken manifold.

### **Remote Dump Valves**

Remote dump valves let you ease sail controls from the helm, rail, and other key positions. Either use it as a quick-release or regulate its speed with an optional adjustable flow control.

### **Valve Panels**

Valve panels can be ordered with or without stainless steel gauges for any of our manifold configurations. Panels are available in 6061-T6 aluminum, mirror-polished 316 stainless, and clear-coated carbon.



Tapered handle sockets guarantee a perfect fit for the lifetime of the handle

VALVES PANELS



STANDARD VALVES & MANIFOLDS

**GRAND PRIX VALVES & MANIFOLDS** 



Single- and double-sided manifolds hold up to 9 valves

Handles fit in any of 4 directions so inverted valves have the same open/closed positions and rotation direction as upright valves

NEW



| Part      |                                                | Max pr | essure | He  | ight | Wi   | dth | De  | pth | We  | ight |
|-----------|------------------------------------------------|--------|--------|-----|------|------|-----|-----|-----|-----|------|
| No.       | Description                                    | psi    | bar    | in  | mm   | in   | mm  | in  | mm  | lb  | kg   |
| Valves    |                                                |        |        |     |      |      |     |     |     |     |      |
| HYV1PP    | Single-acting panel mount valve                | 5000   | 345    | 3.9 | 100  | 1.9  | 47  | 2.6 | 66  | 0.7 | 0.33 |
| HYV1PT    | Single-acting thru deck mount valve            | 5000   | 345    | 3.9 | 100  | 1.9  | 47  | 3.7 | 95  | 0.8 | 0.36 |
| HYV2PP    | Double-acting panel mount valve                | 5000   | 345    | 3.9 | 100  | 2.5  | 63  | 3.7 | 95  | 1.6 | 0.72 |
| HYV2PT    | Double-acting thru-deck mount valve            | 5000   | 345    | 3.9 | 100  | 2.5  | 63  | 4.9 | 124 | 1.7 | 0.76 |
| HYV1GP    | Single-acting Grand Prix panel mount valve     | 10000  | 689    | 3.9 | 100  | 1.9  | 47  | 2.6 | 66  | 0.6 | 0.25 |
| HYV1GT    | Single-acting Grand Prix thru-deck mount valve | 10000  | 689    | 3.9 | 100  | 1.9  | 47  | 3.7 | 95  | 0.6 | 0.29 |
| HYV2GP    | Double-acting Grand Prix panel mount valve     | 10000  | 689    | 3.9 | 100  | 2.5  | 63  | 3.7 | 95  | 1.0 | 0.47 |
| HYV2GT    | Double-acting Grand Prix thru-deck mount valve | 10000  | 689    | 3.9 | 100  | 2.5  | 63  | 4.9 | 124 | 1.1 | 0.50 |
| HYVDSPF   | Remote dump valve/string pull/flow control     | 10000  | 689    | 2.4 | 60   | 1.7  | 42  | 0.7 | 19  | 1.7 | 0.78 |
| HYVRI     | Relief valve/inline                            | 10000  | 689    | 1.4 | 36   | 1.0  | 25  | 3.0 | 75  | 0.2 | 0.08 |
| HYVRM     | Relief valve/manifold mount                    | 10000  | 689    | 1.1 | 28   | 1.1  | 28  | 2.8 | 72  | 0.2 | 0.11 |
| Manifolds |                                                |        |        |     |      |      |     |     |     |     |      |
| HYMSP61   | Single-sided manifold 1 place                  | 5000   | 345    | 0.7 | 19   | 2.2  | 55  | 1.5 | 38  | 0.2 | 0.08 |
| HYMSP62   | Single-sided manifold 2 place                  | 5000   | 345    | 0.7 | 19   | 5.4  | 137 | 1.5 | 38  | 0.5 | 0.22 |
| HYMSP63   | Single-sided manifold 3 place                  | 5000   | 345    | 0.7 | 19   | 8.7  | 220 | 1.5 | 38  | 0.8 | 0.36 |
| HYMSP64   | Single-sided manifold 4 place                  | 5000   | 345    | 0.7 | 19   | 11.9 | 302 | 1.5 | 38  | 1.1 | 0.52 |
| HYMSP65   | Single-sided manifold 5 place                  | 5000   | 345    | 0.7 | 19   | 15.2 | 385 | 1.5 | 38  | 1.4 | 0.64 |
| HYMSG61   | Single-sided Grand Prix manifold 1 place       | 10000  | 689    | 0.7 | 19   | 1.7  | 42  | 1.5 | 38  | 0.1 | 0.05 |
| HYMSG62   | Single-sided Grand Prix manifold 2 place       | 10000  | 689    | 0.7 | 19   | 5.4  | 137 | 1.5 | 38  | 0.3 | 0.15 |
| HYMSG63   | Single-sided Grand Prix manifold 3 place       | 10000  | 689    | 0.7 | 19   | 8.7  | 220 | 1.5 | 38  | 0.5 | 0.22 |
| HYMSG64   | Single-sided Grand Prix manifold 4 place       | 10000  | 689    | 0.7 | 19   | 11.9 | 302 | 1.5 | 38  | 0.6 | 0.29 |
| HYMSG65   | Single sided Grand Prix manifold 5 place       | 10000  | 689    | 0.7 | 19   | 15.2 | 385 | 1.5 | 38  | 0.8 | 0.36 |
| HYMZG63   | Double-sided Grand Prix manifold 3 place       | 10000  | 689    | 0.7 | 19   | 5.4  | 137 | 1.5 | 38  | 0.3 | 0.16 |
| HYMZG64   | Double-sided Grand Prix manifold 4 place       | 10000  | 689    | 0.7 | 19   | 7.0  | 178 | 1.5 | 38  | 0.4 | 0.20 |
| HYMZG65   | Double-sided Grand Prix manifold 5 place       | 10000  | 689    | 0.7 | 19   | 8.7  | 220 | 1.5 | 38  | 0.5 | 0.24 |
| HYMZG66   | Double-sided Grand Prix manifold 6 place       | 10000  | 689    | 0.7 | 19   | 10.3 | 261 | 1.5 | 38  | 0.6 | 0.28 |
| HYMZG67   | Double-sided Grand Prix manifold 7 place       | 10000  | 689    | 0.7 | 19   | 11.9 | 302 | 1.5 | 38  | 0.7 | 0.32 |
| HYMZG68   | Double-sided Grand Prix manifold 8 place       | 10000  | 689    | 0.7 | 19   | 13.5 | 344 | 1.5 | 38  | 0.8 | 0.36 |
| HYMZG69   | Double-sided Grand Prix manifold 9 place       | 10000  | 689    | 0.7 | 19   | 15.2 | 385 | 1.5 | 38  | 0.9 | 0.39 |

Standard valves have -4 JIC port adapters. Grand Prix valves have plugs in all ports.

# **Hydraulic Power Units**

Harken power units are the complete package for electrically powered hydraulic pumps. Their motors run up to 13 functions and 3 simultaneous functions at full power, ranging from backstay and vang cylinders to davits, keels, and windlasses. Preinstalled double-flow capabilities feed power-hungry equipment.

Power units feature highly efficient series-wound motors and IP67-rated motor contactors on the coated aluminum tank's 6061-T6 top. Units have 4000-watt 24V DC motors. 12V DC motors and valves are available by special order. Pumps and clear-anodized manifolds are preinstalled, saving space, installation time, and additional hardware. Drop-in return-line filters provide a no-mess alternative to typical spin-on styles.

### **Prewired Control Box**

Units come with a prewired control box made of tough polycarbonate for motor and valve controls. The terminals and valve wire sets are all sealed and labeled—just connect the functions you need.

### **Custom Options**

Need remote manifolds? Want to integrate an engine-driven pump or use generator power? We will customize a unit to your specifications.





### **Control Box**

|                   | He   | ight | Wi   | dth | De   | pth |
|-------------------|------|------|------|-----|------|-----|
| Power unit        | in   | mm   | in   | mm  | in   | mm  |
| Hydro 1 / Hydro 2 | 16.5 | 419  | 12.5 | 318 | 6.0  | 152 |
| Hydro 3           | 19.5 | 495  | 17.5 | 445 | 10.0 | 254 |

### **Power Unit Dimensions**

|                              |      | A   | I    | В   |      | )   | [    | )   | E    |     |  |
|------------------------------|------|-----|------|-----|------|-----|------|-----|------|-----|--|
| Power unit                   | in   | mm  |  |
| Hydro 1                      | 22.5 | 568 | 19.4 | 493 | 14.8 | 376 | 12.9 | 328 | 7    | 178 |  |
| Hydro 2 / Hydro 3            | 27.4 | 696 | 24.2 | 615 | 18.6 | 472 | 16.9 | 429 | 11.2 | 284 |  |
| Dimensions subject to change |      |     |      |     |      |     |      |     |      |     |  |

### **Hvdraulic Power Units**

|               | Max number      | Max<br>simultaneous | 24V DC          | Max<br>current drain | Tank<br>capacity |         | Max<br>operating pressure |             | Max flow rate |              | Weight |    |           |
|---------------|-----------------|---------------------|-----------------|----------------------|------------------|---------|---------------------------|-------------|---------------|--------------|--------|----|-----------|
| Power unit    | of functions    | functions           | Motor           | amps                 | gal              | L       | psi                       | bar         | gpm           | L/min        | lb     | kg | Fasteners |
| Hydro 1       | 4               | 1                   | 1 x 4 kW        | 210                  | 7.9              | 30      | 2000                      | 140         | 4             | 15           | 119    | 54 | M10       |
| Hydro 2       | 9*              | 2**                 | 2 x 4 kW        | 2 x 210              | 18.5             | 70      | 2000                      | 140         | 8             | 30           | 168    | 76 | M10       |
| Hydro 3       | 13*             | 3**                 | 3 x 4 kW        | 3 x 210              | 18.5             | 70      | 2000                      | 140         | 12            | 45           | 207    | 94 | M10       |
| *One function | delivers double | flow output (8 gpi  | m) using 2 moto | ors ** This nu       | mber is re       | duced b | y one when                | a double fl | ow functi     | on is in use |        |    |           |



Drop-in filters and filter status gauges make maintenance fast and easy







# **Hydraulic Reservoirs**

Harken offers pressurized carbon fiber/composite reservoirs and vented blow-molded reservoirs for manual hydraulic systems.

### **Pressurized Reservoirs**

With a 20-liter version that weighs just 3.8 lb (1.736 kg), Harken's pressurized carbon fiber/composite reservoirs are among the lightest in the existence. They are installed in the bilge rather than at pump level for a low center of gravity. Reservoirs include a one-way return line check valve and supply line shutoff valve, both with aluminum -6JIC fittings. A high-quality regulator maintains smooth and consistent oil flow.

A graduated level gauge and translucent sections in the reservoir walls make it easy to monitor oil levels. Pressurized reservoirs require very little maintenance and are cleaner than those that use ambient air pressure.

Custom sizes are available.

### **Vented Reservoirs**

These 2- and 4-liter blow-molded reservoirs are used for smaller Grand Prix systems and production yachts. Reservoirs feature a vented cap to stabilize tank pressure and prevent leaks. Translucent materials allow oil levels to be easily monitored. 3/8 inch (10 mm) hose barbs are welded to the reservoir for supply and return hoses.

**VENTED RESERVOIRS** 



HANNEN



|         |                                 | Maxi | mum      | 0   | il       |      | M      | laximum ( |     |       |     |     |       |
|---------|---------------------------------|------|----------|-----|----------|------|--------|-----------|-----|-------|-----|-----|-------|
| Part    |                                 | capa | capacity |     | capacity |      | Height |           | dth | Depth |     | We  | eight |
| No.     | Description                     | gal  | L        | gal | L        | in   | mm     | in        | mm  | in    | mm  | lb  | kg    |
| HYRPC20 | Pressurized composite reservoir | 5.3  | 20       | 3.2 | 12       | 31.5 | 800    | 7.9       | 200 | 7.9   | 200 | 3.8 | 1.736 |
| HYRPC14 | Pressurized composite reservoir | 3.7  | 14       | 2.1 | 8        | 25.6 | 650    | 7.9       | 200 | 7.9   | 200 | 3.4 | 1.550 |
| HYRVP04 | Vented blow-molded reservoir    | 1.1  | 4        | 1.1 | 4        | 11.4 | 290    | 8.7       | 220 | 4.1   | 105 | 1.2 | 0.545 |
| HYRVP02 | Vented blow-molded reservoir    | 0.5  | 2        | 0.5 | 2        | 6.7  | 170    | 8.7       | 220 | 4.1   | 105 | 0.8 | 0.364 |

PRESSURIZED RESERVOIRS

# **Grand Prix Cylinders**

Used as mast, sail, and keel controls, Harken's highly efficient Grand Prix cylinders outlast and outperform on the hottest raceboats. They've endured hundreds of thousands of cycles in the testing lab and have gone on to prove themselves on champion TP52s and other winning Grand Prix yachts. Meticulous engineering and top-quality components let Harken cylinders excel in constant high-stress racing and harsh marine environments.

Cylinders are available in titanium or Hardkote-anodized, Teflon<sup>®</sup>impregnated 7075-T6 aluminum for strength. Graphite-filled Teflon<sup>®</sup> rod seals and bronze-filled Teflon<sup>®</sup> piston seals are extremely low friction and are more durable than polyurethane seals. Performance O-rings and slant springs in the seals provide consistent seal pressure for a reliable, long-lasting fit. High-strength titanium, 17-4PH stainless steel, or Nitronic 50 rods and pins provide superior strength and corrosion resistance.

Cylinders include a standard clevis jaw on both ends, but can also be fitted with blocks and different eye types. Cylinders include push, pull, and pull/pull styles.

> Rods can be fitted with a variety of high-quality end controls

Black photo

Billy

Cooksons Boats Ltd.

Yacht Design,

luan

100'

HARDKOTE

TITANIUM

# **Grand Prix Cylinders**

The table below lists common Grand Prix cylinder configurations. Contact Harken for weights and volumes, as these depend on your specifications for materials, pull force, stroke length, and cylinder diameter. 10,000 psi cylinders are available upon request.

Grand Prix cylinders are only intended for systems with a vigorous maintenance schedule, as they are built for extremely high loads at a minimal weight.





*Custom headstay cylinder with spherical mount* 



Custom titanium trunnion end cap

|               |                  |                                      |       | Diam                                 | eter | Pull force                           |    |       |        |       |        |
|---------------|------------------|--------------------------------------|-------|--------------------------------------|------|--------------------------------------|----|-------|--------|-------|--------|
|               |                  |                                      | 0     |                                      |      | _                                    |    | @ 50  | 00 psi | @ 75  | 00 psi |
| Part          | Cylinder housing | Ga                                   | p/pin | BC                                   | ore  | . R                                  | od | 345   | bar .  | 520   | bar .  |
| No.*          | material         | in                                   | mm    | in                                   | mm   | in                                   | mm | lb    | kg     | lb    | kg     |
| HYCS7198xxx   | 7075-T6 aluminum | <sup>5</sup> / <sub>16</sub>         | 7.9   | 3/4                                  | 19   | <sup>5</sup> /16                     | 8  | 1824  | 827    | 2736  | 1241   |
| HYCST198xxx   | titanium         | <sup>5</sup> / <sub>16</sub>         | 7.9   | 3/4                                  | 19   | <sup>5</sup> /16                     | 8  | 1824  | 827    | 2736  | 1241   |
| HYCS72510xxx  | 7075-T6 aluminum | 3/8                                  | 9.5   | 1                                    | 25   | 3/8                                  | 10 | 3375  | 1531   | 5062  | 2296   |
| HYCST2510xxx  | titanium         | <sup>3</sup> /8                      | 9.5   | 1                                    | 25   | 3/8                                  | 10 | 3375  | 1531   | 5062  | 2296   |
| HYCS73211xxx  | 7075-T6 aluminum | <sup>7</sup> / <sub>16</sub>         | 11.1  | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32   | <sup>7</sup> / <sub>16</sub>         | 11 | 5384  | 2442   | 8076  | 3663   |
| HYCST3211xxx  | titanium         | 7/ <sub>16</sub>                     | 11.1  | <b>1</b> 1/4                         | 32   | <sup>7</sup> / <sub>16</sub>         | 11 | 5384  | 2442   | 8076  | 3663   |
| HYCS73513xxx  | 7075-T6 aluminum | 1/2                                  | 12.7  | <b>1</b> <sup>3</sup> /8             | 35   | 1/2                                  | 13 | 6443  | 2922   | 9664  | 4384   |
| HYCST3513xxx  | titanium         | 1/2                                  | 12.7  | <b>1</b> <sup>3</sup> /8             | 35   | 1/2                                  | 13 | 6443  | 2922   | 9664  | 4384   |
| HYCS74013xxx  | 7075-T6 aluminum | 1/2                                  | 12.7  | <b>1</b> 1/2                         | 40   | 1/2                                  | 13 | 7854  | 3563   | 11781 | 5344   |
| HYCST4013xxx  | titanium         | 1/2                                  | 12.7  | <b>1</b> <sup>1</sup> / <sub>2</sub> | 40   | 1/2                                  | 13 | 7854  | 3563   | 11781 | 5344   |
| HYCS74514xxx  | 7075-T6 aluminum | 5/8                                  | 15.9  | <b>1</b> <sup>3</sup> / <sub>4</sub> | 45   | <sup>9</sup> /16                     | 14 | 10784 | 4891   | 16176 | 7337   |
| HYCST4514xxx  | titanium         | 5/8                                  | 15.9  | <b>1</b> <sup>3</sup> / <sub>4</sub> | 45   | <sup>9</sup> / <sub>16</sub>         | 14 | 10784 | 4891   | 16176 | 7337   |
| HYCS75016xxx  | 7075-T6 aluminum | <sup>5</sup> /8                      | 15.9  | 2                                    | 50   | <sup>5</sup> /8                      | 16 | 14174 | 6429   | 21261 | 9644   |
| HYCST5016xxx  | titanium         | <sup>5</sup> /8                      | 15.9  | 2                                    | 50   | <sup>5</sup> /8                      | 16 | 14174 | 6429   | 21261 | 9644   |
| HYCS75518xxx  | 7075-T6 aluminum | 3/4                                  | 19.1  | <b>2</b> <sup>1</sup> /8             | 55   | 11/16                                | 18 | 15877 | 7202   | 23815 | 10802  |
| HYCST5518xxx  | titanium         | 3/4                                  | 19.1  | <b>2</b> <sup>1</sup> / <sub>8</sub> | 55   | 11/16                                | 18 | 15877 | 7202   | 23815 | 10802  |
| HYCS76521xxx  | 7075-T6 aluminum | 7/8                                  | 22.2  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 65   | <sup>13</sup> / <sub>16</sub>        | 21 | 21951 | 9957   | 32927 | 14935  |
| HYCST6521xxx  | titanium         | 7/8                                  | 22.2  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 65   | 13/16                                | 21 | 21951 | 9957   | 32927 | 14935  |
| HYCS77525xxx  | 7075-T6 aluminum | 1                                    | 25.4  | 3                                    | 75   | 1                                    | 25 | 31416 | 14250  | 47124 | 21375  |
| HYCST7525xxx  | titanium         | 1                                    | 25.4  | 3                                    | 75   | 1                                    | 25 | 31416 | 14250  | 47124 | 21375  |
| HYCS78029xxx  | 7075-T6 aluminum | <b>1</b> 1/4                         | 31.8  | <b>3</b> <sup>1</sup> / <sub>8</sub> | 80   | <b>1</b> 1/8                         | 29 | 33379 | 15141  | 50069 | 22711  |
| HYCST8029xxx  | titanium         | <b>1</b> <sup>1</sup> / <sub>4</sub> | 31.8  | <b>3</b> <sup>1</sup> /8             | 80   | <b>1</b> <sup>1</sup> /8             | 29 | 33379 | 15141  | 50069 | 22711  |
| HYCS79035xxx  | 7075-T6 aluminum | <b>1</b> <sup>3</sup> /8             | 34.9  | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90   | 13/8                                 | 35 | 40681 | 18453  | 61022 | 27679  |
| HYCST9035xxx  | titanium         | <b>1</b> <sup>3</sup> /8             | 34.9  | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90   | 13/8                                 | 35 | 40681 | 18453  | 61022 | 27679  |
| HYCS710038xxx | 7075-T6 aluminum | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38.1  | 4                                    | 100  | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | 53996 | 24492  | 80994 | 36738  |
| HYCST10038xxx | titanium         | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38.1  | 4                                    | 100  | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | 53996 | 24492  | 80994 | 36738  |

\*When ordering, replace xxx with desired stroke length in millimeters.

# **Hydraulic Pumps**

Harken 3-speed pumps push oil faster and more efficiently than other pumps on the market, reducing wasted time and energy. At preset points, the pump automatically shifts to the next speed. Shift points can be adjusted to fit crew strength and sailing style. We also make a 2-speed pump that offers the same high-strength handles, user-adjustable autoshifting, and mounting accessories.

Bolt holes in the Hardkote-anodized 6061-T6 aluminum pump housing are threaded with stainless-steel inserts to prevent corrosion around the stainless bolts. An optional adhered isolation plate improves load distribution even more by transferring torque directly to the mounting surface rather than the bolt holes. The piston shafts and rocker arms are machined from 17-4PH stainless steel.

Pumps have splined shafts to ensure a tight fit and to allow the handle to be mounted at the exact angle you choose. Standard roundtipped handles are made of knurled 6061-T6 Hardkote-anodized aluminum and fit most marine pumps. Grand Prix alternatives include carbon and knurled titanium. An optional square-tipped style allows the handle to be rocked 5 degrees laterally from the pumping direction to store against the cockpit wall.

**CARBON HANDLE** 

**ALUMINUM HANDLE** 

### Handles

| Part        |                                        |                                      | Ø  | Ler                                   | ngth | Weight |      |  |
|-------------|----------------------------------------|--------------------------------------|----|---------------------------------------|------|--------|------|--|
| No.         | Description                            | in                                   | mm | in                                    | mm   | lb     | kg   |  |
| HYPMH6600   | Pump Handle 600 mm/aluminum            | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32 | 235/8                                 | 600  | 1.3    | 0.58 |  |
| HYPMH6800   | Pump Handle 800 mm/aluminum            | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32 | <b>31</b> <sup>1</sup> / <sub>2</sub> | 800  | 1.6    | 0.73 |  |
| HYPMHC800   | Pump Handle 800 mm/carbon              | <b>1</b> 1/4                         | 32 | <b>31</b> 1/2                         | 800  | 1.2    | 0.55 |  |
| HYPMHC800S  | Pump Handle 800 mm/carbon/square tip   | <b>1</b> 1/4                         | 32 | <b>31</b> 1/2                         | 800  | 1.3    | 0.58 |  |
| HYPMHC1000  | Pump Handle 1000 mm/carbon             | <b>1</b> 1/4                         | 32 | 393/8                                 | 1000 | 1.4    | 0.65 |  |
| HYPMHC1000S | Pump Handle 1000 mm/carbon/square tip  | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32 | 393/8                                 | 1000 | 1.5    | 0.66 |  |
| HYPMHT800   | Pump Handle 800 mm/titanium            | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32 | <b>31</b> <sup>1</sup> / <sub>2</sub> | 800  | 1.3    | 0.57 |  |
| HYPMHT800S  | Pump Handle 800 mm/titanium/square tip | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32 | <b>31</b> <sup>1</sup> / <sub>2</sub> | 800  | 1.3    | 0.58 |  |

Optional isolation plates made of extremely resilient G10 improve load distribution by transferring torque directly to the mounting surface

photo

Vartinez

Thierv

TP52, Reichel/Pugh, Cookson Boats

Artemic

0

0

### Pumps

| Part       |                                               | 1st: Low<br>pressure |      | 2nd: Medium<br>pressure |     | 3rd: High<br>pressure |     | Max<br>pressure |     | Ports/fittings |              | We  | ight |
|------------|-----------------------------------------------|----------------------|------|-------------------------|-----|-----------------------|-----|-----------------|-----|----------------|--------------|-----|------|
| No.        | Description                                   | in³                  | CC   | in³                     | CC  | in³                   | CC  | psi             | bar | Suction        | Pressure     | lb  | kg   |
| HYPM2      | 2-Speed pump/auto shift*‡                     | 0.99                 | 16.3 | 0.25                    | 4.1 | —                     | —   | 5000            | 345 | 3/8" hose barb | 1/4" 37° JIC | —   | _    |
| HYPM3-1.1R | 3-Speed pump/auto shift/round handle socket*  | 2.03                 | 33.3 | 0.51                    | 8.3 | 0.18                  | 3.0 | 10000           | 689 | 3/8" NPT       | 7/16" ORB    | 6.9 | 3.13 |
| HYPM3-1.1S | 3-Speed pump/auto shift/square handle socket* | 2.03                 | 33.3 | 0.51                    | 8.3 | 0.18                  | 3.0 | 10000           | 689 | 3/8" NPT       | 7/16" ORB    | 6.9 | 3.14 |
| НҮРМЗМР    | Pump anti-torque mounting plate               |                      |      | —                       | —   | —                     | —   | _               | —   | —              | —            | 0.2 | 0.09 |
| + 1 10 ( ) |                                               |                      |      |                         |     |                       |     |                 |     |                |              |     |      |

\*M8 fasteners ‡Available 2010

# **Custom Yacht Hydraulics**

Harken<sup>®</sup> offers cylinders and custom hydraulic power systems for megayachts. These complete solutions allow crew to easily control all hydraulic functions and sail controls, including mainsheet traveler, backstay, halyard tensioner, outhaul, vang, furling, and winch systems. Systems include custom power units, PTO pumps, valve manifolds, and electrical control systems.

### Cylinders

Cylinders feature Hardkote-anodized 6061-T6 aluminum housing, high-strength, corrosion-resistant Nitronic 50 stainless rods and pins. As the cylinder moves, low-friction Teflon<sup>®</sup> seals reduce drag for less wear.

### **PTO Pumps**

Customized for specific hydraulic systems, PTO (power take-off) pumps convert engine power to hydraulic power to handle gear requiring high horsepower such as Captive Reel winches, bow thrusters, or windlasses.

### **Electro-Hydraulic Valves**

Electro-hydraulic valves are electronically controlled by a PLC (programmable logic controller) for a high degree of precision and repeatability. They offer on/off or variable flow rates which can be operated by a push-button or joystick.



**CUSTOM CONTROL PANEL** 



**CUSTOM VALVE BLOCK** 

CUSTOM POWER UNIT



Mark Llovd photo

*Custom power units are available from 3 to 22 kilowatts in any configuration* 

The Harken HydroTrim is true push-button sailing for main and headsail sheeting. Using a 1:4 or 1:6 reverse purchase, it solves the problem of winches that tail line into the cockpit—the hidden belowdecks or in-boom purchase contains all line within the system and saves valuable space on deck.

The cylinder is affixed to the hull or frame with a two-piece retaining bracket. This one-time installation allows the cylinder to be easily removed and serviced without unbolting anything from the hull. The blocks can be removed from the cylinder ends with a single pin so you can service them offsite or leave the rigging intact while servicing the cylinder. Two smaller low-friction sheaves on the cylinder ends replace the larger diameter sheaves typical of most belowdecks trimming systems, reducing the overall length of the system and allowing installation into smaller spaces.

Cylinders feature bronze-filled Teflon<sup>®</sup> bearings that maintain piston and rod alignment longer than common acetal bearings. Graphite-filled Teflon<sup>®</sup> rod seals and bronze-filled Teflon<sup>®</sup> piston seals are extremely low friction and are more durable than polyurethane seals. Performance O-rings and slant springs in the nonabsorbent Teflon<sup>®</sup> cylinder seals provide consistent seal pressure for a reliable long-lasting fit. Cylinders, rod, T-Track, and mounting brackets are made with Hardkote-anodized, Teflon<sup>®</sup>-impregnated 6061-T6 aluminum. All fittings and fasteners are stainless steel.

Custom cylinder lengths are available.

The HydroTrim fits into smaller spaces by using two smaller sheaves in place of one large sheave.







Blocks remove from the cylinder ends with a single pin for easy service.



NEW



| Bore            |                                       |     | B                                    | nd  |    |      | M     | ax     |          | Ма       | ax sheet loa | d* at pressu | ire      | Oil volume |      |  |
|-----------------|---------------------------------------|-----|--------------------------------------|-----|----|------|-------|--------|----------|----------|--------------|--------------|----------|------------|------|--|
| Part            | -                                     | Ø   |                                      | Ø   | St | roke | Housi | ing OD | Reverse  | 2000 psi | /140 bar     | 3000 psi     | /210 bar | cap        | end  |  |
| No.             | in                                    | mm  | in                                   | mm  | in | mm   | in    | mm     | purchase | lb       | kg           | lb           | kg       | gal        | L    |  |
| HYCT453235.4    | <b>1</b> <sup>3</sup> / <sub>4</sub>  | 45  | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32  | 14 | 350  | 2.27  | 57.7   | 4        | 1203     | 546          | 1804         | 818      | 0.14       | 0.5  |  |
| HYCT453235.6    | <b>1</b> <sup>3</sup> / <sub>4</sub>  | 45  | <b>1</b> 1/4                         | 32  | 14 | 350  | 2.27  | 57.7   | 6        | 802      | 364          | 1203         | 546      | 0.14       | 0.5  |  |
| HYCT453270.4    | <b>1</b> <sup>3</sup> / <sub>4</sub>  | 45  | <b>1</b> 1/4                         | 32  | 28 | 700  | 2.27  | 57.7   | 4        | 1203     | 546          | 1804         | 818      | 0.29       | 1.1  |  |
| HYCT453270.6    | <b>1</b> <sup>3</sup> / <sub>4</sub>  | 45  | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32  | 28 | 700  | 2.27  | 57.7   | 6        | 802      | 364          | 1203         | 546      | 0.29       | 1.1  |  |
| HYCT553840.4    | <b>2</b> <sup>3</sup> / <sub>16</sub> | 55  | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38  | 16 | 400  | 2.86  | 72.6   | 4        | 1879     | 852          | 2819         | 1279     | 0.26       | 1.0  |  |
| HYCT553840.6    | 2 <sup>3</sup> /16                    | 55  | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38  | 16 | 400  | 2.86  | 72.6   | 6        | 1253     | 568          | 1879         | 852      | 0.26       | 1.0  |  |
| HYCT553880.4    | 2 <sup>3</sup> / <sub>16</sub>        | 55  | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38  | 31 | 800  | 2.86  | 72.6   | 4        | 1879     | 852          | 2819         | 1279     | 0.51       | 1.9  |  |
| HYCT553880.6    | 2 <sup>3</sup> /16                    | 55  | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38  | 31 | 800  | 2.86  | 72.6   | 6        | 1253     | 568          | 1879         | 852      | 0.51       | 1.9  |  |
| HYCT654850.4    | <b>2</b> <sup>1</sup> / <sub>2</sub>  | 65  | 17/8                                 | 48  | 20 | 500  | 3.17  | 80.5   | 4        | 2454     | 1113         | 3682         | 1670     | 0.42       | 1.6  |  |
| HYCT654850.6    | <b>2</b> <sup>1</sup> / <sub>2</sub>  | 65  | 17/8                                 | 48  | 20 | 500  | 3.17  | 80.5   | 6        | 1636     | 742          | 2454         | 1113     | 0.42       | 1.6  |  |
| HYCT6548100.4   | <b>2</b> <sup>1</sup> / <sub>2</sub>  | 65  | 17/8                                 | 48  | 39 | 1000 | 3.17  | 80.5   | 4        | 2454     | 1113         | 3682         | 1670     | 0.84       | 3.2  |  |
| HYCT6548100.6   | <b>2</b> <sup>1</sup> / <sub>2</sub>  | 65  | 17/8                                 | 48  | 39 | 1000 | 3.17  | 80.5   | 6        | 1636     | 742          | 2454         | 1113     | 0.84       | 3.2  |  |
| HYCT755460.4    | 3                                     | 75  | 2 <sup>1</sup> /8                    | 54  | 24 | 600  | 3.8   | 96.5   | 4        | 3534     | 1603         | 5301         | 2405     | 0.72       | 2.7  |  |
| HYCT755460.6    | 3                                     | 75  | 2 <sup>1</sup> /8                    | 54  | 24 | 600  | 3.8   | 96.5   | 6        | 2356     | 1069         | 3534         | 1603     | 0.72       | 2.7  |  |
| HYCT7554120.4   | 3                                     | 75  | 2 <sup>1</sup> /8                    | 54  | 47 | 1200 | 3.8   | 96.5   | 4        | 3534     | 1603         | 5301         | 2405     | 1.4        | 5.5  |  |
| HYCT7554120.6   | 3                                     | 75  | 2 <sup>1</sup> /8                    | 54  | 47 | 1200 | 3.8   | 96.5   | 6        | 2356     | 1069         | 3534         | 1603     | 1.4        | 5.5  |  |
| HYCT906065.4    | <b>3</b> <sup>1</sup> / <sub>2</sub>  | 90  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 60  | 26 | 650  | 4.57  | 116.1  | 4        | 4811     | 2182         | 7216         | 3273     | 1.1        | 4.0  |  |
| HYCT906065.6    | <b>3</b> <sup>1</sup> / <sub>2</sub>  | 90  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 60  | 26 | 650  | 4.57  | 116.1  | 6        | 3207     | 1455         | 4811         | 2182     | 1.1        | 4.0  |  |
| HYCT9060130.4   | 31/2                                  | 90  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 60  | 51 | 1300 | 4.57  | 116.1  | 4        | 4811     | 2182         | 7216         | 3273     | 2.1        | 8.1  |  |
| HYCT9060130.6   | 31/2                                  | 90  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 60  | 51 | 1300 | 4.57  | 116.1  | 6        | 3207     | 1455         | 4811         | 2182     | 2.1        | 8.1  |  |
| HYCT1007575.4   | 4                                     | 100 | 3                                    | 75  | 30 | 750  | 5.5   | 139.7  | 4        | 6283     | 2850         | 9425         | 4275     | 1.6        | 6.1  |  |
| HYCT1007575.6   | 4                                     | 100 | 3                                    | 75  | 30 | 750  | 5.5   | 139.7  | 6        | 4189     | 1900         | 6283         | 2850     | 1.6        | 6.1  |  |
| HYCT10075150.4  | 4                                     | 100 | 3                                    | 75  | 59 | 1500 | 5.5   | 139.7  | 4        | 6283     | 2850         | 9425         | 4275     | 3.2        | 12.2 |  |
| HYCT10075150.6  | 4                                     | 100 | 3                                    | 75  | 59 | 1500 | 5.5   | 139.7  | 6        | 4189     | 1900         | 6283         | 2850     | 3.2        | 12.2 |  |
| HYCT1159090.4   | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115 | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90  | 35 | 900  | 6     | 152.4  | 4        | 7952     | 3607         | 11928        | 5411     | 2.4        | 9.2  |  |
| HYCT1159090.6   | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115 | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90  | 35 | 900  | 6     | 152.4  | 6        | 5301     | 2405         | 7952         | 3607     | 2.4        | 9.2  |  |
| HYCT11590180.4  | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115 | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90  | 71 | 1800 | 6     | 152.4  | 4        | 7952     | 3607         | 11928        | 5411     | 4.9        | 18.5 |  |
| HYCT11590180.6  | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115 | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90  | 71 | 1800 | 6     | 152.4  | 6        | 5301     | 2405         | 7952         | 3607     | 4.9        | 18.5 |  |
| HYCT130100100.4 | 51/8                                  | 130 | 4                                    | 100 | 39 | 1000 | 7     | 177.8  | 4        | 10314    | 4679         | 15472        | 7018     | 3.5        | 13.3 |  |
| HYCT130100100.6 | 51/8                                  | 130 | 4                                    | 100 | 39 | 1000 | 7     | 177.8  | 6        | 6876     | 3119         | 10314        | 4679     | 3.5        | 13.3 |  |
| HYCT130100200.4 | 5 <sup>1</sup> /8                     | 130 | 4                                    | 100 | 79 | 2000 | 7     | 177.8  | 4        | 10314    | 4679         | 15472        | 7018     | 7.0        | 26.6 |  |
| HYCT130100200.6 | 5 <sup>1</sup> /8                     | 130 | 4                                    | 100 | 79 | 2000 | 7     | 177.8  | 6        | 6876     | 3119         | 10314        | 4679     | 7.0        | 26.6 |  |
| HYC1145115115.4 | 53/4                                  | 145 | 41/2                                 | 115 | 45 | 1150 | 8     | 203.2  | 4        | 12984    | 5889         | 19475        | 8834     | 5.1        | 19.3 |  |
| HYC1145115115.6 | 53/4                                  | 145 | 41/2                                 | 115 | 45 | 1150 | 8     | 203.2  | 6        | 8656     | 3926         | 12984        | 5889     | 5.1        | 19.3 |  |
| HYC1145115230.4 | 53/4                                  | 145 | 41/2                                 | 115 | 91 | 2300 | 8     | 203.2  | 4        | 12984    | 5889         | 19475        | 8834     | 10.2       | 38.5 |  |
| HYC1145115230.6 | 53/4                                  | 145 | 41/2                                 | 115 | 91 | 2300 | 8     | 203.2  | 6        | 8656     | 3926         | 12984        | 5889     | 10.2       | 38.5 |  |
| HYC1165130125.4 | 6 <sup>1</sup> /2                     | 165 | 51/8                                 | 130 | 49 | 1250 | 9     | 228.6  | 4        | 16592    | /526         | 24887        | 11289    | /.1        | 26.8 |  |
| HYC1165130125.6 | 61/2                                  | 165 | 51/8                                 | 130 | 49 | 1250 | 9     | 228.6  | 6        | 11061    | 5017         | 16592        | /526     | /.1        | 26.8 |  |
| HYC1165130250.4 | 61/2                                  | 165 | 51/8                                 | 130 | 98 | 2500 | 9     | 228.6  | 4        | 16592    | /526         | 24887        | 11289    | 14.1       | 53.5 |  |
| HYC1165130250.6 | 61/2                                  | 165 | 51/8                                 | 130 | 98 | 2500 | 9     | 228.6  | 6        | 11061    | 5017         | 16592        | /526     | 14.1       | 53.5 |  |
| HYC1190145125.4 | 71/2                                  | 190 | 53/4                                 | 145 | 49 | 1250 | 10    | 254.0  | 4        | 22089    | 10020        | 33134        | 15029    | 9.4        | 35.6 |  |
| HYC1190145125.6 | 71/2                                  | 190 | 53/4                                 | 145 | 49 | 1250 | 10    | 254.0  | 6        | 14/26    | 6680         | 22089        | 10020    | 9.4        | 35.6 |  |
| HYC1190145250.4 | 71/2                                  | 190 | 53/4                                 | 145 | 98 | 2500 | 10    | 254.0  | 4        | 22089    | 10020        | 33134        | 15029    | 18.8       | /1.3 |  |
| HYC1190145250.6 | 11/2                                  | 190 | 53/4                                 | 145 | 98 | 2500 | 10    | 254.0  | 6        | 14/26    | 6680         | 22089        | 10020    | 18.8       | /1.3 |  |

\*Sheet system friction not calculated
**HYDRAULIC SYSTEMS** 

## **Hydraulic Accessories**

Harken offers a complete range of high-quality kits and components for the professional installation, service, and maintenance of your hydraulic system.

#### **Filters**

Filtration is essential to the health and longevity of your hydraulic system. Harken recommends the 40-micron suction/return filter between the reservoir and the pump as well as an extremely fine 3-micron filter between the pump and the valves. The 40-micron filter has an anodized aluminum body with a removable, cleanable, and replaceable sintered bronze element. The high pressure 3-micron filter is made from electropolished 17-4PH stainless. It has a replaceable paper element and can handle pressures up to 10,000 psi. -4SAE ports allow the high pressure filter to accept any combination of fittings and adapters.

#### **Pressure Transducers**

Pressure transducers use the onboard computer to convert hydraulic pressures of up to 10,000 psi into tons or other load units. Standard lightweight versions and super lightweight Grand Prix versions are available.

#### **Pressure Gauges**

Pressure gauges, offered as an alternative to electronic transducers, can be mounted into the valve panel or plumbed remotely into a pressure line. Stainless steel 1.5 in (40 mm) cases are filled with glycerin to dampen needle movement.

#### Plumbing

Harken has a complete line of high pressure and low pressure plumbing for manual hydraulic systems. All high pressure fittings and adapters are machined from stainless steel. Hoses can be sent to you assembled and preflushed.

#### **Blanking Kits**

Use a blanking kit to maintain the functionality of your hydraulic system when a valve is removed. Kits include O-rings and bolts.

#### Seal Kits

Seal kits are available for all valves, cylinders, and pumps. Kits include all normal wear items such as O-rings, seals, and nylon tip set screws.

#### **Repair Kits**

Repair kits are available for all valves, cylinders, and pumps. They include everything in the seal kit with the addition of select machined components that may require occasional replacement.

#### **HAWE Tool**

The HAWE tool is used for removing and reinstalling the check valves included in valve and pump repair kits.



## **Put the Smooth Back in Sailing**



#### **SAILKOTE**<sup>™</sup> **High Performance Dry Lubricant**

Use on hatches, drawers, sliding doors, sail tracks, mast tracks and sildes, engine lower units, propellers and bow thrusters, fishing reel components and fly line, sails, battens and telltales, slider cars and tracks

- · Repels water, dirt, salt and contaminants
- · Reduces drag in air and water
- · Clean, dry and easy-to-use
- . Lasts up to 10 times longer than Teflon® additives, oil or wax-based lubricants

#### **HULLKOTE**<sup>T</sup>

#### **High Performance Speed Polish**

Use on fiberglass, metal, plexiglass and painted surfaces

- · Cleans, polishes and protects
- · Reduces drag and repels water
- · Environmentally friendly citrus base
- · Long-lasting, high-gloss finish
- Superior UV protection

#### **ONEDROP**<sup>™</sup> **Ball Bearing Conditioner**

#### Use on ball bearing traveler cars and battcars

- · Repels salt, dirt and other deposits
- · Protects, lubricates and conditions bearing surfaces
- · Reduces friction so balls to roll freely and evenly.
- greatly improving performance
- Only one drop needed



## **Garage Storage**

Store everything from canoes and kayaks to bikes, ladders and roof racks at ceiling level.

Easy to Install • Complete kit • Self-locking

#### Easy to Use

One person can raise and lower with a single control rope.



| Part       | Mechanical       | M<br>vertic | ax<br>al lift* | Mini<br>workir | mum<br>1g load | Wor<br>load | king<br>limit |
|------------|------------------|-------------|----------------|----------------|----------------|-------------|---------------|
| No.        | Advantage        | ft          | m              | lb             | kg             | lb          | kg            |
| 7800       | 2:1              | 8           | 2.4            | 10             | 4.5            | 45          | 20            |
| 7801       | 3:1              | 8.5         | 2.6            | 15             | 7              | 60          | 27            |
| 7802       | 4:1              | 8.5         | 2.6            | 25             | 11             | 90          | 41            |
| 7803       | 6:1              | 8.5         | 2.6            | 45             | 20             | 145         | 66            |
| 7806       | 8:1              | 8.5         | 2.6            | 75             | 34             | 200         | 91            |
| 7807       | 3:1              | 8.5         | 2.6            | 15             | 7              | 60          | 27            |
| *\//ith 10 | ft (2 m) ooiling |             |                |                |                |             |               |

With 10 ft (3 m) ceiling





## **2010 NEW PRODUCTS**

Till a

## Aluminum Tiller Extension

The rigid anodized body of this tiller extension transmits subtle boat and rudder movements, allowing you to steer by the feel of the helm. The elegantly simple and lightweight design has no unnecessary frills—every aspect contributes to its strength, stiffness, or comfort. Its universal joint is reinforced by a rope core for extra durability and the thick UV-protected grip is perfect for full dagger-grip and fingertip steering.





Base cover snaps off to remove tiller extension



Universal joint rotates 360°

7100.24 7100.30 7100.33

7100.36 7100.42 7100.48



Non-slip foam rubber grip

| Part    |                        | Len     | gth  | Ti              | ube<br>Ø | We  | ight | Fast<br>spa | tener<br>cing | Fast                         | eners | Joint     | Tube     |
|---------|------------------------|---------|------|-----------------|----------|-----|------|-------------|---------------|------------------------------|-------|-----------|----------|
| No.     | Description            | in      | mm   | in              | mm       | 0Z  | g    | in          | mm            | in                           | mm    | type      | material |
| 7100.24 | Tiller extension       | 24      | 600  | <sup>5</sup> /8 | 16       | 4.1 | 117  | 1.25        | 31.8          | <sup>3</sup> / <sub>16</sub> | 5     | universal | aluminum |
| 7100.30 | Tiller extension       | 30      | 760  | <sup>5</sup> /8 | 16       | 4.9 | 138  | 1.25        | 31.8          | <sup>3</sup> / <sub>16</sub> | 5     | universal | aluminum |
| 7100.33 | Tiller extension       | 33      | 840  | <sup>5</sup> /8 | 16       | 5.2 | 149  | 1.25        | 31.8          | <sup>3</sup> / <sub>16</sub> | 5     | universal | aluminum |
| 7100.36 | Tiller extension       | 36      | 915  | <sup>5</sup> /8 | 16       | 5.6 | 160  | 1.25        | 31.8          | <sup>3</sup> / <sub>16</sub> | 5     | universal | aluminum |
| 7100.42 | Tiller extension       | 42      | 1070 | <sup>5</sup> /8 | 16       | 6.3 | 178  | 1.25        | 31.8          | <sup>3</sup> / <sub>16</sub> | 5     | universal | aluminum |
| 7100.48 | Tiller extension       | 48 1220 |      | <sup>5</sup> /8 | 16       | 7.1 | 203  | 1.25        | 31.8          | <sup>3</sup> / <sub>16</sub> | 5     | universal | aluminum |
| 7101    | Tiller extension base* | 1.75    | 44   | _               | _        | .18 | 5    | 1.25        | 31.8          | <sup>3</sup> / <sub>16</sub> | 5     |           | _        |

\*Fasteners not included

## 18 mm Switch T-Track Battcar Systems

The 18 mm car bodies are built of fiberreinforced, lubricated plastic that is UV stabilized with black additive for maximum protection. 18 mm high-load car bodies are machined aluminum with low-friction Delrin<sup>®</sup> sliders. Aluminum cars and T-Track are Hardkote anodized for durability.

#### Fits Boats:

**18 mm:** Monohulls: 37-45 ft (11 m - 13.5 m); Multihulls: 30-35 ft (9 - 10.5 m); **18 mm High-Load:** Monohulls 45 - 50 ft (13.5 m - 15 m); Multihulls 35 - 40 ft (10.5 - 12 m)



HC7905



HC7905HL

**INTERMEDIATE CARS** 



HC8537



HC7904HL HC8537HL

**BATTEN CARS** 



HC7906



Cut car stack height in half by flaking the sail alternately to port and starboard of the boom.

### BATTCAR 84

### WHY DO I WANT A SWITCH BATTCAR SYSTEM?

A Switch Battcar system cuts stack height in half, so putting on a sail cover or connecting/disconnecting your halyard is a much easier task. The system works by alternately dropping mainsail cars onto port and starboard storage racks. Headboard cars articulate and pass through the switch, reducing stack height even more.

HEADBOARD CARS

HC7906HL



## **18 mm Switch T-Track** Battcar Systems

Switch system track is machined or extruded from 6061-T6 aluminum and Hardkote anodized for a long-lasting surface. For masts with sail grooves, 18 mm slug-mount track uses a unique system that allows mast-up installation. Use high-load slug-mount tracks on boats over 40' (12.2 m) at sail headboard locations at full hoist and when sail is reefed. Drill/tap track and switches fit masts without sail grooves. Join drill/tap track sections with splice links. Order one per track section. Boats with larger sail areas should use long switches to accommodate more cars.

#### **Mounting Kits and Endstops**

Slug mounting kits are available for flat or round mast grooves. Order one kit per track section.

Switch track includes screwpin stops for easy car and sail removal below switch. Stop at masthead also included.



#### **SLUG MOUNT**

#### **Mounting Kits: Slug Mount**

|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N                                    | lountir   | ıg slu  | g     |           | C    | onnec | tor sl    | ug         |                | Flat                         | mast g       | roov                         | e gap |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------|---------|-------|-----------|------|-------|-----------|------------|----------------|------------------------------|--------------|------------------------------|-------|
| Part             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lei                                  | ngth      | Wei     | ight  | Mounting  | Ler  | ngth  | We        | ight       | Connector      | M                            | lin          | Μ                            | ax    |
| No.              | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | in                                   | mm        | 0Z      | g     | slugs/kit | in   | mm    | OZ        | g          | slugs/kit      | in                           | mm           | in                           | mm    |
| Switch Mo        | ounting Kits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                      |           |         |       |           |      |       |           |            |                |                              |              |                              |       |
| HC8918           | Round mast groove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2                                    | 51        | .32     | 9     | 3         | _    | _     | _         | —          | _              | _                            | _            | —                            | _     |
| HC8919           | Flat mast groove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>1</b> <sup>3</sup> / <sub>4</sub> | 45        | .28     | 8     | 3         | _    | _     | —         | —          | _              | <sup>5</sup> /16             | 8            | <sup>7</sup> /16             | 11    |
| HC8921           | Wide flat mast groove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>1</b> <sup>3</sup> / <sub>4</sub> | 45        | .56     | 16    | 3         | _    | _     | —         | _          | —              | <sup>7</sup> / <sub>16</sub> | 11           | 5/8                          | 16    |
| Track Mou        | inting Kits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |           |         |       |           |      |       |           |            |                |                              |              |                              |       |
| HC9106           | Round mast groove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3/4                                  | 19        | .14     | 4     | 19        | 25/8 | 67    | .54       | 15         | 1              | _                            | —            | —                            | _     |
| HC9702           | Round mast groove, extras*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3/4                                  | 19        | .14     | 4     | 10        | _    | _     | —         | —          | —              | _                            | —            | —                            | _     |
| HC9107           | Flat mast groove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3/4                                  | 19        | .17     | 5     | 19        | 25/8 | 67    | .60       | 17         | 1              | <sup>5</sup> /16             | 8            | <sup>7</sup> / <sub>16</sub> | 11    |
| HC9703           | Flat mast groove, extras*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3/4                                  | 19        | .17     | 5     | 10        | —    | _     | —         | _          | —              | <sup>5</sup> /16             | 8            | <sup>7</sup> / <sub>16</sub> | 11    |
| HC9108           | Wide flat mast groove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3/4                                  | 19        | .25     | 6     | 19        | 25/8 | 67    | .94       | 23         | 1              | <sup>7</sup> / <sub>16</sub> | 11           | <sup>5</sup> /8              | 16    |
| HC9704           | Wide flat mast groove, extras*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3/4                                  | 19        | .25     | 6     | 10        | _    | _     | —         | —          | —              | <sup>7</sup> / <sub>16</sub> | 11           | 5/8                          | 16    |
| * European Jacob | the family constant and a constant of the second se |                                      | LaDAL and | L. 1100 | 24.00 | 1100407   | 1004 | 00 6  | e e ll de | e e elle e | and to achieve | 1.1.11                       | la a la Alla | المحمد المحمد                |       |

\*Extra slug kit for HC8811 track. Order one kit in addition to HC9106, HC9107 or HC9108 for sail headboard location at full hoist and when sail is reefed.

#### Track

| Part      |                       | Len                                   | gth  | Wi                            | dth | We   | ight | Fasteners | Fastener<br>spacing |
|-----------|-----------------------|---------------------------------------|------|-------------------------------|-----|------|------|-----------|---------------------|
| No.       | Description           | in                                    | mm   | in                            | mm  | 0Z   | g    | mm        | mm                  |
| Slug Mou  | nt                    |                                       |      |                               |     |      |      |           |                     |
| HC8798    | Switch/short          | 24                                    | 610  | 25/8                          | 67  | 32   | 907  | 5         | _                   |
| HC8799    | Switch/long           | <b>33</b> <sup>3</sup> / <sub>4</sub> | 857  | 25/8                          | 67  | 47   | 1336 | 5         | _                   |
| HC8800    | T-Track               | 8013/16                               | 2051 | 27/32                         | 21  | 27   | 758  | 5         | 100                 |
| HC8811    | T-Track/high-load     | 8013/16                               | 2051 | 27/32                         | 21  | 26   | 748  | 5         | 50                  |
| Drill/Tap |                       |                                       |      |                               |     |      |      |           |                     |
| HC8218    | Switch/short          | 23 <sup>13</sup> /16                  | 605  | 3                             | 76  | 20.1 | 571  | 5         | 75                  |
| HC8219    | Switch/long **        | 3325/32 *                             | 858  | 3                             | 76  | 26.7 | 758  | 5         | 75                  |
| HC7827    | 3 m T-Track           | 118 <sup>1</sup> /8                   | 3000 | <sup>23</sup> / <sub>32</sub> | 18  | 38.9 | 1106 | 5         | 75                  |
| HC9597    | 2 m T-Track/high load | 78 <sup>3</sup> / <sub>4</sub>        | 2000 | 23/32                         | 18  | 25.5 | 723  | 5         | 50                  |
| HC8230    | Splice link           | _                                     | _    | _                             | _   | _    |      | _         | _                   |

\*\*Includes storage tracks



HC8800 HC8811

5/32" (4 mm)

<sup>11</sup>/<sub>16</sub>" 18 mm

27/32" 21 mm

HC8918

HC8919

HC8921

HC8800

HC8811

HC8798

HC8799

<sup>19</sup>/<sub>32</sub>"

15 mm

HC9106

HC9107

HC9108

HC9106

HC9107

HC9108



## **Electric Jib Reefing & Furling**



#### **PUSH-BUTTON** SAIL CONTROL

Designed for large cruising boats, electric furling is a headsail system that helps you get the most out of your boat, while letting you comfortably reef, furl and set sails from the cockpit with the push of a button.

#### **DETAILS MAKE THE DIFFERENCE**

#### HIGH-STRENGTH MATERIALS, SCULPTED DESIGN

The torque tube, motor, and gear housing are deep-saturation Hardkote-anodized, UV-stabilized aluminum. The sculpted gear box and streamlined motor housing is sealed with high-quality lip seals. The motor mounts vertically into pulpits, clearing anchor tackle and providing low windage.

#### **HIGH-TORQUE, LOW-POWER MOTOR**

The motor is a permanent magnet design and features high torque and low power consumption. Inside, the hardened steel gears are permanently lubricated. The reversible drive uses a high-reduction worm gear set to prevent reefed sails from unfurling under load.

#### **EASY TO INSTALL OR UPGRADE**

C-shaped connectors slip over the headstay without feeding wire through the connector. The lower unit fits over the existing turnbuckle allowing easy length adjustment. Easy upgrade from a Cruising Unit 2 and MKIV Unit 3 manual unit.



- 2. 12- or 24-Volt Systems Available in 12 or 24 volts; switches and 12- or 24-volt control box and circuit breaker included.
- 3. Emergency Manual Operation Use supplied crank handle or cordless drill adapter.
- Scratch-Resistant Link Plates Stainless steel link plates fit over standard turnbuckle, resist scratches, and can be easily repolished.

## **Unit 2E** Typical Boat Length <u>35' - 46' (10.6 - 14.2 m)</u>

| Wire Ø                 | (1 x 19 SS)              | Rod Ø                                     | Clevis Pin Ø                 |
|------------------------|--------------------------|-------------------------------------------|------------------------------|
| 5/16", 3/8", 7/16" (   | 8, 10, 11, 12 mm)        | -12 -17, -22 (7.14, 8.38, 9.53 mm         | ) 5/8", 3/4" (15.9, 19.1 mm) |
| Headstay Length        | Standard 60'3" (18       | .36 m); max 67'3" (20.49 m)               |                              |
| Part No.               | Description              |                                           |                              |
| 7312.13 12V            | Electric Furler 12 V     | olt with control box, switches, and circu | iit breaker                  |
| 7312.13 24V            | Electric Furler 24 V     | olt with control box, switches, and circu | iit breaker                  |
| <b>Toggle Assembly</b> | <b>Required - sold s</b> | eparately                                 |                              |
| 7312.22 5/8            | Jaw/Jaw with link p      | plate with 5/8" (15.9 mm) clevis pin      |                              |
| 7413.22 3/4            | Jaw/Jaw with link p      | plate with 3/4" (19.1 mm) clevis pin      |                              |
| Optional Parts         |                          |                                           |                              |
| 7312.12V.CONV          | Conversion Kit Cru       | ising manual to electric*                 |                              |
| 7312.24V.CONV          | Conversion Kit Cru       | ising manual to electric*                 |                              |
| 7312.30                | Extra 7' (2.13 m) lu     | uff foil extrusion                        |                              |
| 7312.31                | Extra 9" (229 mm)        | connector with isolator                   |                              |
| 7424 -12               | -12 Rod adaptor st       | ud (thread Ø UNF 5/8")**                  |                              |
| 7425 -17               | -17 Rod adaptor st       | ud (thread Ø UNF 5/8")**                  |                              |
| 7426 -22               | -22 Rod adaptor st       | ud (thread Ø UNF 3/4")                    |                              |
|                        |                          |                                           |                              |

\* Includes switches and 12- or 24-volt control box and circuit breaker \*\* Use with conventional turnbuckle

## Unit 3E Typical Boat Length 45' - 60' (13.7 - 18.3 m)

| Wire Ø                                                        | i (1 x 19 SS)            | Rod Ø                                      | Clevis Pin Ø               |
|---------------------------------------------------------------|--------------------------|--------------------------------------------|----------------------------|
| <sup>7</sup> / <sub>16</sub> ", <sup>1</sup> / <sub>2</sub> " | (11, 12 mm)              | -22, -30 (9.53, 11.10 mm)                  | 3/4", 7/8" (19.1, 22.2 mm) |
| Headstay Length                                               | Standard 75'1" (22       | 2.88 m); max 82'1" (25.02 m)               |                            |
| Part No.                                                      | Description              |                                            |                            |
| 7413.13 12V                                                   | Electric Furler 12 \     | /olt with control box, switches, and circu | it breaker                 |
| 7413.13 24V                                                   | Electric Furler 24 \     | /olt with control box, switches, and circu | it breaker                 |
| Toggle Assembly                                               | <b>Required</b> - sold s | separately                                 |                            |
| 7413.22 3/4                                                   | Jaw/Jaw with link        | plate with 3/4" (19.1 mm) clevis pin       |                            |
| 7413.22 7/8                                                   | Jaw/Jaw with link        | plate with 7/8" (22.2 mm) clevis pin       |                            |
| Optional Parts                                                |                          |                                            |                            |
| 7413.12V.CONV                                                 | Conversion Kit MK        | (IV manual to electric*                    |                            |
| 7413.24V.CONV                                                 | Conversion Kit MK        | (IV manual to electric*                    |                            |
| 7413.30                                                       | Extra 7' (2.13 m) I      | uff foil extrusion                         |                            |
| 7413.31                                                       | Extra 93/4" (248 mr      | n) connector with bushings                 |                            |
| 7426 -22                                                      | -22 Rod adaptor s        | tud (thread Ø UNF 3/4")**                  |                            |
| 7427 -30                                                      | -30 Rod adaptor s        | tud (thread Ø UNF 7/8")**                  |                            |
|                                                               |                          |                                            |                            |

\* Includes switches and 12- or 24-volt control box and circuit breaker \*\* Use with conventional turnbuckle



7413.30

| <b>Foil Dime</b> | nsions                               |    |                |    |     |        |                             |
|------------------|--------------------------------------|----|----------------|----|-----|--------|-----------------------------|
|                  |                                      | J  | ŀ              | (  | Foi | length |                             |
| Unit             | in                                   | mm | in             | mm | ft  | m      | Luff tape                   |
| 2E               | 13/4                                 | 44 | 15/8           | 42 | 7   | 2.13   | #6 <sup>6</sup> /32" (5 mm) |
| 3E               | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | <b>1</b> 11/16 | 43 | 7   | 2.13   | #6 <sup>6</sup> /32" (5 mm) |

#### **Electric Furler Dimensions**

| Part                            |                                       | 4   | 1     | 3   | C (I | Max) | l                                    | 2  | E                                      |     | F                               |     | G                                       | ì   | I                                     | 4   |        |     |
|---------------------------------|---------------------------------------|-----|-------|-----|------|------|--------------------------------------|----|----------------------------------------|-----|---------------------------------|-----|-----------------------------------------|-----|---------------------------------------|-----|--------|-----|
| No.                             | in                                    | mm  | in    | mm  | in   | mm   | in                                   | mm | in                                     | mm  | in                              | mm  | in                                      | mm  | in                                    | mm  | in     | mm  |
| 7312.13 with 7312.22 5/8 toggle | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 114 | 8     | 203 | 16   | 406  | <b>3</b> <sup>1</sup> / <sub>4</sub> | 82 | 317/8                                  | 810 | 24 <sup>1</sup> /2              | 622 | <b>22</b> <sup>39</sup> / <sub>64</sub> | 574 | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 116 | 811/32 | 212 |
| 7312.13 with 7413.22 3/4 toggle | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 114 | 8     | 203 | 16   | 406  | <b>3</b> <sup>1</sup> / <sub>4</sub> | 82 | <b>32</b> <sup>1</sup> / <sub>2</sub>  | 826 | 25 <sup>3</sup> / <sub>32</sub> | 637 | 231/4                                   | 590 | <b>5</b> <sup>3</sup> / <sub>16</sub> | 132 | 811/32 | 212 |
| 7413.13 with 7413.22 3/4 toggle | <b>7</b> <sup>5</sup> / <sub>16</sub> | 186 | 115/8 | 296 | 18   | 457  | <b>3</b> <sup>1</sup> / <sub>4</sub> | 82 | <b>32</b> <sup>1</sup> / <sub>2</sub>  | 826 | 25 <sup>3</sup> / <sub>32</sub> | 637 | 23 <sup>1</sup> /4                      | 590 | 5 <sup>3</sup> /16                    | 132 | 811/32 | 212 |
| 7413.13 with 7413.22 7/8 toggle |                                       | 186 | 115/8 | 296 | 18   | 457  | <b>3</b> <sup>1</sup> / <sub>4</sub> | 82 | <b>33</b> <sup>3</sup> / <sub>16</sub> | 840 | 2511/16                         | 652 | 2313/16                                 | 605 | 5 <sup>3</sup> /4                     | 146 | 811/32 | 212 |

7424 -12

7425 -17

7426 - 22

7427 - 30

7312.22 5/8

7413.22 3/4

7413.22 7/8



7312.13 12V 7312.13 24V 7413.13 24V 7413.13 24V



()

.1

## **Small Boat Furling**

#### **Underdeck Furler**

A ball bearing underdeck furler minimizes windage and provides a clean, uncluttered bow for easier mooring and anchoring. It also allows the tack of the sail to be at deck level for better sail shape and more forward power. Its single through-deck spherical joint provides a low-profile, nearly watertight system that aligns the spool to the headstay. Like all small boat furlers, the underdeck furler is not suitable for reefing and it requires a jib with an embedded luff wire. Swivels must be purchased separately.

#### **Hoistable Swivels**

Hoistable ball bearing swivels slide over your headstay and work in conjunction with your normal upper swivel. Since normal swivels are attached to the masthead, you usually need to take down the mast or tip the boat on its side to detach the sail. By attaching the head of your sail to the hoistable swivel instead, you can simply lower the swivel with the jib halyard and unshackle the sail. In addition to making it much easier to change or remove your headsail, the swivel is independent from the headstay so it gives you a way to tension the luff independently of the mast rake. Hoistable swivels are compatible with any Harken small boat furler.

#### **Furler Kit with Hoistable Swivel**

This kit is similar to Harken's existing 435 high-load furler kit but includes everything you need for a hoistable halyard swivel. The kit includes a 164 swivel, HC7744 hoistable swivel, 165 drum, and a tang to attach the forestay and sail tack to the lower unit.



**UNDERDECK FURLER** 





FURLER KIT





*Turnbuckle eye on stationary bracket attaches to an underdeck chainplate* 



Fairlead feeds line onto the spool

|             |                 | Use with         |                     |
|-------------|-----------------|------------------|---------------------|
| Part<br>No. | Upper<br>swivel | Lower<br>drum    | Hoistable<br>swivel |
| HC7744      | 164             | 165 or<br>HC9226 | —                   |
| HC9330      | 207             | 208              | _                   |
| HC9226      | 164             | _                | HC7744              |

| Part   |                                   | Pin-te<br>Ien                     | Dr   | um<br>ð | Li | ne<br>Ø                      | Ja<br>wi | aw<br>dth                    | Max<br>wir | c luff<br>'e Ø   | Clev | is pin<br>Ø      | Wei | ight | Maxi<br>workin | mum<br>1g load |     |
|--------|-----------------------------------|-----------------------------------|------|---------|----|------------------------------|----------|------------------------------|------------|------------------|------|------------------|-----|------|----------------|----------------|-----|
| No.    | Description                       | in                                | mm   | in      | mm | in                           | mm       | in                           | mm         | in               | mm   | in               | mm  | 0Z   | g              | lb             | kg  |
| HC7744 | Halyard swivel/hole for 4 mm wire | 4 <sup>3</sup> / <sub>16</sub> *  | 124* | —       | —  | _                            | _        | —                            | —          | 5/32             | 4    | 5/ <sub>32</sub> | 4   | 2.9  | 82             | 810            | 367 |
| HC9226 | Underdeck furler                  | 6 <sup>1</sup> /8                 | 156  | 31/8    | 79 | 5/32                         | 4        | <sup>5</sup> / <sub>16</sub> | 8          | 1/8              | 3    | 1/4              | 6   | 23.3 | 661            | 950            | 431 |
| HC9330 | Halyard swivel/hole for 5 mm wire | 5 <sup>11</sup> / <sub>16</sub> * | 144* | —       | _  | _                            | _        | —                            | —          | <sup>3</sup> /16 | 5    | <sup>3</sup> /16 | 5   | 8.9  | 252            | 1190           | 540 |
| HSB463 | Furler kit/hoistable halyard      | 21/2**                            | 64** | 27/8    | 73 | <sup>5</sup> / <sub>32</sub> | 4        | <sup>5</sup> / <sub>16</sub> | 8          | <sup>5</sup> /32 | 4    | 1/4              | 6   | 11.2 | 318            | 950            | 431 |

\*Shackle to shackle \*\*Tang hole to tang hole



HARKEN ITALY'S TECHNICAL DIRECTOR ANDREA MERELLO TELLS THE INSIDE STORY BEHIND THE DEVELOPMENT OF RADIAL WINCHES

*Editor's Note:* Harken entered the winch business in 1987, adapting original Barbarossa designs for Harken's standard line and adding a pure Grand Prix racing line. Grand Prix racers have always demanded constant innovation, but most sailors just wanted solid, efficient winches that would last for 30 years. Now sailors and boatbuilders want all that and more—faster installations, easier maintenance, and simpler upgrades.

"We started from a blank sheet of paper, addressing the needs of specific types of sailors."

> — Andrea Merello Technical Director

#### A Blank Sheet of Paper

Radial winches were designed from the deck up with three key ideas in mind: safety and long-lasting performance, streamlined installations, and hydraulic and electric upgrades as integral parts of the design rather than afterthoughts. We started from a blank sheet of paper, addressing the needs of specific types of sailors. For example, racers mainly want the most

HARKEN

power for the lightest weight. A cruiser with a child on the other hand asks, "Wait a minute, if my kid puts hands on the winch while the electric power is turning it ..." They are more concerned with safety.

# Radial **REVOLUTION**



#### **New Product, New Process**

No winch line has ever been designed with yacht builders in mind. No one asked, "What can we do to help boatbuilders who assemble in bigger quantities?" That's because if you went to a boatbuilding yard 10 years ago, they weren't using the highly efficient "lean" assembly systems used in automotive companies. These days, there's a bigger focus on the time required to install a winch, the weight and ease-of-handling from a worker's point of view, and the complexity of the assembly process.

#### Grip with a Twist

The grip is one of the most critical areas of a winch. With a high-friction drum there will be more line wear, so designers must balance the need for controlled easing with line longevity. We also have to consider that the winch is interfacing with a product we don't make-we needed to find a grip that

performed as well with high-tech line as with older cordage. So while we were happy with the sandblasting and knurling we had before, we wanted to find out if there was more we could do.

The new grip is very different from other winches with grooves or ribs. Other winches tend "The Radial grip works more like a screw, driving the wraps down when easing [for] the best control."

> — Andrea Merello **Technical Director**

to push the line wraps up when easing. The Radial grip works more like a screw, driving the wraps down when easing to keep them on the part of the drum where you have the best control.



20 SERIES 35 SERIES 40 SERIES 46 SERIES



#### Winch Abuse

Each size of each winch had to pass a minimum of 13 tests covering things such as wet and dry line grip, pulling power versus number of wraps, stress deformation,

ease of servicing, and safety. The most grueling test was the endurance test, where our parameter was to have little to no wear after thousands of nonstop pulls at the Maximum Working Load.

**Combating Corrosion** 

Extensive testing helped us determine weak points for corrosion, where we needed to either replace or strengthen the materials we were using. We even removed the drum and

lubrication for certain tests to see how well the internal components resisted corrosion from saltwater spray. The results of these tests are why we're using more stainless and one of several reasons we use composites in Radials. For example, the extremely strong "metal replacement" material we use in the roller bearings is completely nonreactive to saltwater and most chemicals, has very good wear and abrasion resistance under tremendous loads, doesn't require lubrication, and doesn't gall or seize. Its low friction and hardness properties make it ideal for high-efficiency bearing systems.

#### **The Future**

"No comments! No comments!" I can't go into details of course, but I can say we designed the Radial to be flexible and may add more options for end customers. Beyond the Radial, we're working on some totally new ideas at Harken for needs that aren't addressed by current winches. The prototypes haven't completed testing yet, but keep an eye out in the upcoming months.



**50 SERIES** 

**60 SERIES** 



**70 SERIES** 



"We implemented a

approach."

very simple 'zero defect'

— Adriano Rubinaccio

Production Director

HARKE

**80 SERIES** 



#### What Lean Manufacturing Means For You

By Adriano Rubinaccio Production Director

When we started talking about this project our aim was to use it as an opportunity to dramatically improve not just the product, but also the process. We wanted to actually change the company's manufacturing culture so we could increase production speed and eliminate waste while maintaining—even improving—the level of quality. We adopted "lean manufacturing" principles to increase speed and implemented a very simple "zero defect" approach. No defective components or products are allowed to move to the next step in the process. Any worker can stop a product moving through the process if a problem

appears, and every worker is directly responsible for customer satisfaction.

#### Winch #001

Product tracking is one benefit of the new process. Every molded component has a batch number, allowing for much tighter quality control. In addition, each finished product has a serial number (#001 is already in the museum). Customers calling in for support benefit directly because we can access very specific information on that customer's winch.

**Complete Radial Line:** aluminum and chrome; plain-top and self-tailing; electric and hydraulic; UniPower; Quattro

## **Radial Winches**



#### POWERFUL, EFFICIENT, DEPENDABLE

We have reached a new level of performance with the introduction of our Radial Winch line. Details you'll like include reduced wear on the line: the gripping surfaces of Radial Winches are shaped and do not depend on friction to hold the line. Also, we've completely covered the winch tops so fingers and clothing don't get caught in moving parts. Seasonal maintenance is now exceptionally easy the top lifts out as a single unit, making reassembly quick and mistake-free.

#### **DETAILS MAKE THE DIFFERENCE**

#### **MULTIPLE STYLES AND FINISHES**

Radial winches are available in aluminum alloy and chrome. Choices include 1-, 2-, and 3-speed self-tailing or plain-top styles; and manual, electric or hydraulic drives.

#### **INTEGRATED STRIPPER ARM**

The strong, one-piece stripper arm completely covers the winch top for a stable platform that prevents fingers and clothing from catching in moving parts—an important safety feature, particularly when operating powered winches. The arm can be adjusted to multiple positions after the winch is mounted, and is shaped to smoothly feed line into and out of the self-tailing jaws.

#### LIGHTWEIGHT, HIGH-STRENGTH MATERIALS

Composite roller bearings and bushings reduce friction under load, have excellent corrosion resistance, and don't require lubrication.

Snap-fit design keeps bearings captive in high-strength Delrin<sup>®</sup> cage when drum is removed for maintenance.

Load-carrying gears and pins are 17-4PH stainless steel for strength and durability.

Weight savings of 25 to 50 percent compared to the Classic Harken line.

#### EASY TO SERVICE AND MAINTAIN

Winches can be disassembled and serviced on deck. The socket, washer, and screw-top snap-fit together to simplify maintenance and for mistake-free assembly.



#### 1. Power-Grip Jaws

Composite self-tailing jaws of long-glass fiber are shaped for easy line entry and optimum gripping power.

The spring-loaded upper jaw adjusts under line pressure to accept a variety of line sizes. Teeth grip evenly with or without load.

#### 2. Radial Shaped Surface Grip

The drum's gripping surface is shaped for each winch size and drum material and features diagonal ribs (rather than textured abrasive materials) to maximize gripping power and greatly reduce line wear. When easing, the angle of the ribs stops line from rising, preventing overrides and providing a smooth controlled release as the line exits the winch.

#### **3. Quick Installation**

Patent-pending stud-bolt mounting system allows one person to quickly install a winch without removing the drum.

- a. Snap off the skirt at the base of the winch.
- b. Slide bolts through the slots in the winch base and snap the plastic skirt back on.
- c. Place the stud bolts into the predrilled holes on the deck and tighten from belowdeck.

## **Ordering Winches**

#### 1. Choose Drum Material, Speed & Style

**Aluminum:** Aluminum Radial winches in 1-, 2-, and 3-speed self-tailing or plain-top.

Aluminum Classic single-speed, plain-top winches in sizes 6 and 8; 2- and 3-speed self-tailing winches sizes 980 and up in aluminum or aluminum/stainless.

**Chrome:** Chrome Radial winches feature chrome drums with black composite bases and tops; 1-, 2-, and 3-speed self-tailing.

All-chrome Classic winches have chrome bases, drums, and tops; 1-, 2- and 3-speeds; self-tailing or plain-top.

**Stainless Steel:** Stainless steel winches have stainless bases, drums, and tops; 2-, and 3-speed self-tailing; 4-speed winches in some larger sizes.

Bronze: Bronze winches in 1-, 2- and 3-speeds; self-tailing or plain-top styles.

**Carbon Fiber:** Carbon fiber winches in 2- and 3-speed self-tailing or top-cleating.

To order large cruising, Megayacht and Grand Prix racing winches, please contact Harken.

**Powered Winches:** Choose electric or hydraulically driven winches and components. To order hydraulic winches, please contact Harken.

#### 2. Determine size

The **Sizing Chart** selects winches for different applications and rig dimensions. If unsure of the dimensions, use the **Typical Dimensions** graphs. To order large Grand Prix and Megayacht winches, please contact Harken.

#### 3. Choose Ball Bearing Handle

Plain or lock-in handles in chromed bronze, bronze and aluminum; Speedgrip and Standard styles in 8- and 10-inch (203- and 254-mm) lengths.



#### **Sizing Chart**

|       |                              | Gen                               | oa  |      |                           |                          | Mai | nsail |    |      |                    |                   | Spini | naker |               |                  | Sta | ysail             |
|-------|------------------------------|-----------------------------------|-----|------|---------------------------|--------------------------|-----|-------|----|------|--------------------|-------------------|-------|-------|---------------|------------------|-----|-------------------|
|       | Sh                           | ieet                              | Hal | yard | End-b<br>mains            | oom<br>sheet             | Hal | yard  | R  | eef  | Sh                 | eet               | Hal   | yard  | Toppi<br>fore | ng lift/<br>eguy | Ha  | yard              |
| Winch | Max sa<br>100% for<br>(I x J | ail area<br>retriangle<br>l x .5) | Ma  | ax I | 4:1 S<br>max sa<br>(P x E | heet<br>il area<br>x .5) | Ма  | ax P  | M  | ax P | Max sa<br>(I x J : | il area<br>x 1.8) | Ma    | ax I  | M             | ax I             | Ma  | ax I <sub>2</sub> |
| size  | ft²                          | m²                                | ft  | m    | ft <sup>2</sup>           | m²                       | ft  | ft m  |    | m    | ft²                | m²                | ft    | m     | ft            | m                | ft  | m                 |
| 6     | 75                           | 7                                 | 25  | 7.6  |                           |                          | 25  | 7.6   | 34 | 10.4 | 500                | 46.5              | 25    | 7.6   | 35            | 10.7             | 25  | 7.6               |
| 8     | 115                          | 10.5                              | 36  | 11   | 150                       | 14                       | 32  | 9.8   | 40 | 12.2 | 800                | 74                | 36    | 11    | 44            | 13.4             | 37  | 11.3              |
| 16    | 155                          | 14.5                              | 42  | 12.8 | 230                       | 21                       | 38  | 11.6  | 46 | 14   | 975                | 91                | 42    | 12.8  | 50            | 15.2             | 42  | 12.8              |
| 20    | 155                          | 14.5                              | 42  | 12.8 | 230                       | 21                       | 38  | 11.6  | 46 | 14   | 975                | 91                | 42    | 12.8  | 50            | 15.2             | 42  | 12.8              |
| 32    | 225                          | 21                                | 48  | 14.6 | 335                       | 30                       | 43  | 13.1  | 53 | 16.2 | 1135               | 105               | 48    | 14.6  | 56            | 17               | 48  | 14.6              |
| 35    | 225                          | 21                                | 48  | 14.6 | 335                       | 30                       | 43  | 13.1  | 53 | 16.2 | 1135               | 105               | 48    | 14.6  | 56            | 17               | 48  | 14.6              |
| 40    | 270                          | 25                                | 54  | 16.5 | 410                       | 38                       | 49  | 14.9  | 57 | 17.4 | 1240               | 115               | 54    | 16.5  | 61            | 18.6             | 54  | 16.5              |
| 44    | 340                          | 31.5                              | 64  | 19.5 | 560                       | 52                       | 59  | 18    | 68 | 20.7 | 1400               | 130               | 64    | 19.5  | 73            | 22.2             | 64  | 19.5              |
| 46    | 365                          | 34                                | 69  | 21   | 625                       | 58                       | 64  | 19.5  | 73 | 22.2 | 1530               | 142               | 68    | 20.7  | 78            | 23.8             | 69  | 21                |
| 48    | 390                          | 36                                | 73  | 22.2 | 700                       | 65                       | 68  | 20.7  | 78 | 23.8 | 1750               | 162               | 74    | 22.5  | 82            | 25               | 73  | 22.2              |
| 50    | 390                          | 36                                | 73  | 22.2 | 700                       | 65                       | 68  | 20.7  | 78 | 23.8 | 1750               | 162               | 74    | 22.5  | 82            | 25               | 73  | 22.2              |
| 53    | 435                          | 40                                | 77  | 23.5 | 765                       | 72                       | 73  | 22.2  | 85 | 25.9 | 1960               | 182               | 79    | 24    | 90            | 27.4             | 77  | 23.5              |
| 60    | 525                          | 49                                | 82  | 25   | 850                       | 79                       | 80  | 24.4  | 92 | 28   | 2200               | 204               | 85    | 25.9  | 98            | 29.9             | 82  | 25                |
| 70    | 590                          | 55                                | 86  | 26.2 | 1000                      | 93                       | 85  | 25.9  | 97 | 29.6 | 3000               | 279               | 91    | 27.7  | 108           | 33               | 86  | 26.2              |
| 74    | 950                          | 88                                | 100 | 30.5 | 1350                      | 125                      | 102 | 31.1  | _  | _    |                    | _                 | 105   | 32    | _             | _                |     | _                 |
| 80    | 950                          | 88                                | 100 | 30.5 | 1350                      | 125                      | 102 | 31.1  | _  | _    | —                  | _                 | 105   | 32    | _             | _                | _   | _                 |

**RADIAL WINCH LINE** 

## Aluminum Radial

Aluminum Radial winches are designed for sailors who want lightweight, extremely strong winches with plenty of power.

The drum's gripping surface is shaped for each winch size and drum material and features diagonal ribs (rather than textured abrasive materials) to maximize gripping power and greatly reduce line wear. When easing, the angle of the ribs stops line from rising, preventing overrides and providing a smooth controlled release as the line exits the winch. Aluminum drums and high-strength composite self-tailing jaws and skirt save weight. Composite roller bearings reduce friction under load and don't require lubrication. Loadcarrying gears and pins are 17-4PH stainless steel for strength and durability.

Small boat winches are available in single speed. Self-tailing models sizes 60 and up come in two or three speeds.



Series 20 Radial winches use composite bushings to handle high loads in a small package.



**RADIAL PLAIN-TOP** 



**RADIAL SELF-TAILING** 



1. Roller Bearings Snap-fit design keeps bearings captive in a high-strength Delrin® cage when drum is removed for

Composite roller bearings don't require lubrication.

2. Gripping surface

maintenance.

Each winch size has its own radial grip shape to optimize holding power and for smooth, controlled easing.



| Ø                 |                   |       |                                       |       |                                        |        | Line | entrv | Lin                                                                                                                                                     | еØ      | Fast                                                        | ener    | Faste             | eners |                                  |        |      |           |       |       |          |       |
|-------------------|-------------------|-------|---------------------------------------|-------|----------------------------------------|--------|------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------------------------------------------------|---------|-------------------|-------|----------------------------------|--------|------|-----------|-------|-------|----------|-------|
| Part              | Drun              | n (D) | Base                                  | e (B) | Heigh                                  | it (H) | We   | ight  | heigh                                                                                                                                                   | it (LE) | (Min -                                                      | Max)    | cir               | cle   | (SH o                            | r HH)  | 6    | Gear rati | 0     | P     | ower rat | tio   |
| No.               | in                | mm    | in                                    | mm    | in                                     | mm     | lb   | kg    | in                                                                                                                                                      | mm      | in                                                          | mm      | in                | mm    | in                               | mm     | 1    | 2         | 3     | 1     | 2        | 3     |
| <b>Classic P</b>  | ain-To            | p     |                                       |       |                                        |        |      |       |                                                                                                                                                         |         |                                                             |         |                   |       |                                  |        |      |           |       |       |          |       |
| B6A               | 23/8              | 60    | 3%16                                  | 90    | 31/4                                   | 82     | 1.5  | .7    | <b>1</b> ∮16                                                                                                                                            | 33      | _                                                           | _       | 2%16              | 65    | 6 x ¼*                           | 6 x 6* | 1    | —         | _     | 8.4   | _        | _     |
| B8A               | 211/16            | 68    | 41/2                                  | 115   | 3%16                                   | 90     | 2.4  | 1.1   | 11/2                                                                                                                                                    | 38      | _                                                           | _       | <b>3</b> %16      | 90    | 4 x 5⁄16*                        | 4 x 8* | 1    | _         | _     | 7.5   | _        | _     |
| <b>Radial Pla</b> | nin-Top           | )     |                                       |       |                                        |        |      |       |                                                                                                                                                         |         |                                                             |         |                   |       |                                  |        |      |           |       |       |          |       |
| 20.2PTA           | 27/8              | 73    | 5 <sup>3</sup> /8                     | 137   | 51/16                                  | 128    | 4.4  | 2.0   | 2 <sup>3</sup> /8                                                                                                                                       | 61      | _                                                           | _       | 4 <sup>3</sup> /8 | 110   | 5 x 1/4                          | 5 x 6  | 1    | 2.76      | _     | 6.95  | 19.20    | _     |
| 35.2PTA           | 31/8              | 80    | 57/8                                  | 149   | 5 <sup>13</sup> /16                    | 148    | 6.8  | 3.1   | <b>3</b> <sup>1</sup> /8                                                                                                                                | 79      | _                                                           | _       | 47/8              | 123   | 5 x 1/4                          | 5 x 6  | 2.13 | 5.65      | _     | 13.50 | 35.90    | _     |
| 40.2PTA           | 3 <sup>1</sup> /8 | 80    | <b>6</b> <sup>3</sup> / <sub>16</sub> | 157   | 6                                      | 153    | 7.7  | 3.5   | <b>3</b> <sup>1</sup> / <sub>4</sub>                                                                                                                    | 82      | _                                                           | _       | 47/8              | 123   | 5 x 1/4                          | 5 x 6  | 2.13 | 6.28      | _     | 13.50 | 39.90    | _     |
| 46.2PTA           | 37/8              | 100   | 7 <sup>1</sup> /4                     | 184   | 71/16                                  | 179    | 11.3 | 5.1   | 39/16                                                                                                                                                   | 90      | _                                                           | _       | 57/8              | 150   | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 2.30 | 9.17      | _     | 11.70 | 46.50    | _     |
| 50.2PTA           | 45/16             | 110   | 75/8                                  | 194   | 71/2                                   | 190    | 13.0 | 5.9   | 37/8                                                                                                                                                    | 97      | _                                                           | _       | 57/8              | 150   | 5 x <sup>5</sup> /16             | 5 x 8  | 2.40 | 10.90     | _     | 10.90 | 50.40    | _     |
| <b>Radial Se</b>  | lf-Taili          | ng    |                                       |       |                                        |        |      |       |                                                                                                                                                         |         |                                                             |         |                   |       |                                  |        |      |           |       |       |          |       |
| 20STA             | 27/8              | 73    | 5 <sup>3</sup> /8                     | 137   | 5 <sup>13</sup> /16                    | 148    | 5.3  | 2.4   | 2 <sup>3</sup> /8                                                                                                                                       | 61      | 1/4 - 1/2                                                   | 6 - 12  | 4 <sup>3</sup> /8 | 110   | 5 x <sup>1</sup> / <sub>4</sub>  | 5 x 6  | 2.76 |           | _     | 19.20 | _        | _     |
| 35.2STA           | 31/8              | 80    | 57/8                                  | 149   | 611/16                                 | 170    | 7.9  | 3.6   | 3 <sup>1</sup> /8                                                                                                                                       | 79      | 5/16 - 1/2                                                  | 8 - 12  | 47/8              | 123   | 5 x 1/4                          | 5 x 6  | 2.13 | 5.65      | _     | 13.50 | 35.90    | _     |
| 40.2STA           | 3 <sup>1</sup> /8 | 80    | 6 <sup>3</sup> /16                    | 157   | 67/8                                   | 175    | 8.4  | 3.8   | <b>3</b> <sup>1</sup> / <sub>4</sub>                                                                                                                    | 82      | 5/16 - 1/2                                                  | 8 - 12  | 47/8              | 123   | 5 x <sup>1</sup> / <sub>4</sub>  | 5 x 6  | 2.13 | 6.28      | _     | 13.50 | 39.90    |       |
| 46.2STA           | 37/8              | 100   | 71/4                                  | 184   | 715/16                                 | 201    | 11.5 | 5.2   | 39/16                                                                                                                                                   | 90      | <sup>5</sup> / <sub>16</sub> - <sup>9</sup> / <sub>16</sub> | 8 - 14  | 57/8              | 150   | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 2.30 | 9.17      | _     | 11.70 | 46.50    | _     |
| 50.2STA           | 45/16             | 110   | 75/8                                  | 194   | 81/8                                   | 206    | 13.2 | 6.0   | 37/8                                                                                                                                                    | 97      | 5/16 - 9/16                                                 | 8 - 14  | 57/8              | 150   | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 2.40 | 10.90     | _     | 10.90 | 50.40    | _     |
| 60.2STA           | 43/4              | 120   | 9 <sup>1</sup> /8                     | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 22.5 | 10.2  | 49/16                                                                                                                                                   | 116     | <sup>5</sup> / <sub>16</sub> - <sup>5</sup> / <sub>8</sub>  | 8 - 16  | 8                 | 204   | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 4.80 | 14.40     | _     | 20.30 | 61.00    | _     |
| 60.3STA           | 43/4              | 120   | 9 <sup>1</sup> / <sub>8</sub>         | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 25.8 | 117   | 49/16                                                                                                                                                   | 116     | 5/16 - 5/8                                                  | 8 - 16  | 8                 | 204   | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 2 20 | 4 80      | 14 40 | 9 20  | 20.30    | 61 00 |
| 70 2STA           | 51/8              | 130   | 97/16                                 | 240   | 101/16                                 | 256    | 24.9 | 11.3  | 41/2                                                                                                                                                    | 115     | 3/8 = 11/16                                                 | 10 - 18 | 81/8              | 205   | 6 x 5/16                         | 6 x 8  | 5 70 | 18.50     |       | 22 20 | 72 00    |       |
| 70.3STA           | 51/6              | 130   | Q7/16                                 | 240   | 10 <sup>1</sup> /10                    | 256    | 28.3 | 12.8  | <u></u> | 115     | 3/0 = 11/10                                                 | 10 - 18 | 81/.              | 205   | 6 x 5/16                         | 6 x 8  | 2 30 | 5 70      | 18 50 | 9.00  | 22.20    | 72 00 |
| 80 2STA           | 67/2              | 175   | 115/16                                | 287   | 129/10                                 | 320    | 46.8 | 21.2  | 67/16                                                                                                                                                   | 164     | 3/0 = 13/10                                                 | 10 - 20 | Q3/16             | 233   | 8 x <sup>3</sup> / <sub>2</sub>  | 8 x 10 | 9.40 | 28 10     |       | 32 10 | 93.00    |       |
| 80.3STA           | 67/8              | 175   | 115/16                                | 287   | 129/16                                 | 320    | 50.1 | 22.7  | 67/16                                                                                                                                                   | 164     | 3/8 = 13/16                                                 | 10 - 20 | 93/16             | 233   | 8 x <sup>3</sup> / <sub>2</sub>  | 8 x 10 | 2 23 | 9 40      | 28 10 | 6.50  | 32 10    | 93.00 |

\*Classic plain-top winches use flat head (FH) fasteners

## Aluminum Radial Quattro

The patented Quattro is an innovative all-in-one winch used on boats that require extremely fast winches to handle large asymmetrical spinnakers, but also need power to trim the genoa upwind.

Radial Quattro winches are offered in lightweight aluminum alloy and feature composite self-tailing jaws and skirt to save weight. High-strength composite roller bearings reduce friction under load and don't require lubrication. Load-carrying gears and pins are 17-4PH stainless steel for strength and durability.

The Quattro features two drum diameters and four line speeds. The upper drum features Harken's new shaped radial grip for reduced sheet wear and controlled easing. The wide-diameter lower drum has a sand-blasted gripping surface used for fast trimming.



The upper drum's gripping surface is shaped for each winch size to reduce line wear and to provide maximum gripping power for smooth, controlled easing.

photo

V070

Team Heiner 38.

| Part  | Gear | ratio | Powe  | r ratio | Fast<br>cir       | ener<br>cle | Fasto<br>(SH o                   | eners<br>or HH) |
|-------|------|-------|-------|---------|-------------------|-------------|----------------------------------|-----------------|
| No.   | 1    | 2     | 1     | 2       | in                | mm          | in                               | mm              |
| 40STQ | 2.13 | 6.28  | 13.50 | 39.90   | 47/8              | 123         | 5 x 1/4                          | 5 x M6          |
| 46STQ | 2.30 | 9.17  | 11.70 | 46.50   | 5 <sup>7</sup> /8 | 150         | 5 x <sup>5</sup> / <sub>16</sub> | 5 x M8          |
|       |      |       |       |         |                   |             |                                  |                 |

|       |                                | Dru | mØ                                   |     | Ba                                   | ase |        |      |      |      |                              | Lin | e Ø                          |     |                                       | Line ent | ry height                            |     |
|-------|--------------------------------|-----|--------------------------------------|-----|--------------------------------------|-----|--------|------|------|------|------------------------------|-----|------------------------------|-----|---------------------------------------|----------|--------------------------------------|-----|
| Part  | Lov                            | wer | Up                                   | per |                                      | Ø   | He     | ight | We   | ight | M                            | lin | N                            | lax | Lo                                    | wer      | Up                                   | per |
| No.   | in                             | mm  | in                                   | mm  | in                                   | mm  | in     | mm   | lb   | kg   | in                           | mm  | in                           | mm  | in                                    | mm       | in                                   | mm  |
| 40STQ | 6 <sup>1</sup> / <sub>16</sub> | 154 | <b>3</b> <sup>1</sup> / <sub>8</sub> | 80  | 7 <sup>1</sup> /8                    | 180 | 67/8   | 175  | 10.2 | 4.6  | <sup>5</sup> / <sub>16</sub> | 8   | 1/2                          | 12  | <b>1</b> <sup>5</sup> / <sub>16</sub> | 34       | <b>3</b> <sup>1</sup> / <sub>4</sub> | 82  |
| 46STQ | 713/32                         | 188 | 315/16                               | 100 | <b>8</b> <sup>1</sup> / <sub>2</sub> | 218 | 715/16 | 201  | 13.7 | 6.2  | <sup>5</sup> / <sub>16</sub> | 8   | <sup>9</sup> / <sub>16</sub> | 14  | <sup>15</sup> / <sub>16</sub>         | 23       | 39/16                                | 90  |

## **Aluminum Combinations**

These self-tailing winches raise and trim sails on the largest yachts. They are available in 2 or 3 speeds, and come in marine-grade aluminum, or with aluminum base, stainless drum, and aluminum top combinations to maximize durability and corrosion resistance. Load-carrying gears are 17-4PH stainless steel. Self-tailing jaws accept a wide range of line sizes.

Modern-style winches integrate the stripper support arm into the self-tailing jaw assembly for a clean, smooth look. Classic winches are traditionally styled with a one-piece stripper arm that attaches to the top of the winch, encompassing the self-tailing jaws.

Winches have power ratios of up to 100:1 and are often used with either hydraulic or electric drives. The 3-speed 1140ST features a backwind to ease the loads on the winch before the sheet is released.



B990.2STA B990.3STA MODERN SELF-TAILING

B1145.3STA



*B990, B1130 and B1145 are available in grey-anodized aluminum by special order. Contact Harken Italy.* 



B1150STASA CLASSIC SELF-TAILING



|                         |                                         |       | Ø                                      |       |                                         |        |       |      | Line                                  | entry   | Fast                                  | ener |               |              |      |          |       |       |          |       |
|-------------------------|-----------------------------------------|-------|----------------------------------------|-------|-----------------------------------------|--------|-------|------|---------------------------------------|---------|---------------------------------------|------|---------------|--------------|------|----------|-------|-------|----------|-------|
| Part                    | Drun                                    | 1 (D) | Base                                   | e (B) | Heig                                    | ht (H) | Wei   | ght  | heigl                                 | nt (LÉ) | cir                                   | cle  | Faste         | eners        | G    | iear rat | io    | Po    | ower rat | io    |
| No.                     | in                                      | mm    | in                                     | mm    | in                                      | mm     | lb    | kg   | in                                    | mm      | in                                    | mm   | in            | mm           | 1    | 2        | 3     | 1     | 2        | 3     |
| <b>Classic Self-Tai</b> | ling                                    |       |                                        |       |                                         |        |       |      |                                       |         |                                       |      |               |              |      |          |       |       |          |       |
| B1000.2STA              | 67/8                                    | 175   | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287   | 133/16                                  | 335    | 46.8  | 21.2 | 67/16                                 | 164     | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x 3/8 SH/HH | 8 x 10 SH/HH | 9.40 | 28.10    | —     | 32.10 | 93.00    | _     |
| B1000.3STA              | 67/8                                    | 175   | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287   | <b>13</b> <sup>3</sup> /16              | 335    | 50.1  | 22.7 | 67/16                                 | 164     | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x 3/8 SH/HH | 8 x 10 SH/HH | 2.23 | 9.40     | 28.10 | 6.50  | 32.10    | 93.00 |
| B1120STASA              | <b>11</b> <sup>13</sup> / <sub>16</sub> | 300   | 16 <sup>15</sup> /32                   | 418   | <b>1</b> 4 <sup>9</sup> / <sub>16</sub> | 370    | 127.8 | 58   | 613/32                                | 163     | 14 <sup>3</sup> /8                    | 365  | 12 x 3/8 SH   | 12 x 10 SH   | 2.0  | 11.4     | 33.3  | 3.4   | 19.3     | 56.3  |
| B1140STASA              | <b>14</b> <sup>3</sup> / <sub>16</sub>  | 360   | 221/8                                  | 562   | <b>18</b> <sup>3</sup> / <sub>16</sub>  | 462    | 299.9 | 136  | 811/32                                | 212     | 181/8                                 | 460  | 8 x 1/2 SH    | 8 x 12 SH    | 2.9  | 11.6     | 42.6  | 4.0   | 16.4     | 60.1  |
| B1150STASA              | 165/32                                  | 410   | 25 <sup>3</sup> /16                    | 640   | <b>19</b> <sup>3</sup> / <sub>4</sub>   | 502    | 485   | 220  | 827/32                                | 225     | 22 <sup>1</sup> / <sub>16</sub>       | 560  | 12 x 1/2 SH   | 12 x 12 SH   | 3.4  | 15.3     | 64.9  | 4.2   | 19       | 80.4  |
| Modern Self-Tai         | ling                                    |       |                                        |       |                                         |        |       |      |                                       |         |                                       |      |               |              |      |          |       |       |          |       |
| B990.2ST*               | 8                                       | 203   | <b>11</b> <sup>1</sup> / <sub>32</sub> | 280   | <b>11</b> <sup>9</sup> / <sub>16</sub>  | 294    | 43.2  | 19.6 | 5 <sup>31</sup> / <sub>32</sub>       | 151.7   | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x ⅔ SH      | 8 x 10 SH    | 9.9  | 40.0     | _     | 24.8  | 100      | _     |
| B990.3ST*               | 8                                       | 203   | <b>11</b> <sup>1</sup> / <sub>32</sub> | 280   | <b>11</b> <sup>9</sup> / <sub>16</sub>  | 294    | 43.2  | 19.6 | 5 <sup>31</sup> / <sub>32</sub>       | 151.7   | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x ⅔ SH      | 8 x 10 SH    | 1.0  | 9.9      | 40.0  | 2.5   | 24.8     | 100   |
| B1110STASA              | 1031/32                                 | 279   | 1311/32                                | 339   | <b>9</b> <sup>3</sup> / <sub>4</sub>    | 246.5  | _     | —    | 31/2                                  | 89      | 1023/32                               | 272  | 8 x ⅔ SH      | 8 x 10 SH    | 1.0  | 9.43     | 43.6  | 1.8   | 17.2     | 79.4  |
| B1130.3ST*              | 12 <sup>3</sup> /4                      | 324   | 16 <sup>3</sup> /32                    | 409   | 12 <sup>1</sup> /8                      | 308    | 86.0  | 39.0 | 417/32                                | 115     | 12 <sup>3</sup> /4                    | 324  | 9 x 1/2 SH    | 9 x 12 SH    | 1.0  | 10.8     | 55.2  | 1.6   | 16.9     | 86.6  |
| B1135.3STASA            | 123/4                                   | 324   | 16 <sup>5</sup> /32                    | 410   | 12 <sup>1</sup> /8                      | 308    | 220.5 | 100  | 411/32                                | 110     | 12 <sup>3</sup> /4                    | 324  | 9 x 1/2 SH    | 9 x 12 SH    | 1.1  | 10.8     | 55.2  | 1.6   | 16.9     | 86.5  |
| B1145.3ST*              | <b>14</b> <sup>1</sup> / <sub>4</sub>   | 362   | 21 <sup>3</sup> /16                    | 538   | 16 <sup>1</sup> /2                      | 419    | 192.9 | 87.5 | <b>8</b> <sup>3</sup> / <sub>16</sub> | 208     | 17 <sup>3</sup> /4                    | 450  | 14 x 1/2 SH   | 14 x 12 SH   | 2.9  | 11.9     | 53.6  | 4.1   | 16.6     | 75.6  |

\*Available in black-anodized or grey-anodized aluminum. For black add A to part number. For grey-anodized add GGG

## **Chrome Radial**

Chrome Radial Winches are designed for sailors that want the elegance of mirror-polished chrome to enhance their yacht's lines. They feature chrome drums, black composite bases and tops, and come in 1-, 2-, or 3-speed self-tailing styles.

The drum's gripping surface is shaped for each winch size and drum material and features diagonal ribs (rather than textured abrasive materials) to maximize gripping power and greatly reduce line wear. When easing, the angle of the ribs stops line from rising, preventing overrides and providing a smooth controlled release as the line exits the winch. Highstrength composite self-tailing jaws and skirt save weight. Composite roller bearings reduce friction under load and don't require lubrication. Load-carrying gears and pins are 17-4PH stainless steel for strength and durability.

Small Boat winches are available in single speed. Self-tailing models sizes 60 and up come in two or three speeds.





#### WHY DOES MY CHROME RADIAL WINCH HAVE A DIFFERENT GRIP PATTERN THAN AN ALUMINUM RADIAL?

Chrome has a more slippery finish than aluminum, so the ribs on chrome Radial winches are spaced closer together to increase friction. This optimizes your grip for trimming as well as for easing the sail in a smooth, controlled manner.



|         |                                      |       | ~                                      |       |                                        |        |      |      |                                      |         |                                                             |         |                                       |       |                                  |        |      |           |       |       |          |       |
|---------|--------------------------------------|-------|----------------------------------------|-------|----------------------------------------|--------|------|------|--------------------------------------|---------|-------------------------------------------------------------|---------|---------------------------------------|-------|----------------------------------|--------|------|-----------|-------|-------|----------|-------|
|         |                                      |       | Ø                                      |       |                                        |        |      |      | Line                                 | entry   | Lin                                                         | e Ø     | Fast                                  | tener | Fast                             | eners  |      |           |       |       |          |       |
| Part    | Drun                                 | n (D) | Base                                   | e (B) | Heigh                                  | nt (H) | We   | ight | heigh                                | nt (LÉ) | (Min ·                                                      | · Max)  | cir                                   | cle   | (SH c                            | or HH) | 0    | lear rati | 0     | P     | ower rat | tio   |
| No.     | in                                   | mm    | in                                     | mm    | in                                     | mm     | lb   | kg   | in                                   | mm      | in                                                          | mm      | in                                    | mm    | in                               | mm     | 1    | 2         | 3     | 1     | 2        | 3     |
| 20STC   | 27/8                                 | 73    | 5 <sup>3</sup> /8                      | 137   | 5 <sup>13</sup> /16                    | 148    | 7.5  | 3.4  | 2 <sup>3</sup> /8                    | 61      | 1/4 - 1/2                                                   | 6 - 12  | 4 <sup>3</sup> /8                     | 110   | 5 x 1/4                          | 5 x 6  | 2.76 | _         | _     | 19.20 |          | _     |
| 35.2STC | 31/8                                 | 80    | 57/8                                   | 149   | <b>6</b> <sup>11</sup> / <sub>16</sub> | 170    | 10.6 | 4.8  | 31/8                                 | 79      | 5/16 - 1/2                                                  | 8 - 12  | 47/8                                  | 123   | 5 x 1/4                          | 5 x 6  | 2.13 | 5.65      | _     | 13.50 | 35.90    | _     |
| 40.2STC | 31/8                                 | 80    | <b>6</b> <sup>3</sup> / <sub>16</sub>  | 157   | 67/8                                   | 175    | 11.9 | 5.4  | 31/4                                 | 82      | 5/16 - 1/2                                                  | 8 - 12  | 47/8                                  | 123   | 5 x 1/4                          | 5 x 6  | 2.13 | 6.28      | _     | 13.50 | 39.90    | _     |
| 46.2STC | 37/8                                 | 100   | 7 <sup>1</sup> /4                      | 184   | 715/16                                 | 201    | 17.2 | 7.8  | 39/16                                | 90      | <sup>5</sup> / <sub>16</sub> - <sup>9</sup> / <sub>16</sub> | 8 - 14  | 5 <sup>7</sup> /8                     | 150   | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 2.30 | 9.17      | _     | 11.70 | 46.50    | —     |
| 50.2STC | 45/16                                | 110   | 7 <sup>5</sup> /8                      | 194   | <b>8</b> <sup>1</sup> / <sub>8</sub>   | 206    | 20.3 | 9.2  | 37/8                                 | 97      | <sup>5</sup> / <sub>16</sub> - <sup>9</sup> / <sub>16</sub> | 8 - 14  | 5 <sup>7</sup> /8                     | 150   | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 2.40 | 10.90     | _     | 10.90 | 50.40    | _     |
| 60.2STC | <b>4</b> <sup>3</sup> / <sub>4</sub> | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 30.7 | 13.9 | 49/16                                | 116     | <sup>5</sup> / <sub>16</sub> - <sup>5</sup> / <sub>8</sub>  | 8 - 16  | 8                                     | 204   | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 4.80 | 14.40     | _     | 20.30 | 61.00    | —     |
| 60.3STC | 43/4                                 | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 34.0 | 15.4 | 49/16                                | 116     | <sup>5</sup> / <sub>16</sub> - <sup>5</sup> / <sub>8</sub>  | 8 - 16  | 8                                     | 204   | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 2.20 | 4.80      | 14.40 | 9.20  | 20.30    | 61.00 |
| 70.2STC | 5 <sup>1</sup> /8                    | 130   | <b>9</b> <sup>7</sup> / <sub>16</sub>  | 240   | <b>10</b> <sup>1</sup> / <sub>16</sub> | 256    | 33.3 | 15.1 | <b>4</b> <sup>1</sup> / <sub>2</sub> | 115     | <sup>3</sup> /8 - <sup>11</sup> / <sub>16</sub>             | 10 - 18 | <b>8</b> <sup>1</sup> / <sub>8</sub>  | 205   | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 5.70 | 18.50     | —     | 22.20 | 72.00    | _     |
| 70.3STC | 51/8                                 | 130   | <b>9</b> <sup>7</sup> / <sub>16</sub>  | 240   | 101/16                                 | 256    | 36.6 | 16.6 | 41/2                                 | 115     | 3/8 - 11/16                                                 | 10 - 18 | <b>8</b> <sup>1</sup> / <sub>8</sub>  | 205   | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 2.30 | 5.70      | 18.50 | 9.00  | 22.20    | 72.00 |
| 80.2STC | 67/8                                 | 175   | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287   | 12 <sup>9</sup> /16                    | 320    | 63.4 | 28.7 | 67/16                                | 164     | <sup>3</sup> /8 - <sup>13</sup> / <sub>16</sub>             | 10 - 20 | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233   | 8 x <sup>3</sup> /8              | 8 x 10 | 9.40 | 28.10     | _     | 32.10 | 93.00    | _     |
| 80.3STC | 67/8                                 | 175   | 11 <sup>5</sup> /16                    | 287   | 12 <sup>9</sup> /16                    | 320    | 66.7 | 30.2 | 67/16                                | 164     | <sup>3</sup> /8 - <sup>13</sup> /16                         | 10 - 20 | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233   | 8 x <sup>3</sup> /8              | 8 x 10 | 2.23 | 9.40      | 28.10 | 6.50  | 32.10    | 93.00 |

HARKEN

## **Carbon Fiber**

Carbon winches are standard in many racing classes and are also the choice of performanceoriented fast cruisers.

Winches feature carbon skirts and tops, aluminum drums, and strong composite jaws with one-piece sculpted line guide and peeler. PEEK® roller bearings are low-maintenance, reliable, and efficient. They ride in large-diameter cages, allowing more bearings to carry the load. Stainless steel drive gears are strong and durable. The AC versions of the 65.3ST and 65.2ST winches feature titanium gears for extremely high strength-to-weight ratios and exceptional resistance to corrosion.

Carbon winches come with up to three speeds and can be driven by handle, pedestal, or by electric or hydraulic motors. Harken's 50.3STR is the smallest three-speed direct drive self-tailing winch in the industry.

Options include self-tailing arms, top cleats, free-spinning or ratcheting base sheave additions, and left-handed rotation.

If class rules dictate, winches are also available in all-aluminum with stainless steel gears.



**B55.3TCR** 

B50.3STR

**B500.3TCR** 

B650.3TCR



B65.3TCR

HARKEN B65.2STAC

ompany





B500.2STR

HARKEN B55.2STR

B650.3STR

/EOLIA

## **Carbon Fiber**

These powerful carbon winches are aboard large megayachts, performance cruisers, and racing monohulls and multihulls over 60 feet (18 m).

Winches feature carbon skirts and tops, aluminum drums, and strong composite jaws with one-piece sculpted line guide and peeler. PEEK<sup>®</sup> roller bearings are low-maintenance, reliable and efficient. They ride in large-diameter cages, allowing more bearings to carry the load. Stainless steel drive gears are strong and durable. The AC versions of the 1111PT and 990.3ST winches feature titanium gears for extremely high strength-to-weight ratios and exceptional resistance to corrosion.

Drives are pedestal, electric or hydraulic. Widediameter drums provide extra surface area to hold line securely under high loads. Fewer wraps speed line retrieval when sheeting.

Other options include self-tailing, top cleats, four speeds, free-spinning or ratcheting base sheave additions, and left-handed rotation.

If class rules dictate, winches are also available in all-aluminum with stainless steel gears.







B880.3VTOP





B990.3STAC



B880.3STR





B1125STR



B1130.3TCR



B1135.3STR



B1145.3TCR

B1145.3STR

B1130.3STR

# **Carbon Fiber**







Base riser required to mount B50, B55, and B65 winches above deck. Specify above deck or flush deck version when ordering.

č



Use base sheaves for cross-sheeting and lazy sheets. Availability varies by winch size.

|        |           | 4          | I       | 1                  |                    | 1                  | 1                  | 1                  | 1                   | I                   | I                   | 1                   | 1                   |                     |                     | 1                   |                     | 1                   | Ι                    | I         |                      | 1                   |                     | 1                   |                     | 81:1                | 81:1                | 92.6:1               |              |                                  |                     | 1                 | 1                    |                      |
|--------|-----------|------------|---------|--------------------|--------------------|--------------------|--------------------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|-----------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|----------------------|--------------|----------------------------------|---------------------|-------------------|----------------------|----------------------|
| :      | ver ratio | m          | 1 43:1  |                    | 1 49.8:1           |                    | 1 44.5:1           | 1 47:1             |                     |                     | 1 55.6:1            | 1 55.6:1            |                     |                     | 1 65.5:1            | 1 65.5:1            | 1 65.5:1            | 1 65.5:1            | 1 100:1              | 1 100:1   | 1 80:1               | 1 79.5:1            | 1 79.5:1            | 1 81:1              | 1 81:1              | 17.6:1              | 17.6:1              | 22.8:1               | 1 86.6:1     | 1 86.6:1                         | 1 86.6:1            | 1 86.6:1          | 1 60.1:1             | 1 75.6:1             |
| ľ      | Pov       | 7          | 10.8    | 1 50.7:            | 11.7:              | 1 50.7:            | 10.4:              | 12.1:              | 1 55.6:             | 1 55.6:             | 15.7:               | 15.7:               | 1 65.5:             | 1 65.5:             | 15.7:               | 15.7:               | 15.7:               | 15.7:               | 24.8:                | 24.8:     | 24.8:                | 19.7:               | 19.7:               | 17.6:-              | 17.6:               | 5.4:1               | 5.4:1               | 1 6.8:1              | 16.9:        | 16.9:                            | 16.9:               | 16.9:             | 16.4:                | 16.6                 |
|        |           | -          | 4.2:1   | 11.7:              | 4.4:1              | 11.7:              | 3.9:1              | 3.9:1              | 15.7:               | 15.7:               | 3.4:1               | 3.4:1               | 15.7:               | 15.7:               | 3.4:1               | 3.4:1               | 3.4:1               | 3.4:1               | 2.5:1                | 2.5:1     | 2.5:1                | 5:1                 | 5:1                 | 1.8:1               | 1.8:1               | 1.8:1               | 1.8:1               | 1.69:                | 1.6:1        | 1.6:1                            | 1.6:1               | 1.6:1             | 4:1                  | 4.1:1                |
|        |           | 4          | Ι       | Ι                  | Ι                  | 1                  | 1                  | 1                  | 1                   | 1                   | Ι                   | Ι                   | I                   | Ι                   | Ι                   | Ι                   |                     |                     |                      | Ι         | Ι                    | 1                   | Ι                   | 1                   |                     | 44.7:               | 44.7:               | 54.7:                | Ι            | Ι                                | Ι                   | Ι                 | 1                    | 1                    |
| ;      | r ratio   | m          | 10:1    | I                  | 11.4:1             | 1                  | 11.4:1             | 12:1               | 1                   | 1                   | 16.3:1              | 16.3:1              | 1                   | Ι                   | 19.2:1              | 19.2:1              | 19.2:1              | 19.2:1              | 40:1                 | 40:1      | 32:1                 | 40.1:1              | 40.1:1              | 44.7:1              | 44.7:1              | 9.7:1               | 9.7:1               | 13.5:1               | 55.2:1       | 55.2:1                           | 55.2:1              | 55.2:1            | 42.6:1               | 53.6:1               |
| (      | Gea       | 2          | 2.5:1   | 11.4:1             | 2.7:1              | 11.4:1             | 2.7:1              | 3.1:1              | 16.3:1              | 16.3:1              | 4.6:1               | 4.6:1               | 19.2:1              | 19.2:1              | 4.6:1               | 4.6:1               | 4.6:1               | 4.6:1               | 9.9:1                | 9.9:1     | 9.9:1                | 9.9:1               | 9.9:1               | 9.7:1               | 9.7:1               | 3:1                 | 3:1                 | 4:1                  | 10.8:1       | 10.8:1                           | 10.8:1              | 10.8:1            | 11.6:1               | 11.9:1               |
|        |           | -          | 1:1     | 2.7:1              | 1:1                | 2.7:1              | 1:1                | ÷                  | 4.6:1               | 4.6:1               | 1:1                 | 1:1                 | 4.6:1               | 4.6:1               | 1:1                 | 1:1                 | 1:1                 | 1:1                 | 1:1                  | 1:1       | 1:1                  | 2.5:1               | 2.5:1               | 1:1                 | 1:1                 | 1:1                 | 1:1                 | 1:1                  | 1:1          | 1:1                              | 1:1                 | 1:1               | 2.9:1                | 2.9:1                |
|        | S         | m          | x 8 HH  | X 8 FH             | × 8 FH             | X 8 FH             | X 8 FH             | × 8 HH             | × 8 FH              | × 8 FH              | X 8 FH              | X 8 FH              | × 8 FH              | × 8 FH              | X 8 FH              | X 8 FH              | × 8 FH              | X 8 FH              | × 8 FH               | x 8 FH    | X 8 FH               | X 8 FH              | X 8 FH              | x 10 SH             | x 10 SH             | x 10 SH             | x 10 SH             | x 12 SH              | x 12 SH      | x 12 SH                          | x 12 SH             | x 12 SH           | x 12 SH              | x 12 SH              |
|        | Fastene   | _          | 9 HH 9  | 16 FH 6            | 16 FH 6            | 16 FH 6            | 16 FH 6            | 6 HH 6             | 16 FH 6             | 16 FH 6             | 16 FH 6             | 16 FH 6             | <sup>16</sup> FH 6  | 16 FH 6             | 16 FH 6             | 16 FH 6             | 16 FH 6             | 16 FH 6             | <sup>6</sup> FH 8    | 16 FH 8   | <sup>6</sup> FH 8    | I6 FH 8             | I6 FH 8             | 8 HS                | 8 HS                | 8 HS                | 8 HS                | 32 SH 9              | 2 SH 9       | <sup>2</sup> SH 9                | 2 SH 9              | <sup>2</sup> SH 9 | 2 SH 8               | /2 SH 14             |
|        |           | .5         | 6 X ∜1  | 6 x 5/1            | 6 X 5/1            | 6 × 5/1            | 6 X 5/1            | 6 X ¾              | 6 X 5/-             | 6 × 5/1             | 6 × 5/1             | 6 x 5/1             | 6 X 5/-             | 6 X 5/1             | 6 X <sup>5/1</sup>  | 6 x 5/1             | 6 × <sup>5</sup> /1 | 6 x 5/1             | 8 X 5⁄1              | 8 X 5/1   | 8 X ∜1               | 8 X 5/1             | 8 X 5/1             | 8 X ¾               | 8 × ¾               | 8 × ¾               | 8 × ¾               | 9 x <sup>15</sup> /  | 9 × ¹/       | 9 × 1/                           | 9 × ¹/              | /₁×6              | 8 × 1/               | 14 X 1               |
| stener | Ircle     | m          | 155     | 164                | 164                | 164                | 164                | 180                | 226                 | 226                 | 226                 | 226                 | 226                 | 226                 | 226                 | 226                 | 226                 | 226                 | 305                  | 305       | 305                  | 272                 | 272                 | 271                 | 271                 | 271                 | 271                 | 303                  | 324          | 324                              | 324                 | 324               | 460                  | 450                  |
| Fa     |           | . <b>E</b> | 61/8    | 6 <sup>15/32</sup> | 6 <sup>15/32</sup> | 6 <sup>15/32</sup> | 6 <sup>15/32</sup> | 73/32              | 829/32              | 829/32              | 829/32              | 829/32              | 829/32              | 829/32              | 829/32              | 829/32              | 829/32              | 829/32              | 12                   | 12        | 12                   | 10 <sup>23/32</sup> | 10 <sup>23/32</sup> | 10 <sup>21/32</sup> | 1011/16             | 10 <sup>21/32</sup> | 10 <sup>21/32</sup> | 11 <sup>15/16</sup>  | 123/4        | 12¾                              | 123/4               | 12¾               | 181/8                | $17^{3/4}$           |
| entry  | ht (LE)   | m          | 92      | 65                 | 65                 | 65                 | 55                 | 111                | 83                  | 85                  | 83                  | 83                  | 83                  | 85                  | 83                  | 83                  | 83                  | 83                  | 98                   | 98        | 98                   | 70                  | 70                  | 94                  | 94                  | 94                  | 94                  | 105                  | 115          | 115                              | 115                 | 115               | 212                  | 208                  |
| Line   | heig      | . <u>=</u> | 35/8    | 2 <sup>9/16</sup>  | $2^{9/16}$         | 2 <sup>9/16</sup>  | 25/32              | 43/8               | 31/4                | 311/32              | 31/4                | 31/4                | 31/4                | 311/32              | 31/4                | 31/4                | 31/4                | 31/4                | $3^{27}/_{32}$       | 327/32    | $3^{27/32}$          | 23/4                | $2^{3/4}$           | 311/16              | 311/16              | 311/16              | 311/16              | 41/8                 | $4^{17/32}$  | $4^{17/32}$                      | $4^{17}/_{32}$      | $4^{17}/_{32}$    | 811/32               | 8 <sup>3/16</sup>    |
| ;      | Мах       | mm         | Ι       | 14                 | 14                 | 14                 | 14                 | 1                  | 16                  | 16                  | 16                  | Ι                   | 16                  | 16                  | 16                  | Ι                   | 16                  | 1                   | 19                   | 19        | Ι                    | 19                  |                     | 19                  |                     | 1                   | 19                  | 19                   | 25           | Ι                                | 25                  | Ι                 | 25                   | 22                   |
| Ine M  |           | .⊑<br>     | 1       | <sup>9/16</sup>    | <sup>9</sup> /16   | 9/16               | 9/16               |                    | 5/8                 | 5/8                 | 5/8                 |                     | 5/8                 | 5/8                 | 5/8                 |                     | 5/8                 |                     | 3/4                  | 3/4       |                      | 3/4                 |                     | 3/4                 |                     |                     | 3/4                 | 3/4                  | 1            |                                  | 1                   |                   | -                    | 3 11/16              |
| -      | MIN       | Ē          | 1       | °                  | 6<br>8             | و<br>8             | و<br>8             |                    | 8                   | 8                   | و<br>8              |                     | °0                  | <sub>6</sub><br>8   | <sub>6</sub> 8      |                     | <sub>6</sub><br>8   |                     | 6 1-                 | 6 1-      |                      | 1(                  |                     | -                   |                     |                     | 6 1-                | 6 1-                 | 16           |                                  | 16                  |                   | 16                   | 16                   |
|        |           | i<br>i     | 6.      | .3 5/1             | .2 5/1             | ·/ <sub>2</sub> 0. | .2 5/1             |                    | .5 5/1              | - 5/1               | 1.8 5/1             | l.5<br>             | .5 5/1              | - 5/1               | 1.8 5/1             | 1.5                 | .7 5/1              | .3                  | 0.3 7/1              | - 7/1     | 3.8                  | 3.3 %               | - 2.7               | 2.8 7/1             | 3.6 —               |                     | - 7/1               | -γ/ <sub>2</sub> –   | 3/s 0.6      | - 0.6                            | 2.0 5/ <sub>8</sub> | <u> </u>          | 3.0 %                | 7.5 5/5              |
|        | Weight    | a<br>a     | .4 7    | .7 5               | 8.7 6              | .0 5               | 8.7 6              | 3.8 1(             | 9.0                 |                     | 6 1-                | .4 1-               | 9.0                 |                     | 6 1-                | .4 1-               | .3 9                | .6 9                | 1.8 2(               |           | .5 18                | .4 18               | 3.6 17              | .3 22               | .0 18               |                     |                     | -                    | 36 36        | 36 36                            | .6 42               | .0 35             | 9.2 11               | 2.9 8                |
|        | -<br>-    | E          | 38 17   | 58 11              | 75 15              | 58 11              | 75 15              | 43 25              | <u> 39 2(</u>       | - 66                | 26 2                | 26 25               | <u> 39 2(</u>       | - 66                | 26 2                | 26 25               | 26 21               | 26 2(               | 41 44                | 40 -      | 40 41                | 12 4(               | 12 35               | 36 5(               | 17 41               | 18                  | 36 -                | 49 -                 | <u>38 86</u> | <u>93 86</u>                     | 38 92               | 93 77             | 52 24                | 19 19                |
|        | Height (h | u<br>U     | 3/16 2, | 11 11              | 7/8 1              | <sup>5/8</sup> 1   | 7/8 1              | <sup>9/16</sup> 2. | <sup>13/16</sup> 1: | <sup>13/16</sup> 1: | <sup>39/32</sup> 2. | <sup>29/32</sup> 2. | <sup>13/16</sup> 1: | <sup>13/16</sup> 1: | <sup>39/32</sup> 2. | <sup>29/32</sup> 2. | <sup>39/32</sup> 2. | <sup>29/32</sup> 2. | 11/2 2.              | 7/16 2·   | 7/16 2.              | 11/32 2             | 11/32 2             | <sup>5/16</sup> 2,  | 5/32 21             | <sup>19/32</sup> 2  | <sup>9/32</sup> 2.  | <sup>13/16</sup> 2.  | 21/8 31      | <sup>17</sup> / <sub>32</sub> 2: | 21/8 31             | 17/32 2:          | 33/16 41             | 51/2 4               |
|        | _         | E          | 88 8    | 84 6               | 84 6               | 84 6               | 84 6               | 18 9               | 55 7                | 55 7                | 55 8                | 55 8                | 55 7                | 55 7                | 55 8                | 55 8                | 55 8                | 55 8                | 74 9                 | 14 9      | 74 9                 | 44 8                | 44 8                | 60 9                | 60 8                | 60 8                | 60 9                | - 6                  | 09 1:        | 09 11                            | 09 1:               | 09 11             | 62 18                | 38                   |
| ļ      | Base (B   | u<br>u     | 13/32 1 | 71/4 1             | 71/4 1             | 71/4 1             | 71/4 1             | <sup>9/16</sup> 2  | 10 2                | 10 2                | 10 2                | 10 2                | 10 2                | 10 2                | 10 2                | 10 2                | 10 2                | 10 2                | ) <sup>13/16</sup> 2 | 23/8 3    | ) <sup>13/16</sup> 2 | 317/32 3            | 317/32 3            | 1 <sup>3/16</sup> 3 | 1 <sup>3/16</sup> 3 | 1 <sup>3/16</sup> 3 | 1 <sup>3/16</sup> 3 |                      | 33/32 4      | 33/32 4                          | 33/32 4             | 33/32 4           | 21/8 5               | 1 <sup>3/16</sup> 5. |
| ּג     | -<br>-    | E          | 20 71   | 16 7               | 16 7               | 16 7               | 30 7               | 30 8               | 49 1                | 49 1                | 49 1                | 49 1                | 49 1                | 49 1                | 49 1                | 49 1                | 49 1                | 49 1                | 03 10                | 03 12     | 03 10                | 54 13               | 54 13               | 80 14               | 80 14               | 80 14               | 80 14               | - 00                 | 24 16        | 24 16                            | 24 16               | 24 16             | 60 2                 | 62 21                |
| į      | Drum (D   | E<br>u     | 3/4 1   | <sup>9/16</sup> 1  | 3/16 1             | 9/16 1             | 1/8 1:             | 1/8 1:             | 7/8 1-              | 7/8 1-              | 7/8 1.              | 7/8 1-              | 7/8 1-              | 7/8 1-              | 7/8 1-              | 7/8 1.              | 7/8 1-              | 7/8 1-              | 8 2                  | 8 2       | 8 2                  | 0 2                 | 0 2                 | 1/32 2              | 1/32 2              | 1/32 2              | 1/32 2              | <sup>13</sup> /16 31 | 23/4 3.      | 2%4 3.                           | 23/4 3.             | 2%4 3.            | 1 <sup>3/16</sup> 31 | 11/4 3I              |
|        |           | -          | 4       | 4                  | 4                  | 4                  | 3                  | 2                  | 2                   | 2                   | 5                   | 5                   | 5                   | 3                   | 5                   | 5                   | 3                   | 3 5                 | ~                    | 5         | ~                    | -                   | P<br>L              | 3* 11               | R 11                | C* 11               | 1C 11               | 11                   | <b>R</b> 12  | R 1;                             | 3* 12               | <b>R</b>          | <b>R</b> 14          | <b>R</b>             |
|        | Part      | No.        | B480TCR | B50.2STR           | B50.3STR           | B500.2STI          | B500.3TCF          | B530TCR            | B55.2STR            | B55.2STAt           | B55.3STR            | B55.3TCR            | B65.2STR            | B65.2STAU           | B65.3STR            | B65.3TCR            | B650.3STF           | B650.3TCF           | B990.3STF            | B990.3STA | B990.3TCF            | B880.3STF           | B880.3VT0           | B1111.3STF          | B1111.3TC           | B1111.3PTA          | B1111.3ST/          | B1125                | B1130.3ST    | B1130.3TC                        | B1135.3STF          | B1135.3TC         | B1140.3ST            | B1145.3ST            |

## **Powered Radial Winches**



Powered Radial winches allow crew to trim any size sail with the push of a button. Winches mount in minutes without removing the drum and can be quickly disassembled and serviced on deck. Seasonal maintenance is painless. Snap-fit socket, washer and screw top lift out as a unit, making reassembly fast and mistake free, with no leftover or misplaced parts to worry about.

#### **DETAILS MAKE THE DIFFERENCE**

#### **MULTIPLE STYLES AND FINISHES**

Winches available in aluminum alloy, chrome and in 2- and 3-speed self-tailing. Powered electric or hydraulic.

#### EASY TO CONVERT, INSTALL, SERVICE

The same drilling pattern is used to mount manual and electric winches of the same size. Other manufacturers must uninstall the existing manual winch, fill the old holes, and drill new holes before converting to electric winch power.

Builders can pre-drill a 3.00 inch (7.6 cm) gear shaft hole into the deck to simplify future conversion from manual to electric. Harken offers removable gaskets to seal the holes until upgrades are made.

Patent-pending stud-bolt mounting option allows quick installation without removing the drum.

Socket, washer, and screw-top snap-fit together to simplify maintenance and for mistake-free assembly.

#### **INTEGRATED STRIPPER ARM**

The strong, one-piece stripper arm completely covers the winch top for a stable platform that prevents fingers and clothing from catching in moving parts—an important safety feature, particularly when operating powered winches. The arm can be adjusted to multiple positions after the winch is mounted, and is shaped to smoothly feed line into and out of the self-tailing jaws.

1. Manual Override A Harken® locking handle inserted into an unloaded winch automatically disconnects the motor gear for manual operation.

Other Brands

1

Harker

#### 2. More Efficient Operation

Harken motors attach to the central drive shaft and drive through the winch gears for a two-speed mechanical advantage—the low-power first gear for fast trimming, the higher-power second gear for fine-tuning loaded sheets. The result is reduced battery drain, allowing more efficient use of the motor.

#### 3. Reliable Switches

Winches operate with waterproof switches and reliable easy-to-service electric controls.

#### 4. Winch Load Controller

This electronic system protects Harken® winches from overload by temporarily interrupting the power supply to the winch. The Load Controller comes installed with standard overload settings, but can be customized by request.

## **Electric Radial**

Electric Radial winches let you relax in luxury and trim any size sail with the push of a button.

Lightweight aluminum or mirror-finished chrome drums, and high-strength composite self-tailing jaws and skirt save weight. Composite roller bearings reduce friction under load and don't require lubrication. Load-carrying gears and pins are 17-4PH stainless steel for strength and durability.

Manual Radials easily convert to power. They don't require an adapter plate, and the identical stud pattern means no filling old holes and drilling new ones. Boatbuilders can make upgrades even easier by precutting and sealing a 3.00 in (7.6 cm) drive-shaft hole into the boat.

Winches can be mounted vertically or horizontally and operate using waterproof switches located near the winch. A locking handle inserted into an unloaded winch automatically disconnects the motor gear for manual operation.

Size 40 available in 12 volt only. Sizes 46 through 80 available in 12 or 24 volts.



HORIZONTAL





Harken motors attach to the central drive shaft and drive through the winch gears for a two-speed mechanical advantage—the low power first gear for fast trimming, the higher power second gear for fine-tuning loaded sheets. The result is reduced battery drain, allowing more efficient use of the motor.

VERTICAL

|            |                                      |       | Ø                                      |       |                                        |        |      | We   | ight |      | Fast                                  | ener | Faste                            | eners  | Line                                  | entrv  |      |           |       |       |          |       |
|------------|--------------------------------------|-------|----------------------------------------|-------|----------------------------------------|--------|------|------|------|------|---------------------------------------|------|----------------------------------|--------|---------------------------------------|--------|------|-----------|-------|-------|----------|-------|
| Part       | Drur                                 | n (D) | Base                                   | e (B) | Heigh                                  | nt (H) |      | A    | -    | C    | Cir                                   | cle  | (SH o                            | r HH)  | heigh                                 | t (LE) | (    | Gear rati | 0     | Р     | ower rat | tio   |
| No.        | in                                   | mm    | in                                     | mm    | in                                     | mm     | lb   | kg   | lb   | kg   | in                                    | mm   | in                               | mm     | in                                    | mm     | 1    | 2         | 3     | 1     | 2        | 3     |
| Horizontal |                                      |       |                                        |       |                                        |        |      |      |      |      |                                       |      |                                  |        |                                       |        |      |           |       |       |          |       |
| 40.2STEH   | 3 <sup>1</sup> /8                    | 80    | 6 <sup>3</sup> /16                     | 157   | 67/8                                   | 175    | 29.7 | 13.5 | 33.2 | 15.1 | 47/8                                  | 123  | 5 x 1/4                          | 5 x 6  | <b>3</b> <sup>1</sup> / <sub>4</sub>  | 82     | 2.13 | 6.28      | _     | 13.50 | 39.90    | _     |
| 46.2STEH   | 37/8                                 | 100   | 7 <sup>1</sup> /4                      | 184   | 715/16                                 | 201    | 32.8 | 14.9 | 38.5 | 17.5 | 57/8                                  | 150  | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 3 <sup>9</sup> /16                    | 90     | 2.30 | 9.17      | _     | 11.70 | 46.50    | _     |
| 50.2STEH   | 45/16                                | 110   | 75/8                                   | 194   | 81/8                                   | 206    | 37.1 | 16.8 | 44.2 | 20.0 | 5 <sup>7</sup> /8                     | 150  | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 37/8                                  | 97     | 2.40 | 10.90     | _     | 10.90 | 50.40    | _     |
| 60.2STEH   | 4 <sup>3</sup> /4                    | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 46.4 | 21.0 | 54.5 | 24.7 | 8                                     | 204  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 4 <sup>9</sup> / <sub>16</sub>        | 116    | 4.80 | 14.40     | _     | 20.30 | 61.00    | —     |
| 60.3STEH   | <b>4</b> <sup>3</sup> / <sub>4</sub> | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 49.7 | 22.5 | 57.8 | 26.2 | 8                                     | 204  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 4 <sup>9</sup> / <sub>16</sub>        | 116    | 2.20 | 4.80      | 14.40 | 9.20  | 20.30    | 61.00 |
| 70.2STEH   | 5 <sup>1</sup> /8                    | 130   | 97/16                                  | 240   | <b>10</b> <sup>1</sup> / <sub>16</sub> | 256    | 48.8 | 22.1 | 57.2 | 25.9 | 81/8                                  | 205  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115    | 5.70 | 18.50     | _     | 22.20 | 72.00    | —     |
| 70.3STEH   | 5 <sup>1</sup> /8                    | 130   | 97/16                                  | 240   | <b>10</b> <sup>1</sup> / <sub>16</sub> | 256    | 52.1 | 23.6 | 60.5 | 27.4 | 81/8                                  | 205  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115    | 2.30 | 5.70      | 18.50 | 9.00  | 22.20    | 72.00 |
| 80.2STEH   | 67/8                                 | 175   | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287   | <b>12</b> <sup>9</sup> /16             | 320    | 70.6 | 32.0 | 87.2 | 39.5 | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x <sup>3</sup> /8              | 8 x 10 | 67/16                                 | 164    | 9.40 | 28.10     | —     | 32.10 | 93.00    | —     |
| 80.3STEH   | 67/8                                 | 175   | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287   | <b>12</b> <sup>9</sup> /16             | 320    | 74.0 | 33.5 | 90.5 | 41.0 | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x <sup>3</sup> /8              | 8 x 10 | 67/16                                 | 164    | 2.23 | 9.40      | 28.10 | 6.50  | 32.10    | 93.00 |
| Vertical   |                                      |       |                                        |       |                                        |        |      |      |      |      |                                       |      |                                  |        |                                       |        |      |           |       |       |          |       |
| 46.2STEV   | 37/8                                 | 100   | 7 <sup>1</sup> /4                      | 184   | 715/16                                 | 201    | 36.9 | 16.7 | 42.6 | 19.3 | 57/8                                  | 150  | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | <b>3</b> <sup>9</sup> / <sub>16</sub> | 90     | 2.30 | 9.17      | _     | 11.70 | 46.50    | —     |
| 50.2STEV   | 45/16                                | 110   | 7 <sup>5</sup> /8                      | 194   | 81/8                                   | 206    | 38.6 | 17.5 | 45.7 | 20.7 | 57/8                                  | 150  | 5 x <sup>5</sup> / <sub>16</sub> | 5 x 8  | 37/8                                  | 97     | 2.40 | 10.90     |       | 10.90 | 50.40    | —     |
| 60.2STEV   | <b>4</b> <sup>3</sup> / <sub>4</sub> | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 47.9 | 21.7 | 56.1 | 25.4 | 8                                     | 204  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 4 <sup>9</sup> / <sub>16</sub>        | 116    | 4.80 | 14.40     | _     | 20.30 | 61.00    | —     |
| 60.3STEV   | <b>4</b> <sup>3</sup> / <sub>4</sub> | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 51.2 | 23.2 | 59.4 | 26.9 | 8                                     | 204  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 49/16                                 | 116    | 2.20 | 4.80      | 14.40 | 9.20  | 20.30    | 61.00 |
| 70.2STEV   | 5 <sup>1</sup> /8                    | 130   | 97/16                                  | 240   | 101/16                                 | 256    | 50.3 | 22.8 | 58.7 | 26.6 | 81/8                                  | 205  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115    | 5.70 | 18.50     | —     | 22.20 | 72.00    | —     |
| 70.3STEV   | 5 <sup>1</sup> /8                    | 130   | 97/16                                  | 240   | 101/16                                 | 256    | 53.6 | 24.3 | 62.0 | 28.1 | 81/8                                  | 205  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115    | 2.30 | 5.70      | 18.50 | 9.00  | 22.20    | 72.00 |
| 80.2STEV   | 67/8                                 | 175   | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287   | 12 <sup>9</sup> /16                    | 320    | 72.2 | 32.7 | 88.7 | 40.2 | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x <sup>3</sup> /8              | 8 x 10 | 67/16                                 | 164    | 9.40 | 28.10     | _     | 32.10 | 93.00    | —     |
| 80.3STEV   | 67/2                                 | 175   | 115/16                                 | 287   | 129/16                                 | 320    | 75.5 | 34.2 | 92.1 | 417  | Q3/16                                 | 233  | 8 x 3/0                          | 8 x 10 | 67/16                                 | 164    | 2 23 | 9 40      | 28 10 | 6 50  | 32 10    | 93 00 |



#### Dimensions

| Part     | E                                    |    | F                                    | -   | G                                    | ì   | L                  | -   | 1                                    | N   |
|----------|--------------------------------------|----|--------------------------------------|-----|--------------------------------------|-----|--------------------|-----|--------------------------------------|-----|
| No.      | in                                   | mm | in                                   | mm  | in                                   | mm  | in                 | mm  | in                                   | mm  |
| 40.2STEH | <b>1</b> 3/4                         | 43 | 61/8                                 | 155 | 87/8                                 | 227 | _                  | —   | —                                    | _   |
| 46.2STEH | <b>1</b> <sup>3</sup> / <sub>4</sub> | 43 | 61/8                                 | 155 | 87/8                                 | 227 | —                  | —   | —                                    | _   |
| 46.2STEV | —                                    | —  | —                                    | _   | —                                    | —   | 15 <sup>3</sup> /8 | 391 | <b>6</b> <sup>1</sup> / <sub>8</sub> | 157 |
| 50.2STEH | <b>1</b> <sup>3</sup> / <sub>4</sub> | 43 | <b>6</b> <sup>1</sup> / <sub>8</sub> | 155 | <b>9</b> <sup>5</sup> / <sub>8</sub> | 244 | _                  | —   | —                                    | _   |
| 50.2STEV | —                                    | —  | _                                    | _   | —                                    | —   | 15 <sup>3</sup> /8 | 391 | 6 <sup>1</sup> /8                    | 157 |
| 60.2STEH | <b>1</b> <sup>3</sup> / <sub>4</sub> | 43 | <b>6</b> <sup>1</sup> / <sub>8</sub> | 155 | <b>9</b> <sup>5</sup> / <sub>8</sub> | 244 | _                  | —   | —                                    | _   |
| 60.2STEV | —                                    | —  | _                                    | _   | —                                    | —   | 15 <sup>3</sup> /8 | 391 | 6 <sup>1</sup> /8                    | 157 |
| 60.3STEH | <b>1</b> <sup>3</sup> / <sub>4</sub> | 43 | <b>6</b> <sup>1</sup> / <sub>8</sub> | 155 | <b>9</b> <sup>5</sup> / <sub>8</sub> | 244 | _                  | —   | —                                    | _   |
| 60.3STEV | —                                    | —  | _                                    | _   | _                                    | —   | 15 <sup>3</sup> /8 | 391 | 6 <sup>1</sup> /8                    | 157 |
| 70.2STEH | <b>1</b> <sup>3</sup> / <sub>4</sub> | 43 | 61/8                                 | 155 | 95/8                                 | 244 | —                  | —   | —                                    | _   |
| 70.2STEV | —                                    | —  | _                                    | _   | —                                    | —   | 15 <sup>3</sup> /8 | 391 | <b>6</b> <sup>1</sup> / <sub>8</sub> | 157 |
| 70.3STEH | <b>1</b> <sup>3</sup> / <sub>4</sub> | 43 | 61/8                                 | 155 | 95/8                                 | 244 | —                  | —   | —                                    | _   |
| 70.3STEV | —                                    | —  | —                                    | _   | —                                    | —   | 15 <sup>3</sup> /8 | 391 | 6 <sup>1</sup> /8                    | 157 |
| 80.2STEH | 33/16                                | 81 | 811/16                               | 221 | 1011/16                              | 272 | _                  | —   | _                                    | _   |
| 80.2STEV | _                                    | _  | _                                    | _   | _                                    | _   | 16 <sup>3</sup> /4 | 425 | 65/16                                | 160 |
| 80.3STEH | 33/16                                | 81 | 811/16                               | 221 | 1011/16                              | 272 | _                  | _   | _                                    | _   |
| 80.3STEV | _                                    | _  | _                                    |     | _                                    | _   | 16 <sup>3</sup> /4 | 425 | 65/16                                | 160 |

## WINCH

#### CAN I USE A WINCH HANDLE TO MANUALLY OPERATE MY ELECTRIC WINCH?

Yes. Inserting the winch handle into an unloaded winch automatically disconnects the electric motor and allows you to use 1st and 2nd speeds just like a manual winch. This is important if you've lost power on the boat. If power is restored, the lockout prevents the winch handle from turning.

|             | Motor con             | iguration       | Current               | voltage               | Power | in Watts |
|-------------|-----------------------|-----------------|-----------------------|-----------------------|-------|----------|
| Winch size  | Horizontal (STEH)     | Vertical (STEV) | 12 V                  | 24 V                  | 12 V  | 24 V     |
| 40.2        | V                     | _               | ~                     | _                     | 700   | _        |
| 46.2        | <ul> <li>✓</li> </ul> | V               | <b>v</b>              | <ul> <li>✓</li> </ul> | 700   | 900      |
| 50.2        | V                     | ~               | ~                     | ~                     | 1500  | 2000     |
| 60.2 - 60.3 | V                     | ~               | ~                     | ~                     | 1500  | 2000     |
| 70.2 - 70.3 | V                     | ~               | ~                     | ~                     | 1500  | 2000     |
| 80.2 - 80.3 | V                     | V               | <ul> <li>✓</li> </ul> | V                     | 1500  | 2000     |

#### **Wire Gauges**

|               |                    |                      |                  |                       | Total distance b  | etween winch and      | battery            |                       |                    |
|---------------|--------------------|----------------------|------------------|-----------------------|-------------------|-----------------------|--------------------|-----------------------|--------------------|
| Winch<br>size | Current<br>voltage | Under 16.4 ft<br>AWG | Under 5 m<br>mm² | 16.4 - 32.8 ft<br>AWG | 5 m - 10 m<br>mm² | 32.8 - 49.2 ft<br>AWG | 10 m - 15 m<br>mm² | 49.2 - 65.6 ft<br>AWG | 15 m - 20 m<br>mm² |
| 40.2          | 12 V               | 2                    | 32               | 0                     | 50                | 00                    | 70                 | 000                   | 95                 |
| 46.2          | 12 V               | 2                    | 32               | 0                     | 50                | 00                    | 70                 | 000                   | 95                 |
| 46.2          | 24 V               | 5                    | 16               | 3                     | 25                | 2                     | 35                 | 0                     | 50                 |
| 50.2          | 12 V               | 2                    | 32               | 0                     | 50                | 00                    | 70                 | 000                   | 95                 |
| 50.2          | 24 V               | 5                    | 16               | 3                     | 25                | 2                     | 35                 | 0                     | 50                 |
| 60.2 - 60.3   | 12 V               | 2                    | 32               | 0                     | 50                | 00                    | 70                 | 000                   | 95                 |
| 60.2 - 60.3   | 24 V               | 5                    | 16               | 3                     | 25                | 2                     | 35                 | 0                     | 50                 |
| 70.2 - 70.3   | 12 V               | 2                    | 32               | 0                     | 50                | 00                    | 70                 | 000                   | 95                 |
| 70.2 - 70.3   | 24 V               | 5                    | 16               | 3                     | 25                | 2                     | 35                 | 0                     | 50                 |
| 80.2 - 80.3   | 12 V               | 2                    | 32               | 0                     | 50                | 00                    | 70                 | 000                   | 95                 |
| 80.2 - 80.3   | 24 V               | 5                    | 16               | 3                     | 25                | 2                     | 35                 | 0                     | 50                 |

## **UniPower Radial**

The UniPower is a single-speed winch that combines the advantages of a low-profile manual winch with the power of a 12-volt or 24-volt, low-amp-draw motor. What makes it unique is that the motor is partially imbedded inside the drum, so that it extends only 4 1/8 inches (105 mm) below the winch base—a critical feature for small boats where space under the cabin top is limited.

Winch drums come in durable lightweight aluminum or mirrorfinished chrome. High-strength composite self-tailing jaws and skirt save weight. Composite roller bearings reduce friction under load and don't require lubrication. The stripper arm and load-carrying gears on both aluminum and chrome versions are 17-4PH stainless steel for strength and durability.

The UniPower is designed with a maximum pull of 900 kg (1,984 lb). Harken's WLC200R load controller keeps the winch from exceeding this limit. In case the boat loses power, the winch can be operated manually using a winch handle.

The UniPower winch package includes a winch, one-speed control box, WLC200R Harken load controller, and a waterproof switch.





#### I'D LIKE TO MOUNT AN ELECTRIC WINCH ON THE CABIN TOP, BUT IT LIMITS SPACE BELOW. ANY SUGGESTIONS?

The motor on the Harken UniPower winch is partially embedded inside the drum and extends only 4 1/8 inches (105 mm) below the base. This gives crew more headroom as well as space to move around.

|        |      | ĺ     | )                                    |       |                                      | He    | ight              |       |      | We   | ight |      | Lin                                                         | e Ø    | Fast  | ener | Faste   | ners  | Line   | entry  |       |       |
|--------|------|-------|--------------------------------------|-------|--------------------------------------|-------|-------------------|-------|------|------|------|------|-------------------------------------------------------------|--------|-------|------|---------|-------|--------|--------|-------|-------|
| Part   | Drur | n (D) | Base                                 | e (B) | Abov                                 | edeck | Belov             | wdeck | - 1  | 1    | (    | C    | (Min -                                                      | Max)   | Ciı   | cle  | (SH o   | r HH) | heigh  | t (LE) | Gear  | Power |
| No.    | in   | mm    | in                                   | mm    | in                                   | mm    | in                | mm    | lb   | kg   | lb   | kg   | in                                                          | mm     | in    | mm   | in      | mm    | in     | mm     | ratio | ratio |
| 900UPW | 37/8 | 100   | <b>7</b> <sup>1</sup> / <sub>2</sub> | 190   | <b>8</b> <sup>1</sup> / <sub>2</sub> | 215   | 4 <sup>1</sup> /8 | 105   | 26.5 | 12.0 | 32.0 | 14.5 | <sup>5</sup> / <sub>16</sub> - <sup>9</sup> / <sub>16</sub> | 8 - 14 | 65/16 | 160  | 5 x 1/4 | 5 x 6 | 315/16 | 100    | 100   | 9.75  |

## Electric Components

Each electric winch requires one control box, one breaker, and two switches. Harken recommends adding an optional load controller. For winches larger than B980, please contact Harken. Hydraulic units require two switches.

#### Switches

Harken<sup>®</sup> offers simple, waterproof switches for electric and hydraulic winches. Order two switches for each winch.

#### **Electrical Control Boxes**

Electric control boxes contain solenoids to operate the winches. Based on winch size and voltage, select one control box for each electric winch.

#### **High-Amperage Circuit Breakers**

Harken<sup>®</sup> offers five panel-mount, high-amperage circuit breakers. They are compact, waterproof, weather-resistant, and ignition-protected. Circuit breakers are available for 12 or 24 volts DC systems.

#### **Load Controllers**

The winch load controller is an electronic system that protects Harken<sup>®</sup> winches from overload by temporarily interrupting the power supply to the winch. The Load Controller comes installed with standard overload settings, but can be customized on request. Use WLC200R with Radial winches. For further information contact Harken<sup>®</sup> Italy.



BRS104/P

BRS102/P

BRS102/S

HCP1717

HCP1718

HCP1719

HCP1720



BEB500.12.1 BEB1000.12.1 BEB1000.24.1





## Q&A

#### DOES IT MATTER WHETHER I HAVE A 12- OR 24-VOLT SYSTEM?

Yes. Check your system and specify voltage before ordering. A 24-volt system requires half as much amperage, so the wire and circuit breaker (fuse) can have lower amperage rating. Larger winches, such as the 1110, 1120 and 1140, are available in 24-volt. Most boats in the USA are 12-volt. Boats using 24-volt systems are more common in Europe.

#### **Deck Switches**

| Part        |                       | Len    | igth | Wi                              | dth | He                            | ight | We  | ight |
|-------------|-----------------------|--------|------|---------------------------------|-----|-------------------------------|------|-----|------|
| No.         | Description           | in     | mm   | in                              | mm  | in                            | mm   | 0Z  | g    |
| BR\$102/P/S | Remote switch w/guard | 211/16 | 68   | 2 <sup>11</sup> / <sub>16</sub> | 68  | <sup>13</sup> / <sub>16</sub> | 21   | 4.5 | 128  |
| BRS104/P    | Remote switch w/guard | 33/8   | 85   | 3                               | 76  | 3/4                           | 19   | 3.4 | 95   |
|             |                       |        |      |                                 |     |                               |      |     |      |

#### **Electric Control Boxes**

| Part         |         | Ler                                  | ngth | Wi                             | dth | Hei                                    | ight | We   | ight | Use with                                                    |
|--------------|---------|--------------------------------------|------|--------------------------------|-----|----------------------------------------|------|------|------|-------------------------------------------------------------|
| No.          | Voltage | in                                   | mm   | in                             | mm  | in                                     | mm   | OZ   | g    | winch                                                       |
| BEB500.12.1  | 12      | 5 <sup>1</sup> /2                    | 140  | 35/32                          | 80  | 411/32                                 | 110  | 35.3 | 1000 | Classic: B40.2STEH                                          |
| BEB1000.12.1 | 12      | 5 <sup>1</sup> /2                    | 140  | 3 <sup>5</sup> / <sub>32</sub> | 80  | <b>4</b> <sup>11</sup> / <sub>32</sub> | 110  | 35.3 | 1000 | Radial: 40.2STE to 70.2STE<br>Classic: B44.2STE to 980.2STE |
| BEB1000.24.1 | 24      | <b>5</b> <sup>1</sup> / <sub>2</sub> | 140  | 35/32                          | 80  | 411/32                                 | 110  | 35.3 | 1000 | Radial: 46.2STE to 70.2STE<br>Classic: B44 2STE to 980 2STE |

#### **Circuit Breakers**

| Max<br>amps | Power<br>watts                | Use with<br>winch                                                                                                         |
|-------------|-------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|             |                               |                                                                                                                           |
|             |                               |                                                                                                                           |
| 80          | 2000                          | Radial: 46.2STE to 70.2STE<br>Classic: B44.2STE to B980.2STE                                                              |
|             |                               |                                                                                                                           |
| 80          | 500                           | Radial: 40.2STE & 46.2STE<br>Classic: B40.2STE                                                                            |
| 100         | 1500                          | Classic: B44.2STE to B60.2STE                                                                                             |
| 150         | 1500                          | Classic: B70.2STE to B980.2STE                                                                                            |
| 135         | 1500                          | Radial: 50.2STE to 70.2STE                                                                                                |
|             | 80<br>80<br>100<br>150<br>135 | 80         2000           80         500           100         1500           150         1500           135         1500 |

#### **Load Controllers**

| Part             | Use with |         | Motor power | Cut-of    | i load*   | Len                                    | igth | Wi                                    | dth | Hei                      | ight | We  | ight |
|------------------|----------|---------|-------------|-----------|-----------|----------------------------------------|------|---------------------------------------|-----|--------------------------|------|-----|------|
| No.              | winch    | Voltage | watts       | lb        | kg        | in                                     | mm   | in                                    | mm  | in                       | mm   | OZ  | g    |
| Radial           |          |         |             |           |           |                                        |      |                                       |     |                          |      |     |      |
| WLC200R.40.12    | 40       | 12      | 700         | 1320      | 600       | 311/32                                 | 85   | 27/32                                 | 56  | 13/8                     | 35   | 7.4 | 210  |
| WLC200R.46.12    | 46       | 12      | 700         | 1740      | 790       | <b>3</b> <sup>11</sup> / <sub>32</sub> | 85   | 27/32                                 | 56  | 13/8                     | 35   | 7.4 | 210  |
| WLC200R.46.24    | 46       | 24      | 900         | 1740      | 790       | 311/32                                 | 85   | 27/32                                 | 56  | 13/8                     | 35   | 7.4 | 210  |
| WLC200R.50.12    | 50       | 12      | 1500        | 1880      | 850       | <b>3</b> <sup>11</sup> / <sub>32</sub> | 85   | 27/32                                 | 56  | <b>1</b> <sup>3</sup> /8 | 35   | 7.4 | 210  |
| WLC200R.50.24    | 50       | 24      | 2000        | 1880      | 850       | <b>3</b> <sup>11</sup> / <sub>32</sub> | 85   | <b>2</b> <sup>7</sup> / <sub>32</sub> | 56  | <b>1</b> <sup>3</sup> /8 | 35   | 7.4 | 210  |
| WLC200R.60-70.12 | 60/70    | 12      | 1500        | 2535/3530 | 1150/1600 | <b>3</b> <sup>11</sup> / <sub>32</sub> | 85   | <b>2</b> <sup>7</sup> / <sub>32</sub> | 56  | 1 <sup>3</sup> /8        | 35   | 7.4 | 210  |
| WLC200R.60-70.24 | 60/70    | 12      | 2000        | 2535/3530 | 1150/1600 | 3 <sup>11</sup> / <sub>32</sub>        | 85   | 2 <sup>7</sup> /32                    | 56  | 13/8                     | 35   | 7.4 | 210  |
| Classic          |          |         |             |           |           |                                        |      |                                       |     |                          |      |     |      |
| WLC200.12.1      | B40      | 12      | 500         | 1210      | 550       | 311/32                                 | 85   | 27/32                                 | 56  | 13/8                     | 35   | 7.4 | 210  |
| WLC200.12.2      | B44/B46  | 12      | 1500        | 1985/2051 | 900/930   | 311/32                                 | 85   | 27/32                                 | 56  | 13/8                     | 35   | 7.4 | 210  |
| WLC200.24.1      | B44/B46  | 24      | 2000        | 1985/2051 | 900/930   | 3 <sup>11</sup> / <sub>32</sub>        | 85   | 2 <sup>7</sup> /32                    | 56  | 1 <sup>3</sup> /8        | 35   | 7.4 | 210  |
| WLC200.12.3      | B48/B53  | 12      | 1500        | 2205/2425 | 1000/1100 | 311/32                                 | 85   | 27/32                                 | 56  | 1 <sup>3</sup> /8        | 35   | 7.4 | 210  |
| WLC200.24.2      | B48/B53  | 24      | 2000        | 2205/2425 | 1000/1100 | 3 <sup>11</sup> / <sub>32</sub>        | 85   | 2 <sup>7</sup> /32                    | 56  | 1 <sup>3</sup> /8        | 35   | 7.4 | 210  |

\*Contact Harken Italy for customized load presets

## Electric Systems

Battery voltage and winch size determine which control boxes, circuit breakers, and load controllers you should use. For winches size B1110 and above, contact Harken for appropriate components.

#### **Electric Winch Kits**

Kits are offered for the most common winches. Kits include the winch and a horizontal motor, a control box, a circuit breaker, and two BRS104/P switches. Please include the full part number of the winch, including materials code and voltage, when ordering a kit.





| Winch Control box Circuit breaker (optional)*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| size 12 V 24 V 12 V 24 V 12 V 24 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Kit**            |
| Radial                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |
| <b>40.2STE</b> BEB1000.12.1 — HCP1717 — WLC200R.40.12 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | K40.2STE         |
| 46.2STE BEB1000.12.1 BEB1000.24.1 HCP1717 HCP1717 WLC200R.46.12 WLC200R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 46.24 K46.2STE   |
| 50.2STE BEB1000.12.1 BEB1000.24.1 HCP1720 HCP1717 WLC200R.50.12 WLC200R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 50.24 K50.2STE   |
| 60.2STE BEB1000.12.1 BEB1000.24.1 HCP1720 HCP1717 WLC200R.60-70.12 WLC200R.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0-70.24 K60.2STE |
| <b>60.3STE</b> BEB1000.12.1 BEB1000.24.1 HCP1720 HCP1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K60.3STE         |
| <b>70.2STE</b> BEB1000.12.1 BEB1000.24.1 HCP1720 HCP1717 WLC200R.60-70.12 WLC200R.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D-70.24 K70.2STE |
| <b>70.3STE</b> BEB1000.12.1 BEB1000.24.1 HCP1720 HCP1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K70.3STE         |
| <b>80.2STE</b> BEB1000.12.1 BEB1000.24.1 HCP1720 HCP1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K80.2STE         |
| <b>80.3STE</b> BEB1000.12.1 BEB1000.24.1 HCP1720 HCP1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | K80.3STE         |
| Classic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |
| <b>B40.2STE</b> BEB500.12.1 — HCP1717 — WLC200.12.1 —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BK40.2STE        |
| B44.2STE BEB1000.12.1 BEB1000.24.1 HCP1718 HCP1716 WLC200.12.2 WLC200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.1 BK44.2STE   |
| B46.2STE BEB1000.12.1 BEB1000.24.1 HCP1718 HCP1716 WLC200.12.2 WLC200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.1 BK46.2STE   |
| B48.2STE BEB1000.12.1 BEB1000.24.1 HCP1718 HCP1716 WLC200.12.3 WLC200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 24.2 BK48.2STE   |
| <b>B53.2STE</b> BEB1000.12.1 BEB1000.24.1 HCP1718 HCP1716 WLC200.12.3 WLC200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.2 BK53.2STE   |
| B60.2STE BEB1000.12.1 BEB1000.24.1 HCP1718 HCP1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BK60.2STE        |
| <b>B70.2STE</b> BEB1000.12.1 BEB1000.24.1 HCP1719 HCP1717                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BK70.2STE        |
| <b>B74.2STE</b> BEB1000.12.1 BEB1000.24.1 HCP1719 HCP1717 — —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BK74.2STE        |
| B980.2STE         BEB1000.12.1         BEB1000.24.1         HCP1719         HCP1717         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         …         … <th>—</th> | —                |
| B980.3STE         BEB1000.12.1         BEB1000.24.1         HCP1719         HCP1717         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         —         …         …         …         …         …         …         …         … <th>_</th> | _                |

\*Load controller not included in kit \*\*Kits not available from all dealers

## **Hydraulic Radial**

Hydraulic Radial winches let you relax in luxury and trim any size sail with the push of a button.

Lightweight aluminum or mirror-finished chrome drums, and high-strength composite self-tailing jaws and skirt save weight. Composite roller bearings reduce friction under load and don't require lubrication. Load-carrying gears and pins are 17-4PH stainless steel for strength and durability.

Manual Radials easily convert to power. They don't require an adapter plate and the identical stud pattern means no filling and drilling holes. Boatbuilders can make future upgrades even easier by precutting and sealing a 3.00 inch (7.6 cm) drive shaft hole.

Winches mount vertically and operate using waterproof switches located near the winch. A locking handle inserted into an unloaded winch automatically disconnects the motor gear for manual operation.



Sunreef 70

Harken motors attach to the central drive shaft and drive through the winch gears for a two-speed mechanical advantage—the lowpower first gear for fast trimming, the higher-power second gear for fine-tuning loaded sheets. This results in a smaller, more efficient motor that saves weight and cost.

| Part    | Line<br>heigh                         | entry<br>t (LE) |                                      | L   |                   | N   |
|---------|---------------------------------------|-----------------|--------------------------------------|-----|-------------------|-----|
| No.     | in                                    | mm              | in                                   | mm  | in                | mm  |
| 46.2STH | <b>3</b> <sup>9</sup> / <sub>16</sub> | 90              | <b>9</b> <sup>1</sup> / <sub>4</sub> | 234 | 5 <sup>1</sup> /8 | 130 |
| 50.2STH | 37/8                                  | 97              | <b>9</b> <sup>1</sup> / <sub>4</sub> | 234 | 5 <sup>1</sup> /8 | 130 |
| 60.2STH | 49/16                                 | 116             | <b>9</b> <sup>1</sup> / <sub>4</sub> | 234 | 5 <sup>1</sup> /8 | 130 |
| 60.3STH | 49/16                                 | 116             | <b>9</b> <sup>1</sup> / <sub>4</sub> | 234 | 5 <sup>1</sup> /8 | 130 |
| 70.2STH | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115             | <b>9</b> <sup>1</sup> / <sub>4</sub> | 234 | 5 <sup>1</sup> /8 | 130 |
| 70.3STH | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115             | <b>9</b> <sup>1</sup> / <sub>4</sub> | 234 | 5 <sup>1</sup> /8 | 130 |
| 80.2STH | 67/16                                 | 164             | <b>9</b> <sup>7</sup> / <sub>8</sub> | 250 | 5 <sup>1</sup> /8 | 130 |
| 80.3STH | 67/16                                 | 164             | <b>9</b> <sup>7</sup> / <sub>8</sub> | 250 | 5 <sup>1</sup> /8 | 130 |



|         |                                       | 1     | Ø                                      |       |                                        |        |      | We   | ight |      | Lin                                                         | e Ø     | Fast                                  | ener | Faste                            | eners  |      |           |       |       |         |       |
|---------|---------------------------------------|-------|----------------------------------------|-------|----------------------------------------|--------|------|------|------|------|-------------------------------------------------------------|---------|---------------------------------------|------|----------------------------------|--------|------|-----------|-------|-------|---------|-------|
| Part    | Drun                                  | 1 (D) | Base                                   | e (B) | Heigh                                  | nt (H) |      | A    | (    | C    | (Min -                                                      | · Max)  | cir                                   | cle  | (SH o                            | r HH)  | G    | lear rati | 0     | Po    | wer rat | io    |
| No.     | in                                    | mm    | in                                     | mm    | in                                     | mm     | lb   | kg   | lb   | kg   | in                                                          | mm      | in                                    | mm   | in                               | mm     | 1    | 2         | 3     | 1     | 2       | 3     |
| 46.2STH | 37/8                                  | 100   | 7 <sup>1</sup> /4                      | 184   | 715/16                                 | 201    | 28.0 | 12.7 | 33.8 | 15.3 | <sup>5</sup> / <sub>16</sub> - <sup>9</sup> / <sub>16</sub> | 8 - 14  | 5 <sup>7</sup> /8                     | 150  | 5 x <sup>5</sup> /16             | 5 x 8  | 2.30 | 9.17      | _     | 11.70 | 46.50   | —     |
| 50.2STH | <b>4</b> <sup>5</sup> / <sub>16</sub> | 110   | 75/8                                   | 194   | 81/8                                   | 206    | 29.8 | 13.5 | 36.9 | 16.7 | <sup>5</sup> / <sub>16</sub> - <sup>9</sup> / <sub>16</sub> | 8 - 14  | 57/8                                  | 150  | 5 x 5/16                         | 5 x 8  | 2.40 | 10.90     | _     | 10.90 | 50.40   | —     |
| 60.2STH | <b>4</b> <sup>3</sup> / <sub>4</sub>  | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 39.1 | 17.7 | 47.2 | 21.4 | <sup>5</sup> / <sub>16</sub> - <sup>5</sup> / <sub>8</sub>  | 8 - 16  | 8                                     | 204  | 6 x <sup>5</sup> / <sub>16</sub> | 6 x 8  | 4.80 | 14.40     | _     | 20.30 | 61.00   | —     |
| 60.3STH | <b>4</b> <sup>3</sup> / <sub>4</sub>  | 120   | <b>9</b> <sup>1</sup> / <sub>8</sub>   | 232   | <b>9</b> <sup>11</sup> / <sub>16</sub> | 246    | 42.4 | 19.2 | 50.6 | 22.9 | <sup>5</sup> / <sub>16</sub> - <sup>5</sup> / <sub>8</sub>  | 8 - 16  | 8                                     | 204  | 6 x <sup>5</sup> /16             | 6 x 8  | 2.20 | 4.80      | 14.40 | 9.20  | 20.30   | 61.00 |
| 70.2STH | 5 <sup>1</sup> /8                     | 130   | <b>9</b> <sup>7</sup> / <sub>16</sub>  | 240   | <b>10</b> <sup>1</sup> / <sub>16</sub> | 256    | 41.5 | 18.8 | 49.9 | 22.6 | <sup>3</sup> /8 - <sup>11</sup> / <sub>16</sub>             | 10 - 18 | <b>8</b> <sup>1</sup> / <sub>8</sub>  | 205  | 6 x <sup>5</sup> /16             | 6 x 8  | 5.70 | 18.50     | _     | 22.20 | 72.00   | —     |
| 70.3STH | 5 <sup>1</sup> /8                     | 130   | <b>9</b> <sup>7</sup> / <sub>16</sub>  | 240   | <b>10</b> <sup>1</sup> / <sub>16</sub> | 256    | 44.8 | 20.3 | 53.2 | 24.1 | <sup>3</sup> /8 - <sup>11</sup> / <sub>16</sub>             | 10 - 18 | <b>8</b> <sup>1</sup> / <sub>8</sub>  | 205  | 6 x <sup>5</sup> /16             | 6 x 8  | 2.30 | 5.70      | 18.50 | 9.00  | 22.20   | 72.00 |
| 80.2STH | 67/8                                  | 175   | <b>11</b> <sup>5</sup> / <sub>16</sub> | 287   | <b>12</b> <sup>9</sup> /16             | 320    | 66.4 | 30.1 | 83.0 | 37.6 | <sup>3</sup> /8 - <sup>13</sup> / <sub>16</sub>             | 10 - 20 | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x <sup>3</sup> /8              | 8 x 10 | 9.40 | 28.10     | _     | 32.10 | 93.00   | —     |
| 80.3STH | 67/8                                  | 175   | 115/16                                 | 287   | 12 <sup>9</sup> /16                    | 320    | 69.8 | 31.6 | 86.3 | 39.1 | <sup>3</sup> /8 - <sup>13</sup> / <sub>16</sub>             | 10 - 20 | <b>9</b> <sup>3</sup> / <sub>16</sub> | 233  | 8 x <sup>3</sup> /8              | 8 x 10 | 2.23 | 9.40      | 28.10 | 6.50  | 32.10   | 93.00 |



"We thought, why stick with the status quo, let's go with something new and innovative to make our product stand above the rest on the market."

> — Robbie Young Hydraulics Manager

HYDRAULICS MANAGER ROBBIE YOUNG TALKS ABOUT OUR ALL-NEW HYDRAULICS PRODUCT LINE

*Editors Note:* Hydraulic-powered systems are becoming more and more popular on smaller cruising boats, all the way up to the Megayachts. With hydraulic power, you can run winches, furlers, anchor windlasses, bow thrusters, cylinders basically any function on the boat, even the drive system. It was this increased demand that led us to develop a line of production hydraulic products.

#### Why Stick with the Status Quo

When developing products you can improve a design you already have, buy a company with existing tooling, or start fresh. We chose to start fresh. And because we could go in any direction we wanted, our only parameters were that loads, pressures, and lengths had to fit within sailboat industry standards. We thought, why stick with the status quo, let's go with something new and innovative to make our product stand above the rest on the market. In the standard Harken way, we took on the hardest jobs first because when we

figured out how to do those, it would be easy to do the rest of the product line. We designed custom titanium cylinders for the +39 Challenge (2007 America's Cup) and a powered system for a 52 m Sparkman & Stephens in Turkey. This led directly into a range of cylinders: stainless steel, 6000 series aluminum, and 7000 series aluminum. These materials have different properties for different applications.



#### **Materials Match Lifestyles**

The housings come in different materials to suit the sailor's needs. A cruiser might say, I want a lightweight cylinder that lasts for a long time in salt water. In that case we use Hardkote-anodized 6061 aluminum. If they want a classic look, we use the same cylinder design, but change the material to corrosion-resistant 316 stainless steel bodies with the same mirror-polished finish as the winches.

A Grand Prix racer thinks differently: I want a lightweight cylinder than can handle very high pressure. 7000 series aluminum has nearly twice the strength of 6061 so we can make the walls thinner to save weight, reduce size, and still handle high loads. On Grand Prix sailboats, crew use 7075 aluminum cylinders knowing they have only a 2-year life

"We designed cylinders for mast, sail and keel controls that fit everything from cruiser/racers up to your megayachts and Grand Prix Maxi boats." span in salt water. We won't sell a 7075 cylinder to a non- Grand Prix race boat. It's like selling a Formula 1 chassis to a person who's going to be driving down the bumpy roads of rural Wisconsin. You don't do it. It just won't last.

Titanium is also a favorite cylinder material for Grand Prix racers. It's the strongest and is corrosion resistant, but some class rules don't allow it.

#### **Full Range Of Cylinders**

— Robbie Young Hydraulics Manager

We designed cylinders for mast, sail, and keel controls that fit everything from cruiser/racers (35-40 ft, 9-12 m), up to your megayachts and Grand Prix Maxi

boats. We researched pistons, seal materials, seal types, and applications, and chose bronze-filled Teflon<sup>®</sup> piston seals and graphite-filled Teflon<sup>®</sup> rod seals that are extremely low friction and more durable than polyurethane seals. We ended up with a stronger, lighter, more modern cylinder for the same length.

Cylinders include a standard clevis jaw on both ends, but can also be fitted with blocks and different eye types. Single-acting cylinders have hydraulic oil at one end and air at the other (like those used in car hatchbacks). Grand Prix cylinders come in single-acting or in double-acting designs with oil at the ends.

We have a full range of vang cylinders: standard rigid, double-acting, and are working on position indicators to tell you how far the vang extends. It's similar to technology used in the hydraulic crane world.

0



Our HydroTrim line of cylinders is used to trim mainsheets, jib sheets, or whatever function you want. As the cylinder extends, it pulls in a multiplying amount of sheet in 1:4 or 1:6 reverse purchases. These cylinders are used on cruising boats and are available in 11 sizes.

#### Valves

The big question was, how do we make a good mousetrap even better? We discussed what we did and didn't like, and came up with some innovative ideas. We eliminated the large coil springs—the majority of the weight. We feel hydraulic systems should have a safety feature because in extreme conditions, you can't tell how much pressure is in the system. We built pressure release into every valve with flow controls to adjust the speed

of release. We combined pressure relief and release into one part—a patented feature. We also have dump valves for systems to quickly release pressure.

#### Handles

Valve handles are molded nylon-filled, long-glass fiber like our Carbo blocks. They're contoured so sheets and lines won't wrap around the edges and your hands won't slip. Handles mount in any direction so they can be uniform throughout the boat.

> "We built pressure release into every valve with flow controls to adjust the speed of release. We combined pressure relief and release into one part—a patented feature."

> > — Robbie Young Hydraulics Manager



#### Pumps

Currently, other companies have 2-speed hydraulic pumps. You push hard in first gear, then there's a shift, and it seems like you're pumping forever to get something to happen in second gear. The reason is, there's a big difference in the volume of oil between first and second gear. We decided to add a third speed to push more oil, faster and more efficiently through the system. The pump has preset points that automatically shift to the next speed. Shift points can be adjusted.

"We're using many off-the-shelf components. Spares for a cruising boat traveling around the world become minimal because these parts are available anywhere they go."

— Robbie Young Hydraulics Manager

#### **Power Packs**

We have small power units that perform from 1 to 13 functions. For the larger units like those we developed for *Nazenin V*, where we're using computers and PLC's (Programmable Logic Controller), it gets a bit more involved. We've partnered with hydraulic innovators to bring technology from a variety of industries.

#### **Off-The-Shelf**

We're using many off-the-shelf components. For example, a standard-size valve we buy in the U.S. can be bought anywhere on the planet. Spares for a cruising boat traveling around the world become minimal because these parts are available anywhere they go.

## **Hydraulic Cylinders**

These strong, lightweight cylinders are perfect for mast, sail, and keel controls. Harken cylinders stand up to years of high-stress use in harsh marine environments and have proven themselves on everything from race boats to bluewater cruisers and megayachts. Their efficiency, longevity, and reliability are evident in the high quality of their components and workmanship.

Cylinders are available in stainless steel or Hardkote-anodized\*, Teflon®-impregnated 6061-T6 aluminum for strength and corrosion resistance. Graphite-filled Teflon® rod seals and bronzefilled Teflon® piston seals are extremely low friction and are more durable than polyurethane seals. Performance O-rings and slant springs in the seals provide consistent seal pressure for a reliable, long-lasting fit. High-strength Nitronic 50 stainless steel rods and pins provide superior strength and corrosion resistance.

Cylinders include a standard clevis jaw on both ends, but can also be fitted with blocks and different eye types. Standard pull cylinders have air-spring returns. Cylinders include push, pull, and pull/pull styles. Custom cylinder lengths are also available.

photo

Billy Black

1

Hodgdon 65

Available.





*High-performance O-ring and spring-energized seals* 

HARDKOTE

**IARKEN** 



CLEAR-ANODIZED\* S

STAINLESS STEEL

\*Clear-anodized aluminum is available but offers less protection than Hardkote-anodized.

| —                |
|------------------|
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
|                  |
| _                |
| 4                |
| U                |
| <u>i</u>         |
| liC              |
| lic              |
| ulic             |
| ulic             |
| aulic            |
| aulic            |
| raulic           |
| raulic           |
| <b>draulic</b>   |
| draulic          |
| <i>draulic</i>   |
| <b>ydraulic</b>  |
| <b>lydraulic</b> |

|                     |                | Pin ct      | enter       |                  | Weigh   | lt**           |          |           |                                  |            | ä                 | ameter   |                      |            |        |          |             |                    | Pull     | force*'         | *           |                   |                 |          | :               |      |
|---------------------|----------------|-------------|-------------|------------------|---------|----------------|----------|-----------|----------------------------------|------------|-------------------|----------|----------------------|------------|--------|----------|-------------|--------------------|----------|-----------------|-------------|-------------------|-----------------|----------|-----------------|------|
| Part                | Stroke         | e (closi    | gth<br>ed)* | - 1909<br>Alumin | e En    | 316<br>Stainle | N SS     | /olume    | 2                                | Gap/pin    | B                 | ore      | Rod                  | Max O      | 8 0    | 69 bar   | 8<br>6<br>6 | zuuu psi<br>40 bar | 21(      | uu psi<br>D bar | @ 40<br>275 | i uu psi<br>5 bar | @ 5000<br>345 b | l psi    | Breakir<br>Ioad | ő    |
| No.                 | - Size in n    | n in        | mm          | q                | kg      | qI             | kg in    | اء<br>۲   | in                               | mm         | .ш                | mm       | in mr                | n in m     | m      | b ki     | dl [b       | kg                 | q        | kg              | qI          | kg                | qI              | kg       | qI              | kg   |
| HYCS2511265         | -6 10.4 2      | 65 18.7     | 474         | 2.2 (            | 0.99    | 4.4 2          | 2 00.    | 0.1       | 1 7/16                           | 11.1       | -                 | 25       | 7/16 11              | 1.5 3      | 88 63  | 35 28    | 8 127       | 0 576              | 1905     | 864             | 2540        | 1152              | 3175            | 1440 6   | 3400 2          | 903  |
| HYCS2511360         | -6 14.2 3      | 60 22.4     | 569         | 2.5              | 1.15    | 5.2 2          | .34 9    | 0.1       | 5 7/16                           | 11.1       | -                 | 25       | 7/16 11              | 1.5 3      | 88 63  | 5 28     | 8 127       | 0 576              | 1905     | 864             | 2540        | 1152              | 3175            | 1440 6   | 3400 2          | 903  |
| HYCS2511530         | -6 20.9 5      | 30 29.1     | 739         | 3.2              | 1.44    | 6.5 2          | .93 10   | 3 0.2     | 2 <sup>7</sup> / <sub>16</sub>   | 11.1       | -                 | 25       | 7/16 11              | 1.5 3      | 88 63  | 35 28    | 8 127       | 0 576              | 1905     | 864             | 2540        | 1152              | 3175            | 1440 6   | 3400 2          | 903  |
| HYCS3513250         | -10 9.8 2      | 50 19.4     | 493         | 3.5              | 1.60    | 7.4 3          | .37 1:   | 3 0.2     | 1 1/2                            | 12.7       | 13/8              | 35       | 1/2 13               | 1.8 4      | 6 12   | 89 58    | 14 257      | 7 1165             | 33866    | 1753            | 5154        | 2338              | 6443            | 2922 12  | 2900 5          | 851  |
| HYCS3513350         | -10 13.8 3     | 50 23.4     | 594         | 4.2              | 1.89    | 8.9 4          | .04 18   | 9 0.2     | 9 1/2                            | 12.7       | 13/8              | 35       | 1/2 13               | 1.8 4      | 6 12   | 89 58    | 14 257      | 7 1165             | 3866     | 1753            | 5154        | 2338              | 6443            | 2922 12  | 2900 5          | 851  |
| HYCS3513525         | -10 20.7 5     | 25 30.3     | 769         | 5.5 2            | 2.50    | 12.4 5         | .61 2.   | 7 0.4     | 4 1/2                            | 12.7       | 13/8              | 35       | 1/2 13               | 1.8 4      | 6 12   | 89 58    | 14 257      | 7 1165             | 33866    | 1753            | 5154        | 2338              | 6443            | 2922 12  | 2900 5          | 851  |
| HYCS4016250         | -12 9.8 2      | 50 19.6     | 498         | 4.6              | 2.09    | 9.4 4          | .28 14   | 4 0.2     | 4 5/8                            | 15.9       | 11/2              | 40       | <sup>5/8</sup> 16    | 2.0 5      | 0 14   | 60 66    | 292         | 1 1325             | 5 4381   | 1987            | 5841        | 2650              | 7302            | 3312 14  | 4600 6          | 622  |
| HYCS4016375         | -12 14.8 3     | 75 24.5     | 622         | 5.7 2            | 2.57    | 11.7 5         | .29 22   | 2 0.3     | 5 <sup>5/8</sup>                 | 15.5       | 11/2              | 40       | <sup>5/8</sup> 16    | 2.0 5      | 0 14   | 60 66    | 292         | 1 1325             | 5 4381   | 1987            | 5841        | 2650              | 7302            | 3312 14  | 4600 6          | 622  |
| HYCS4016625         | -12 24.6 6     | 25 34.4     | 874         | 7.7              | 3.51    | 16.1 7         | .30 36   | 5 0.5     | 9 <sup>5</sup> / <sub>8</sub>    | 15.9       | 11/2              | 40       | <sup>5/8</sup> 16    | 2.0 5      | 0 14   | 60 66    | 292         | 1 1325             | 5 4381   | 1987            | 5841        | 2650              | 7302            | 3312 14  | 4600 6          | 622  |
| HYCS4516250         | -17 9.8 2      | 50 19.6     | 498         | 5.5 2            | 2.48    | 11.7 5         | .30 2    | 1 0.3     | 4 5/8                            | 15.5       | 13/4              | 45       | <sup>5/8</sup> 16    | 2.3 5      | 8 20   | 98 95    | 2 415       | 7 1904             | 1 6295   | 2856            | 8394        | 3807              | 10492           | 4759 2-  | 1000 5          | 525  |
| HYCS4516375         | -17 14.8 3     | 75 24.5     | 623         | 6.7              | 3.03    | 14.3 6         | .51 3.   | 1 0.5     | 1 5/8                            | 15.5       | 13/4              | 45       | <sup>5/8</sup> 16    | 2.3 5      | 8 20   | 98 95    | 2 419       | 7 1904             | 1 6295   | 2856            | 8394        | 3807              | 10492           | 4759 2-  | 1000 5          | 525  |
| HYCS4516800         | -17 31.5 8     | 00 41.3     | 1050        | 9.1 4            | 4.12    | 19.7 8         | .93 6(   | 5 1.0     | 18 <sup>5/8</sup>                | 15.5       | 13/4              | 45       | <sup>5/8</sup> 16    | 2.3 5      | 8 20   | 98 95    | 2 415       | 7 1904             | 1 6295   | 2856            | 8394        | 3807              | 10492           | 4759 2-  | 1000 5          | 525  |
| HYCS5519275         | -22 10.8 2     | 75 22.4     | 569         | 9.5 4            | 4.33    | 20.8 9         | .43 3t   | 5 0.5     | 9 3/4                            | 19.1       | 2 <sup>3/16</sup> | 55       | 3/4 19               | 2.9 7      | 3 33   | 16 15    | 04 663      | 3 3009             | 9949     | 4513            | 13266       | 6017              | 16582           | 7522 30  | 3200 1          | 5059 |
| HYCS5519400         | -22 15.7 4     | 00 27.3     | 693         | 11.5             | 5.20    | 25.1 1         | 1.39 52  | 2 0.8     | 6 3/4                            | 19.1       | 2 <sup>3/16</sup> | 55       | 3/4 19               | 2.9 7      | 3 33   | 16 15    | 04 663      | 3 3005             | 9949     | 4513            | 13266       | 6017              | 16582           | 7522 33  | 3200 1          | 5059 |
| HYCS5519930         | -22 36.6 9     | 30 48.1     | 1223        | 19.4 8           | 8.80    | 43.8 19        | 9.89 12  | 1 1.9     | 9 3/4                            | 19.1       | 2 <sup>3/16</sup> | 55       | 3/4 19               | 2.9 7      | 3 33   | 16 15    | 04 663      | 3 3005             | 9949     | 4513            | 13266       | 6017              | 16582           | 7522 33  | 3200 1          | 5059 |
| HYCS6522300         | -30 11.8 3     | 00 25.2     | 639         | 13.3 (           | 5.04    | 28.6 12        | 2.99 5-  | 1 0.8     | 3 <sup>7</sup> / <sub>8</sub>    | 22.2       | 21/2              | 65       | 7/8 22               | 3.2 8      | 31 43  | 07 19    | 54 861      | 5 3906             | 3 12922  | 5861            | 17230       | 7815              | 21537           | 9769 43  | 3100 1          | 9550 |
| HYCS6522450         | -30 17.7 4     | 50 31.0     | 787         | 15.9             | 7.22    | 34.9 1         | 5.82 76  | 5 1.2     | 5 <sup>7/8</sup>                 | 22.2       | 21/2              | 65       | 7/8 22               | 3.2 8      | 31 43  | 07 19    | 54 861      | 5 3906             | 3 12922  | 5861            | 17230       | 7815              | 21537           | 9769 43  | 3100 1          | 9550 |
| HYCS65221050        | -30 41.3 10    | 350 54.6    | 1387 2      | 26.8 1           | 2.15    | 59.0 2t        | 3.78 17  | 8 2.9     | 2 <sup>7</sup> / <sub>8</sub>    | 22.2       | 21/2              | 65       | 7/8 22               | 3.2 8      | 31 43  | 07 19    | 54 861      | 5 3906             | 3 12922  | 5861            | 17230       | 7815              | 21537           | 9769 43  | 3100 1          | 9550 |
| HYCS7525300         | -40 11.8 3     | 00 27.7     | 704 2       | 20.5             | 9.32    | 44.7 2(        | 0.29 74  | 4 1.2     | 2 1                              | 25.4       | 3                 | 75       | 1 25                 | 3.8 9      | 1 62   | 83 28    | 50 1250     | 36 5700            | 18850    | 8550            | 25133       | 11400             | 31416           | 14250 62 | 2800 2          | 8486 |
| HYCS7525475         | -40 18.7 4     | 75 34.4     | 874         | 24.9 1           | 1.30    | 54.5 24        | 4.72 11  | 8 1.9     | 3 1                              | 25.4       | 3                 | 75       | 1 25                 | 3.8 9      | 1 62   | 83 28    | 50 1250     | 36 5700            | 18850    | 8550            | 25133       | 11400             | 31416           | 14250 62 | 2800 2          | 8486 |
| HYCS75251175        | -40 46.3 1     | 175 62.0    | 1574 4      | 42.5 1           | 9.29    | 95.0 43        | 3.08 29  | 1 4.7     | 6 1                              | 25.4       | 3                 | 75       | 1 25                 | 3.8 9      | 37 62  | 83 28    | 50 1250     | 36 5700            | 18850    | 8550            | 25133       | 11400             | 31416           | 14250 62 | 2800 2          | 8486 |
| HYCS8025300         | -48 11.8 3     | 00 28.3     | 719 2       | 23.7 1           | 0.74    | 52.7 23        | 3.89 87  | 1.3       | 3 11/2                           | 28.£       | 31/8              | 80       | 1 25                 | 4.1 1      | 03 68  | 85 31    | 23 137(     | 39 6246            | 3 20654  | 9368            | 27538       | 12491             | 34423           | 15614 68 | 8800 3          | 1207 |
| HYCS8025475         | -48 18.7 4     | 75 35.1     | 891 2       | 28.8 1           | 3.06 (  | 64.6 29        | 9.29 12  | 9 2.1     | 1 11/8                           | 3.28.£     | 31/8              | 80       | 1 25                 | 4.1 1      | 03 68  | 85 31    | 23 137(     | 39 6246            | 3 20654  | 9368            | 27538       | 12491             | 34423           | 15614 6  | 8800 3          | 1207 |
| HYCS80251150        | -48 45.3 1     | 150 61.7    | 1567 4      | 48.5 2           | 2.01 1  | 10.5 50        | 0.11 31  | 2 5.1     | 1 11/6                           | 3.28.6     | 31/8              | 80       | 1 25                 | 4.1 1      | 03 68  | 85 31    | 23 137(     | 39 6246            | \$ 20654 | 9368            | 27538       | 12491             | 34423           | 15614 68 | 8800 3          | 1207 |
| HYCS9032375         | -60 14.8 3     | 75 31.1     | 789 3       | 34.2 1           | 5.53    | 75.5 34        | 4.24 12  | 4 2.0     | 3 11/4                           | 31.6       | 31/2              | 06       | 1/4 32               | 4.6 1      | 16 83  | 94 38    | 07 167      | 38 7615            | 5 25182  | 11422           | 33576       | 15230             | 41970           | 19037 83 | 3900 3          | 8056 |
| HYCS9032550         | -60 21.7 5     | 50 38.0     | 965 4       | 41.1 1           | 8.62    | 41.1 4(        | 0.84 18  | 2 2.9     | ·/11/2                           | 31.6       | 31/2              | . 06     | 1/4 32               | 4.6 1      | 16 83  | 94 38    | 07 167      | 38 7615            | 5 25182  | 11422           | 33576       | 15230             | 41970           | 19037 83 | 3900 3          | 8056 |
| HYCS9032375.W       | -76 14.8 3     | 75 31.1     | 789 \$      | 34.4 1           | 5.65    | 75.9 34        | 4.47 12  | 4 2.0     | (3 15/16 /                       | 11/4 33/5  | 31/2              | 06       | 11/4 32              | 4.6 1      | 16 83  | 94 38    | 07 167      | 38 7615            | 5 25182  | 11422           | 33576       | 15230             | 41970           | 19037 83 | 3900 3          | 8056 |
| HYCS9032550.W       | -76 21.7 5     | 50 38.0     | 965 4       | 41.2 1           | 8.70    | 41.2 4(        | 0.97 18  | 2 2.9     | 15/16 /                          | 11/4 33/5  | 31/2              | 06       | 11/4 32              | 4.6 1      | 16 83  | 94 38    | 07 1678     | 38 7615            | 5 25182  | 11422           | 33576       | 15230             | 41970           | 19037 83 | 3900 3          | 8056 |
| HYCS10032400        | -90 15.7 4     | - 00        |             | 48.6 2           | 2.04    | 48.6 49        | 9.57 17  | 9 2.9     | 1 <sup>3</sup> / <sub>1</sub>    | 34.9       | 4                 | 100      | 1/4 32               | 5.2 1      | 32 113 | 39 51    | 43 226      | 78 1028            | 7 34018  | 15430           | 45357       | 20573             | 56696           | 25717 11 | 3400 5          | 1437 |
| HYCS10032625        | -90 24.6 6     | 25 —        |             | 58.9 2           | 6.72    | 58.9 6(        | 0.10 27  | 9 4.5     | 7 13/6                           | 34.5       | 4                 | 100      | 1/4 32               | 5.2 1      | 32 113 | 39 51    | 43 226      | 78 1028            | 7 34018  | 15430           | 45357       | 20573             | 56696           | 25717 11 | 3400 5          | 1437 |
| HYCS11535475        | -110 18.7 4    | 75 —        |             | 71.6 3           | 2.48    | 71.6 7         | 1.46 27  | 0 4.4     | 3 11/2                           | 38.1       | 41/2              | 115 .    | <sup>3/8</sup> 35    | 5.8 1      | 47 144 | 119 65-  | 41 288      | 39 1308            | 1 43258  | 19622           | 57678       | 26162             | 72097           | 32703 14 | 4200 6          | 5408 |
| HYCS11535700        | -110 27.6 7    | 00          |             | 84.6 3           | 8.37    | 84.6 8(        | 5.56 39  | 7 6.5     | 11/V                             | 38.1       | 41/2              | 115 .    | <sup>3/8</sup> 35    | 5.8 1      | 47 144 | 119 65-  | 41 288      | 39 1308            | 1 43258  | 19622           | 57678       | 26162             | 72097           | 32703 14 | 4200 6          | 5408 |
| HYCS13038475        | -150 18.7 4    | 75 —        |             | 94.7 4           | 2.96    | 94.7 9         | 5.80 35  | 3 5.7     | ·/ 13/                           | 44.5       | 51/8              | 130      | 11/2 38              | 6.5 1      | 65 186 | 362 85   | 56 377      | 24 1711            | 1 56585  | 25667           | 75447       | 34222             | 94309           | 42778 18 | 8600 8          | 5548 |
| HYCS13038700        | -150 27.6 7    | 00          | -           | 10.8 5           | 0.26 1  | 10.8 11        | 0.57 52  | 0 8.5     | 2 13/4                           | 44.5       | 5 <sup>1/8</sup>  | 130      | 11/2 38              | 6.5 1      | 65 186 | 362 85   | 56 377:     | 24 1711            | 1 56585  | 25667           | 75447       | 34222             | 94309           | 42778 18 | 8600 8          | 5548 |
| HYCS14548500        | -195 19.7 5    | 00          | -           | 136.1 6          | 1.73 1  | 36.1 13        | 8.87 45  | 7 7.4     | 9 2¹/չ                           | 54         | $5^{3/4}$         | 145      | 17/8 48              | 7.4 1      | 88 232 | 06 105   | 26 464      | 12 2105            | 2 69618  | 31578           | 92824       | 42104             | 116030          | 52630 23 | 32100 10        | 5279 |
| HYCS14548750        | -195 29.5 7    |             | –<br>       | 60.6 7           | 2.85 1  | 60.6 16        | 2.48 68  | 5 11.2    | 23 21/                           | 3 54       | 53/4              | 145 .    | 1 <sup>7</sup> /8 48 | 7.4 1      | 88 232 | 06 105   | 26 464      | 12 2105            | 2 69618  | 31578           | 92824       | 42104             | 116030          | 52630 23 | 32100 10        | 5279 |
| HYCS16554600        | -260 23.6 6    | 00          | - 2         | 207.4 9          | 14.08 2 | 07.4 20        | 16.98 70 | 11.4      | 47 2 <sup>7</sup> / <sub>1</sub> | 6 61.5     | 61/2              | 165      | 21/8 54              | 8.4 2      | 13 296 | 37 134   | 43 592      | 73 2688            | 6 88910  | 40329           | 118546      | 5 53772           | 148183          | 57214 29 | 6400 13         | 4445 |
| HYCS16554800        | -260 31.5 8    | 00          | — 2         | 232.4 1(         | 05.41 2 | 32.4 23        | 7.20 93  | 3 15.2    | 29 2 <sup>7</sup> /1             | 6 61.5     | 61/2              | 165      | 21/8 54              | 8.4 2      | 13 296 | 37 134   | 43 592      | 73 2688            | 6 88910  | 40329           | 118546      | 5 53772           | 148183          | 37214 29 | 6400 13         | 4445 |
| HYCS19064600        | -320 23.6 6    | - 00        | - 2         | 283.0 12         | 28.37 2 | 83.0 27        | 1.41 92  | 8 15.2    | 21 27/1                          | 61.5       | 71/2              | 190      | 21/2 64              | 9.7 2      | 46 392 | 270 178  | 13 785      | 10 3562            | 5 11781( | 53438           | 157080      | 0 71250           | 196350          | 39063 39 | 32700 17        | 8126 |
| HYCS19064800        | -320 31.5 8    | - 00        | ()<br>()    | 316.7 1          | 43.65 3 | 316.7 31       | 6.03 12  | 37 20.    | 28 27/1                          | 61.5       | 71/2              | 190      | 21/2 64              | 9.7 2      | 46 392 | 270 178  | 13 785      | 10 3562            | 5 11781( | 53438           | 157080      | 0 71250           | 196350          | 39063 39 | 2700 17         | 8126 |
| *For pin center len | gth open add s | troke lengt | th to pin   | ı center         | length  | closed         | * *Rod € | ands (fo. | rks) inclu                       | ided in w£ | ights             | ***<br>W | tx relief :          | setting is | 5,000  | psi / 34 | 5 bar       |                    |          |                 |             |                   |                 |          |                 |      |

## Valves & Manifolds

Harken's patent-pending valves and manifolds are a major update to marine hydraulics. Featuring extremely lightweight and low profile designs, Harken has a complete selection for manual systems with options like Grand Prix sculpting and double-sided manifolds.

#### Valves

Valves turn different functions on and off from a cockpit-mounted valve panel. Harken's patent-pending valves are very low-profile and weigh half as much as comparable valves. Each single- or double-acting valve has its own pressure relief, letting you match hydraulic power to the maximum working loads of your individual mast and sail controls. Standard 5000 psi versions and sculpted 10000 psi Grand Prix versions are machined from Hardkote-anodized 6061-T6 aluminum.

#### Manifolds

Manifolds are conduits that supply valves with oil from the pump. Harken offers single- and double-sided manifolds that accommodate up to 9 valves. Standard and sculpted Grand Prix versions are machined from Hardkote-anodized 6061-T6 aluminum.

#### **Relief Valves**

Inline and manifold-mount relief valves control the maximum pressure of the entire system. Inline reliefs work with any manual system. Manifold-mount reliefs fit any Harken manifold.

#### **Remote Dump Valves**

Remote dump valves let you ease sail controls from the helm, rail, and other key positions. Either use it as a quick-release or regulate its speed with an optional adjustable flow control.

#### **Valve Panels**

Valve panels can be ordered with or without stainless steel gauges for any of our manifold configurations. Panels are available in 6061-T6 aluminum, mirror-polished 316 stainless, and clear-coated carbon.



Tapered handle sockets guarantee a perfect fit for the lifetime of the handle

VALVES PANELS



STANDARD VALVES & MANIFOLDS

**GRAND PRIX VALVES & MANIFOLDS** 



Single- and double-sided manifolds hold up to 9 valves

Handles fit in any of 4 directions so inverted valves have the same open/closed positions and rotation direction as upright valves HYDRAULIC SYSTEMS

NEW



| Part      |                                                | Max pr | essure | He  | ight | Wi   | dth | De  | pth | We  | ight |
|-----------|------------------------------------------------|--------|--------|-----|------|------|-----|-----|-----|-----|------|
| No.       | Description                                    | psi    | bar    | in  | mm   | in   | mm  | in  | mm  | lb  | kg   |
| Valves    |                                                |        |        |     |      |      |     |     |     |     |      |
| HYV1PP    | Single-acting panel mount valve                | 5000   | 345    | 3.9 | 100  | 1.9  | 47  | 2.6 | 66  | 0.7 | 0.33 |
| HYV1PT    | Single-acting thru deck mount valve            | 5000   | 345    | 3.9 | 100  | 1.9  | 47  | 3.7 | 95  | 0.8 | 0.36 |
| HYV2PP    | Double-acting panel mount valve                | 5000   | 345    | 3.9 | 100  | 2.5  | 63  | 3.7 | 95  | 1.6 | 0.72 |
| HYV2PT    | Double-acting thru-deck mount valve            | 5000   | 345    | 3.9 | 100  | 2.5  | 63  | 4.9 | 124 | 1.7 | 0.76 |
| HYV1GP    | Single-acting Grand Prix panel mount valve     | 10000  | 689    | 3.9 | 100  | 1.9  | 47  | 2.6 | 66  | 0.6 | 0.25 |
| HYV1GT    | Single-acting Grand Prix thru-deck mount valve | 10000  | 689    | 3.9 | 100  | 1.9  | 47  | 3.7 | 95  | 0.6 | 0.29 |
| HYV2GP    | Double-acting Grand Prix panel mount valve     | 10000  | 689    | 3.9 | 100  | 2.5  | 63  | 3.7 | 95  | 1.0 | 0.47 |
| HYV2GT    | Double-acting Grand Prix thru-deck mount valve | 10000  | 689    | 3.9 | 100  | 2.5  | 63  | 4.9 | 124 | 1.1 | 0.50 |
| HYVDSPF   | Remote dump valve/string pull/flow control     | 10000  | 689    | 2.4 | 60   | 1.7  | 42  | 0.7 | 19  | 1.7 | 0.78 |
| HYVRI     | Relief valve/inline                            | 10000  | 689    | 1.4 | 36   | 1.0  | 25  | 3.0 | 75  | 0.2 | 0.08 |
| HYVRM     | Relief valve/manifold mount                    | 10000  | 689    | 1.1 | 28   | 1.1  | 28  | 2.8 | 72  | 0.2 | 0.11 |
| Manifolds |                                                |        |        |     |      |      |     |     |     |     |      |
| HYMSP61   | Single-sided manifold 1 place                  | 5000   | 345    | 0.7 | 19   | 2.2  | 55  | 1.5 | 38  | 0.2 | 0.08 |
| HYMSP62   | Single-sided manifold 2 place                  | 5000   | 345    | 0.7 | 19   | 5.4  | 137 | 1.5 | 38  | 0.5 | 0.22 |
| HYMSP63   | Single-sided manifold 3 place                  | 5000   | 345    | 0.7 | 19   | 8.7  | 220 | 1.5 | 38  | 0.8 | 0.36 |
| HYMSP64   | Single-sided manifold 4 place                  | 5000   | 345    | 0.7 | 19   | 11.9 | 302 | 1.5 | 38  | 1.1 | 0.52 |
| HYMSP65   | Single-sided manifold 5 place                  | 5000   | 345    | 0.7 | 19   | 15.2 | 385 | 1.5 | 38  | 1.4 | 0.64 |
| HYMSG61   | Single-sided Grand Prix manifold 1 place       | 10000  | 689    | 0.7 | 19   | 1.7  | 42  | 1.5 | 38  | 0.1 | 0.05 |
| HYMSG62   | Single-sided Grand Prix manifold 2 place       | 10000  | 689    | 0.7 | 19   | 5.4  | 137 | 1.5 | 38  | 0.3 | 0.15 |
| HYMSG63   | Single-sided Grand Prix manifold 3 place       | 10000  | 689    | 0.7 | 19   | 8.7  | 220 | 1.5 | 38  | 0.5 | 0.22 |
| HYMSG64   | Single-sided Grand Prix manifold 4 place       | 10000  | 689    | 0.7 | 19   | 11.9 | 302 | 1.5 | 38  | 0.6 | 0.29 |
| HYMSG65   | Single sided Grand Prix manifold 5 place       | 10000  | 689    | 0.7 | 19   | 15.2 | 385 | 1.5 | 38  | 0.8 | 0.36 |
| HYMZG63   | Double-sided Grand Prix manifold 3 place       | 10000  | 689    | 0.7 | 19   | 5.4  | 137 | 1.5 | 38  | 0.3 | 0.16 |
| HYMZG64   | Double-sided Grand Prix manifold 4 place       | 10000  | 689    | 0.7 | 19   | 7.0  | 178 | 1.5 | 38  | 0.4 | 0.20 |
| HYMZG65   | Double-sided Grand Prix manifold 5 place       | 10000  | 689    | 0.7 | 19   | 8.7  | 220 | 1.5 | 38  | 0.5 | 0.24 |
| HYMZG66   | Double-sided Grand Prix manifold 6 place       | 10000  | 689    | 0.7 | 19   | 10.3 | 261 | 1.5 | 38  | 0.6 | 0.28 |
| HYMZG67   | Double-sided Grand Prix manifold 7 place       | 10000  | 689    | 0.7 | 19   | 11.9 | 302 | 1.5 | 38  | 0.7 | 0.32 |
| HYMZG68   | Double-sided Grand Prix manifold 8 place       | 10000  | 689    | 0.7 | 19   | 13.5 | 344 | 1.5 | 38  | 0.8 | 0.36 |
| HYMZG69   | Double-sided Grand Prix manifold 9 place       | 10000  | 689    | 0.7 | 19   | 15.2 | 385 | 1.5 | 38  | 0.9 | 0.39 |

Standard valves have -4 JIC port adapters. Grand Prix valves have plugs in all ports.
# **Hydraulic Power Units**

Harken power units are the complete package for electrically powered hydraulic pumps. Their motors run up to 13 functions and 3 simultaneous functions at full power, ranging from backstay and vang cylinders to davits, keels, and windlasses. Preinstalled double-flow capabilities feed power-hungry equipment.

Power units feature highly efficient series-wound motors and IP67-rated motor contactors on the coated aluminum tank's 6061-T6 top. Units have 4000-watt 24V DC motors. 12V DC motors and valves are available by special order. Pumps and clear-anodized manifolds are preinstalled, saving space, installation time, and additional hardware. Drop-in return-line filters provide a no-mess alternative to typical spin-on styles.

# **Prewired Control Box**

Units come with a prewired control box made of tough polycarbonate for motor and valve controls. The terminals and valve wire sets are all sealed and labeled—just connect the functions you need.

# **Custom Options**

Need remote manifolds? Want to integrate an engine-driven pump or use generator power? We will customize a unit to your specifications.





## **Control Box**

|                   | He   | ight | Wi   | dth | Depth |     |  |
|-------------------|------|------|------|-----|-------|-----|--|
| Power unit        | in   | mm   | in   | mm  | in    | mm  |  |
| Hydro 1 / Hydro 2 | 16.5 | 419  | 12.5 | 318 | 6.0   | 152 |  |
| Hydro 3           | 19.5 | 495  | 17.5 | 445 | 10.0  | 254 |  |

## **Power Unit Dimensions**

|                              |       | A   | I    | В   |      | )   | [    | )   | E    |     |  |
|------------------------------|-------|-----|------|-----|------|-----|------|-----|------|-----|--|
| Power unit                   | in mm |     | in   | mm  | in   | mm  | in   | mm  | in   | mm  |  |
| Hydro 1                      | 22.5  | 568 | 19.4 | 493 | 14.8 | 376 | 12.9 | 328 | 7    | 178 |  |
| Hydro 2 / Hydro 3            | 27.4  | 696 | 24.2 | 615 | 18.6 | 472 | 16.9 | 429 | 11.2 | 284 |  |
| Dimensions subject to change |       |     |      |     |      |     |      |     |      |     |  |

# **Hvdraulic Power Units**

|               | Max number      | Max<br>simultaneous | 24V DC          | Max<br>current drain | Max Tank<br>ent drain capacity o |         | Max<br>operating pressure |             | Max flow rate |              | Wei | ght |           |
|---------------|-----------------|---------------------|-----------------|----------------------|----------------------------------|---------|---------------------------|-------------|---------------|--------------|-----|-----|-----------|
| Power unit    | of functions    | functions           | Motor           | amps                 | gal                              | L       | psi                       | bar         | gpm           | L/min        | lb  | kg  | Fasteners |
| Hydro 1       | 4               | 1                   | 1 x 4 kW        | 210                  | 7.9                              | 30      | 2000                      | 140         | 4             | 15           | 119 | 54  | M10       |
| Hydro 2       | 9*              | 2**                 | 2 x 4 kW        | 2 x 210              | 18.5                             | 70      | 2000                      | 140         | 8             | 30           | 168 | 76  | M10       |
| Hydro 3       | 13*             | 3**                 | 3 x 4 kW        | 3 x 210              | 18.5                             | 70      | 2000                      | 140         | 12            | 45           | 207 | 94  | M10       |
| *One function | delivers double | flow output (8 gpi  | m) using 2 moto | ors ** This nu       | mber is re                       | duced b | by one when               | a double fl | ow functi     | on is in use |     |     |           |



Drop-in filters and filter status gauges make maintenance fast and easy







# **Hydraulic Reservoirs**

Harken offers pressurized carbon fiber/composite reservoirs and vented blow-molded reservoirs for manual hydraulic systems.

# **Pressurized Reservoirs**

With a 20-liter version that weighs just 3.8 lb (1.736 kg), Harken's pressurized carbon fiber/composite reservoirs are among the lightest in the existence. They are installed in the bilge rather than at pump level for a low center of gravity. Reservoirs include a one-way return line check valve and supply line shutoff valve, both with aluminum -6JIC fittings. A high-quality regulator maintains smooth and consistent oil flow.

A graduated level gauge and translucent sections in the reservoir walls make it easy to monitor oil levels. Pressurized reservoirs require very little maintenance and are cleaner than those that use ambient air pressure.

Custom sizes are available.

### **Vented Reservoirs**

These 2- and 4-liter blow-molded reservoirs are used for smaller Grand Prix systems and production yachts. Reservoirs feature a vented cap to stabilize tank pressure and prevent leaks. Translucent materials allow oil levels to be easily monitored. 3/8 inch (10 mm) hose barbs are welded to the reservoir for supply and return hoses.

**VENTED RESERVOIRS** 



HANNEN



|         |                                 | Maxi | mum      | 0   | il       |      | M      |     |     |       |     |     |       |
|---------|---------------------------------|------|----------|-----|----------|------|--------|-----|-----|-------|-----|-----|-------|
| Part    |                                 | capa | capacity |     | capacity |      | Height |     | dth | Depth |     | We  | eight |
| No.     | Description                     | gal  | L        | gal | L        | in   | mm     | in  | mm  | in    | mm  | lb  | kg    |
| HYRPC20 | Pressurized composite reservoir | 5.3  | 20       | 3.2 | 12       | 31.5 | 800    | 7.9 | 200 | 7.9   | 200 | 3.8 | 1.736 |
| HYRPC14 | Pressurized composite reservoir | 3.7  | 14       | 2.1 | 8        | 25.6 | 650    | 7.9 | 200 | 7.9   | 200 | 3.4 | 1.550 |
| HYRVP04 | Vented blow-molded reservoir    | 1.1  | 4        | 1.1 | 4        | 11.4 | 290    | 8.7 | 220 | 4.1   | 105 | 1.2 | 0.545 |
| HYRVP02 | Vented blow-molded reservoir    | 0.5  | 2        | 0.5 | 2        | 6.7  | 170    | 8.7 | 220 | 4.1   | 105 | 0.8 | 0.364 |

PRESSURIZED RESERVOIRS

# **Grand Prix Cylinders**

Used as mast, sail, and keel controls, Harken's highly efficient Grand Prix cylinders outlast and outperform on the hottest raceboats. They've endured hundreds of thousands of cycles in the testing lab and have gone on to prove themselves on champion TP52s and other winning Grand Prix yachts. Meticulous engineering and top-quality components let Harken cylinders excel in constant high-stress racing and harsh marine environments.

Cylinders are available in titanium or Hardkote-anodized, Teflon<sup>®</sup>impregnated 7075-T6 aluminum for strength. Graphite-filled Teflon<sup>®</sup> rod seals and bronze-filled Teflon<sup>®</sup> piston seals are extremely low friction and are more durable than polyurethane seals. Performance O-rings and slant springs in the seals provide consistent seal pressure for a reliable, long-lasting fit. High-strength titanium, 17-4PH stainless steel, or Nitronic 50 rods and pins provide superior strength and corrosion resistance.

Cylinders include a standard clevis jaw on both ends, but can also be fitted with blocks and different eye types. Cylinders include push, pull, and pull/pull styles.

> Rods can be fitted with a variety of high-quality end controls

Black photo

Billy

Cooksons Boats Ltd.

Yacht Design,

luan

100'

HARDKOTE

TITANIUM

# **Grand Prix Cylinders**

The table below lists common Grand Prix cylinder configurations. Contact Harken for weights and volumes, as these depend on your specifications for materials, pull force, stroke length, and cylinder diameter. 10,000 psi cylinders are available upon request.

Grand Prix cylinders are only intended for systems with a vigorous maintenance schedule, as they are built for extremely high loads at a minimal weight.





*Custom headstay cylinder with spherical mount* 



Custom titanium trunnion end cap

|               |                  |                                      |       | Diam                                 | eter | Pull force                           |    |       |        |       |        |  |
|---------------|------------------|--------------------------------------|-------|--------------------------------------|------|--------------------------------------|----|-------|--------|-------|--------|--|
|               |                  |                                      |       | _                                    |      | _                                    |    | @ 50  | )0 psi | @ 75  | 00 psi |  |
| Part          | Cylinder housing | Ga                                   | p/pin | BC                                   | ore  | . R                                  | od | 345   | bar .  | 520   | bar .  |  |
| No.*          | material         | in                                   | mm    | in                                   | mm   | in                                   | mm | lb    | kg     | lb    | kg     |  |
| HYCS7198xxx   | 7075-T6 aluminum | <sup>5</sup> / <sub>16</sub>         | 7.9   | 3/4                                  | 19   | <sup>5</sup> /16                     | 8  | 1824  | 827    | 2736  | 1241   |  |
| HYCST198xxx   | titanium         | <sup>5</sup> /16                     | 7.9   | 3/4                                  | 19   | <sup>5</sup> /16                     | 8  | 1824  | 827    | 2736  | 1241   |  |
| HYCS72510xxx  | 7075-T6 aluminum | 3/8                                  | 9.5   | 1                                    | 25   | 3/8                                  | 10 | 3375  | 1531   | 5062  | 2296   |  |
| HYCST2510xxx  | titanium         | <sup>3</sup> /8                      | 9.5   | 1                                    | 25   | 3/8                                  | 10 | 3375  | 1531   | 5062  | 2296   |  |
| HYCS73211xxx  | 7075-T6 aluminum | <sup>7</sup> / <sub>16</sub>         | 11.1  | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32   | <sup>7</sup> / <sub>16</sub>         | 11 | 5384  | 2442   | 8076  | 3663   |  |
| HYCST3211xxx  | titanium         | 7/ <sub>16</sub>                     | 11.1  | <b>1</b> 1/4                         | 32   | <sup>7</sup> / <sub>16</sub>         | 11 | 5384  | 2442   | 8076  | 3663   |  |
| HYCS73513xxx  | 7075-T6 aluminum | 1/2                                  | 12.7  | <b>1</b> <sup>3</sup> /8             | 35   | 1/2                                  | 13 | 6443  | 2922   | 9664  | 4384   |  |
| HYCST3513xxx  | titanium         | 1/2                                  | 12.7  | <b>1</b> <sup>3</sup> /8             | 35   | 1/2                                  | 13 | 6443  | 2922   | 9664  | 4384   |  |
| HYCS74013xxx  | 7075-T6 aluminum | 1/2                                  | 12.7  | <b>1</b> 1/2                         | 40   | 1/2                                  | 13 | 7854  | 3563   | 11781 | 5344   |  |
| HYCST4013xxx  | titanium         | 1/2                                  | 12.7  | <b>1</b> <sup>1</sup> / <sub>2</sub> | 40   | 1/2                                  | 13 | 7854  | 3563   | 11781 | 5344   |  |
| HYCS74514xxx  | 7075-T6 aluminum | 5/8                                  | 15.9  | <b>1</b> <sup>3</sup> / <sub>4</sub> | 45   | <sup>9</sup> /16                     | 14 | 10784 | 4891   | 16176 | 7337   |  |
| HYCST4514xxx  | titanium         | 5/8                                  | 15.9  | <b>1</b> <sup>3</sup> / <sub>4</sub> | 45   | <sup>9</sup> / <sub>16</sub>         | 14 | 10784 | 4891   | 16176 | 7337   |  |
| HYCS75016xxx  | 7075-T6 aluminum | <sup>5</sup> /8                      | 15.9  | 2                                    | 50   | <sup>5</sup> /8                      | 16 | 14174 | 6429   | 21261 | 9644   |  |
| HYCST5016xxx  | titanium         | <sup>5</sup> /8                      | 15.9  | 2                                    | 50   | <sup>5</sup> /8                      | 16 | 14174 | 6429   | 21261 | 9644   |  |
| HYCS75518xxx  | 7075-T6 aluminum | 3/4                                  | 19.1  | <b>2</b> <sup>1</sup> /8             | 55   | 11/16                                | 18 | 15877 | 7202   | 23815 | 10802  |  |
| HYCST5518xxx  | titanium         | 3/4                                  | 19.1  | <b>2</b> <sup>1</sup> / <sub>8</sub> | 55   | 11/16                                | 18 | 15877 | 7202   | 23815 | 10802  |  |
| HYCS76521xxx  | 7075-T6 aluminum | <sup>7</sup> /8                      | 22.2  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 65   | <sup>13</sup> / <sub>16</sub>        | 21 | 21951 | 9957   | 32927 | 14935  |  |
| HYCST6521xxx  | titanium         | 7/8                                  | 22.2  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 65   | 13/16                                | 21 | 21951 | 9957   | 32927 | 14935  |  |
| HYCS77525xxx  | 7075-T6 aluminum | 1                                    | 25.4  | 3                                    | 75   | 1                                    | 25 | 31416 | 14250  | 47124 | 21375  |  |
| HYCST7525xxx  | titanium         | 1                                    | 25.4  | 3                                    | 75   | 1                                    | 25 | 31416 | 14250  | 47124 | 21375  |  |
| HYCS78029xxx  | 7075-T6 aluminum | <b>1</b> 1/4                         | 31.8  | <b>3</b> <sup>1</sup> / <sub>8</sub> | 80   | <b>1</b> 1/8                         | 29 | 33379 | 15141  | 50069 | 22711  |  |
| HYCST8029xxx  | titanium         | <b>1</b> <sup>1</sup> / <sub>4</sub> | 31.8  | <b>3</b> <sup>1</sup> /8             | 80   | <b>1</b> <sup>1</sup> /8             | 29 | 33379 | 15141  | 50069 | 22711  |  |
| HYCS79035xxx  | 7075-T6 aluminum | <b>1</b> <sup>3</sup> /8             | 34.9  | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90   | 13/8                                 | 35 | 40681 | 18453  | 61022 | 27679  |  |
| HYCST9035xxx  | titanium         | <b>1</b> <sup>3</sup> /8             | 34.9  | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90   | 13/8                                 | 35 | 40681 | 18453  | 61022 | 27679  |  |
| HYCS710038xxx | 7075-T6 aluminum | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38.1  | 4                                    | 100  | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | 53996 | 24492  | 80994 | 36738  |  |
| HYCST10038xxx | titanium         | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38.1  | 4                                    | 100  | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38 | 53996 | 24492  | 80994 | 36738  |  |

\*When ordering, replace xxx with desired stroke length in millimeters.

# **Hydraulic Pumps**

Harken 3-speed pumps push oil faster and more efficiently than other pumps on the market, reducing wasted time and energy. At preset points, the pump automatically shifts to the next speed. Shift points can be adjusted to fit crew strength and sailing style. We also make a 2-speed pump that offers the same high-strength handles, user-adjustable autoshifting, and mounting accessories.

Bolt holes in the Hardkote-anodized 6061-T6 aluminum pump housing are threaded with stainless-steel inserts to prevent corrosion around the stainless bolts. An optional adhered isolation plate improves load distribution even more by transferring torque directly to the mounting surface rather than the bolt holes. The piston shafts and rocker arms are machined from 17-4PH stainless steel.

Pumps have splined shafts to ensure a tight fit and to allow the handle to be mounted at the exact angle you choose. Standard roundtipped handles are made of knurled 6061-T6 Hardkote-anodized aluminum and fit most marine pumps. Grand Prix alternatives include carbon and knurled titanium. An optional square-tipped style allows the handle to be rocked 5 degrees laterally from the pumping direction to store against the cockpit wall.

**CARBON HANDLE** 

**ALUMINUM HANDLE** 

### Handles

| Part        |                                        |                                      | Ø  | Ler                                   | ngth | We  | ight |
|-------------|----------------------------------------|--------------------------------------|----|---------------------------------------|------|-----|------|
| No.         | Description                            | in                                   | mm | in                                    | mm   | lb  | kg   |
| HYPMH6600   | Pump Handle 600 mm/aluminum            | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32 | 235/8                                 | 600  | 1.3 | 0.58 |
| HYPMH6800   | Pump Handle 800 mm/aluminum            | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32 | <b>31</b> <sup>1</sup> / <sub>2</sub> | 800  | 1.6 | 0.73 |
| HYPMHC800   | Pump Handle 800 mm/carbon              | <b>1</b> 1/4                         | 32 | <b>31</b> 1/2                         | 800  | 1.2 | 0.55 |
| HYPMHC800S  | Pump Handle 800 mm/carbon/square tip   | <b>1</b> 1/4                         | 32 | <b>31</b> 1/2                         | 800  | 1.3 | 0.58 |
| HYPMHC1000  | Pump Handle 1000 mm/carbon             | <b>1</b> 1/4                         | 32 | 393/8                                 | 1000 | 1.4 | 0.65 |
| HYPMHC1000S | Pump Handle 1000 mm/carbon/square tip  | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32 | 393/8                                 | 1000 | 1.5 | 0.66 |
| HYPMHT800   | Pump Handle 800 mm/titanium            | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32 | <b>31</b> <sup>1</sup> / <sub>2</sub> | 800  | 1.3 | 0.57 |
| HYPMHT800S  | Pump Handle 800 mm/titanium/square tip | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32 | <b>31</b> <sup>1</sup> / <sub>2</sub> | 800  | 1.3 | 0.58 |

Optional isolation plates made of extremely resilient G10 improve load distribution by transferring torque directly to the mounting surface

photo

Vartinez

Thierv

TP52, Reichel/Pugh, Cookson Boats

Artemic

0

9

### Pumps

| Part       |                                               | 1st: Low<br>pressure |      | 2nd: Medium<br>pressure |     | 3rd: High<br>pressure |     | Max<br>pressure |     | Ports/fittings |              |     | ight |
|------------|-----------------------------------------------|----------------------|------|-------------------------|-----|-----------------------|-----|-----------------|-----|----------------|--------------|-----|------|
| No.        | Description                                   | in³ cc               |      | in³                     | CC  | in³                   | CC  | psi             | bar | Suction        | Pressure     | lb  | kg   |
| HYPM2      | 2-Speed pump/auto shift*‡                     | 0.99                 | 16.3 | 0.25                    | 4.1 | —                     | —   | 5000            | 345 | 3/8" hose barb | 1/4" 37° JIC | —   | _    |
| HYPM3-1.1R | 3-Speed pump/auto shift/round handle socket*  | 2.03                 | 33.3 | 0.51                    | 8.3 | 0.18                  | 3.0 | 10000           | 689 | 3/8" NPT       | 7/16" ORB    | 6.9 | 3.13 |
| HYPM3-1.1S | 3-Speed pump/auto shift/square handle socket* | 2.03                 | 33.3 | 0.51                    | 8.3 | 0.18                  | 3.0 | 10000           | 689 | 3/8" NPT       | 7/16" ORB    | 6.9 | 3.14 |
| НҮРМЗМР    | Pump anti-torque mounting plate               |                      |      | —                       | —   | —                     | —   | _               | _   | —              | —            | 0.2 | 0.09 |
| + 1 10 ( ) |                                               |                      |      |                         |     |                       |     |                 |     |                |              |     |      |

\*M8 fasteners ‡Available 2010

# **Custom Yacht Hydraulics**

Harken<sup>®</sup> offers cylinders and custom hydraulic power systems for megayachts. These complete solutions allow crew to easily control all hydraulic functions and sail controls, including mainsheet traveler, backstay, halyard tensioner, outhaul, vang, furling, and winch systems. Systems include custom power units, PTO pumps, valve manifolds, and electrical control systems.

### Cylinders

Cylinders feature Hardkote-anodized 6061-T6 aluminum housing, high-strength, corrosion-resistant Nitronic 50 stainless rods and pins. As the cylinder moves, low-friction Teflon<sup>®</sup> seals reduce drag for less wear.

## **PTO Pumps**

Customized for specific hydraulic systems, PTO (power take-off) pumps convert engine power to hydraulic power to handle gear requiring high horsepower such as Captive Reel winches, bow thrusters, or windlasses.

### **Electro-Hydraulic Valves**

Electro-hydraulic valves are electronically controlled by a PLC (programmable logic controller) for a high degree of precision and repeatability. They offer on/off or variable flow rates which can be operated by a push-button or joystick.



**CUSTOM CONTROL PANEL** 



**CUSTOM VALVE BLOCK** 

CUSTOM POWER UNIT



Mark Llovd photo

*Custom power units are available from 3 to 22 kilowatts in any configuration* 

The Harken HydroTrim is true push-button sailing for main and headsail sheeting. Using a 1:4 or 1:6 reverse purchase, it solves the problem of winches that tail line into the cockpit—the hidden belowdecks or in-boom purchase contains all line within the system and saves valuable space on deck.

The cylinder is affixed to the hull or frame with a two-piece retaining bracket. This one-time installation allows the cylinder to be easily removed and serviced without unbolting anything from the hull. The blocks can be removed from the cylinder ends with a single pin so you can service them offsite or leave the rigging intact while servicing the cylinder. Two smaller low-friction sheaves on the cylinder ends replace the larger diameter sheaves typical of most belowdecks trimming systems, reducing the overall length of the system and allowing installation into smaller spaces.

Cylinders feature bronze-filled Teflon<sup>®</sup> bearings that maintain piston and rod alignment longer than common acetal bearings. Graphite-filled Teflon<sup>®</sup> rod seals and bronze-filled Teflon<sup>®</sup> piston seals are extremely low friction and are more durable than polyurethane seals. Performance O-rings and slant springs in the nonabsorbent Teflon<sup>®</sup> cylinder seals provide consistent seal pressure for a reliable long-lasting fit. Cylinders, rod, T-Track, and mounting brackets are made with Hardkote-anodized, Teflon<sup>®</sup>-impregnated 6061-T6 aluminum. All fittings and fasteners are stainless steel.

Custom cylinder lengths are available.

The HydroTrim fits into smaller spaces by using two smaller sheaves in place of one large sheave.







Blocks remove from the cylinder ends with a single pin for easy service.



NEW



|                 | Bore Rod                              |     |                                      |     | м  | ax   |       | Ма     | ax sheet loa | d* at pressu | ire      | Oil volume |          |      |      |
|-----------------|---------------------------------------|-----|--------------------------------------|-----|----|------|-------|--------|--------------|--------------|----------|------------|----------|------|------|
| Part            | -                                     | Ø   |                                      | Ø   | St | roke | Housi | ing OD | Reverse      | 2000 psi     | /140 bar | 3000 psi   | /210 bar | cap  | end  |
| No.             | in                                    | mm  | in                                   | mm  | in | mm   | in    | mm     | purchase     | lb           | kg       | lb         | kg       | gal  | L    |
| HYCT453235.4    | <b>1</b> <sup>3</sup> / <sub>4</sub>  | 45  | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32  | 14 | 350  | 2.27  | 57.7   | 4            | 1203         | 546      | 1804       | 818      | 0.14 | 0.5  |
| HYCT453235.6    | <b>1</b> <sup>3</sup> / <sub>4</sub>  | 45  | <b>1</b> 1/4                         | 32  | 14 | 350  | 2.27  | 57.7   | 6            | 802          | 364      | 1203       | 546      | 0.14 | 0.5  |
| HYCT453270.4    | <b>1</b> <sup>3</sup> / <sub>4</sub>  | 45  | <b>1</b> 1/4                         | 32  | 28 | 700  | 2.27  | 57.7   | 4            | 1203         | 546      | 1804       | 818      | 0.29 | 1.1  |
| HYCT453270.6    | <b>1</b> <sup>3</sup> / <sub>4</sub>  | 45  | <b>1</b> <sup>1</sup> / <sub>4</sub> | 32  | 28 | 700  | 2.27  | 57.7   | 6            | 802          | 364      | 1203       | 546      | 0.29 | 1.1  |
| HYCT553840.4    | <b>2</b> <sup>3</sup> / <sub>16</sub> | 55  | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38  | 16 | 400  | 2.86  | 72.6   | 4            | 1879         | 852      | 2819       | 1279     | 0.26 | 1.0  |
| HYCT553840.6    | 2 <sup>3</sup> /16                    | 55  | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38  | 16 | 400  | 2.86  | 72.6   | 6            | 1253         | 568      | 1879       | 852      | 0.26 | 1.0  |
| HYCT553880.4    | 2 <sup>3</sup> / <sub>16</sub>        | 55  | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38  | 31 | 800  | 2.86  | 72.6   | 4            | 1879         | 852      | 2819       | 1279     | 0.51 | 1.9  |
| HYCT553880.6    | 2 <sup>3</sup> /16                    | 55  | <b>1</b> <sup>1</sup> / <sub>2</sub> | 38  | 31 | 800  | 2.86  | 72.6   | 6            | 1253         | 568      | 1879       | 852      | 0.51 | 1.9  |
| HYCT654850.4    | <b>2</b> <sup>1</sup> / <sub>2</sub>  | 65  | 17/8                                 | 48  | 20 | 500  | 3.17  | 80.5   | 4            | 2454         | 1113     | 3682       | 1670     | 0.42 | 1.6  |
| HYCT654850.6    | <b>2</b> <sup>1</sup> / <sub>2</sub>  | 65  | 17/8                                 | 48  | 20 | 500  | 3.17  | 80.5   | 6            | 1636         | 742      | 2454       | 1113     | 0.42 | 1.6  |
| HYCT6548100.4   | <b>2</b> <sup>1</sup> / <sub>2</sub>  | 65  | 17/8                                 | 48  | 39 | 1000 | 3.17  | 80.5   | 4            | 2454         | 1113     | 3682       | 1670     | 0.84 | 3.2  |
| HYCT6548100.6   | <b>2</b> <sup>1</sup> / <sub>2</sub>  | 65  | 17/8                                 | 48  | 39 | 1000 | 3.17  | 80.5   | 6            | 1636         | 742      | 2454       | 1113     | 0.84 | 3.2  |
| HYCT755460.4    | 3                                     | 75  | 2 <sup>1</sup> /8                    | 54  | 24 | 600  | 3.8   | 96.5   | 4            | 3534         | 1603     | 5301       | 2405     | 0.72 | 2.7  |
| HYCT755460.6    | 3                                     | 75  | 2 <sup>1</sup> /8                    | 54  | 24 | 600  | 3.8   | 96.5   | 6            | 2356         | 1069     | 3534       | 1603     | 0.72 | 2.7  |
| HYCT7554120.4   | 3                                     | 75  | 2 <sup>1</sup> /8                    | 54  | 47 | 1200 | 3.8   | 96.5   | 4            | 3534         | 1603     | 5301       | 2405     | 1.4  | 5.5  |
| HYCT7554120.6   | 3                                     | 75  | 2 <sup>1</sup> /8                    | 54  | 47 | 1200 | 3.8   | 96.5   | 6            | 2356         | 1069     | 3534       | 1603     | 1.4  | 5.5  |
| HYCT906065.4    | <b>3</b> <sup>1</sup> / <sub>2</sub>  | 90  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 60  | 26 | 650  | 4.57  | 116.1  | 4            | 4811         | 2182     | 7216       | 3273     | 1.1  | 4.0  |
| HYCT906065.6    | <b>3</b> <sup>1</sup> / <sub>2</sub>  | 90  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 60  | 26 | 650  | 4.57  | 116.1  | 6            | 3207         | 1455     | 4811       | 2182     | 1.1  | 4.0  |
| HYCT9060130.4   | 31/2                                  | 90  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 60  | 51 | 1300 | 4.57  | 116.1  | 4            | 4811         | 2182     | 7216       | 3273     | 2.1  | 8.1  |
| HYCT9060130.6   | 31/2                                  | 90  | <b>2</b> <sup>1</sup> / <sub>2</sub> | 60  | 51 | 1300 | 4.57  | 116.1  | 6            | 3207         | 1455     | 4811       | 2182     | 2.1  | 8.1  |
| HYCT1007575.4   | 4                                     | 100 | 3                                    | 75  | 30 | 750  | 5.5   | 139.7  | 4            | 6283         | 2850     | 9425       | 4275     | 1.6  | 6.1  |
| HYCT1007575.6   | 4                                     | 100 | 3                                    | 75  | 30 | 750  | 5.5   | 139.7  | 6            | 4189         | 1900     | 6283       | 2850     | 1.6  | 6.1  |
| HYCT10075150.4  | 4                                     | 100 | 3                                    | 75  | 59 | 1500 | 5.5   | 139.7  | 4            | 6283         | 2850     | 9425       | 4275     | 3.2  | 12.2 |
| HYCT10075150.6  | 4                                     | 100 | 3                                    | 75  | 59 | 1500 | 5.5   | 139.7  | 6            | 4189         | 1900     | 6283       | 2850     | 3.2  | 12.2 |
| HYCT1159090.4   | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115 | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90  | 35 | 900  | 6     | 152.4  | 4            | 7952         | 3607     | 11928      | 5411     | 2.4  | 9.2  |
| HYCT1159090.6   | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115 | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90  | 35 | 900  | 6     | 152.4  | 6            | 5301         | 2405     | 7952       | 3607     | 2.4  | 9.2  |
| HYCT11590180.4  | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115 | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90  | 71 | 1800 | 6     | 152.4  | 4            | 7952         | 3607     | 11928      | 5411     | 4.9  | 18.5 |
| HYCT11590180.6  | <b>4</b> <sup>1</sup> / <sub>2</sub>  | 115 | <b>3</b> <sup>1</sup> / <sub>2</sub> | 90  | 71 | 1800 | 6     | 152.4  | 6            | 5301         | 2405     | 7952       | 3607     | 4.9  | 18.5 |
| HYCT130100100.4 | 51/8                                  | 130 | 4                                    | 100 | 39 | 1000 | 7     | 177.8  | 4            | 10314        | 4679     | 15472      | 7018     | 3.5  | 13.3 |
| HYCT130100100.6 | 51/8                                  | 130 | 4                                    | 100 | 39 | 1000 | 7     | 177.8  | 6            | 6876         | 3119     | 10314      | 4679     | 3.5  | 13.3 |
| HYCT130100200.4 | 51/8                                  | 130 | 4                                    | 100 | 79 | 2000 | 7     | 177.8  | 4            | 10314        | 4679     | 15472      | 7018     | 7.0  | 26.6 |
| HYCT130100200.6 | 51/8                                  | 130 | 4                                    | 100 | 79 | 2000 | 7     | 177.8  | 6            | 6876         | 3119     | 10314      | 4679     | 7.0  | 26.6 |
| HYCT145115115.4 | 53/4                                  | 145 | 4 <sup>1</sup> / <sub>2</sub>        | 115 | 45 | 1150 | 8     | 203.2  | 4            | 12984        | 5889     | 19475      | 8834     | 5.1  | 19.3 |
| HYCT145115115.6 | 53/4                                  | 145 | 4 <sup>1</sup> / <sub>2</sub>        | 115 | 45 | 1150 | 8     | 203.2  | 6            | 8656         | 3926     | 12984      | 5889     | 5.1  | 19.3 |
| HYCT145115230.4 | 5 <sup>3</sup> /4                     | 145 | 4 <sup>1</sup> / <sub>2</sub>        | 115 | 91 | 2300 | 8     | 203.2  | 4            | 12984        | 5889     | 19475      | 8834     | 10.2 | 38.5 |
| HYCT145115230.6 | 5 <sup>3</sup> / <sub>4</sub>         | 145 | 4 <sup>1</sup> / <sub>2</sub>        | 115 | 91 | 2300 | 8     | 203.2  | 6            | 8656         | 3926     | 12984      | 5889     | 10.2 | 38.5 |
| HYCT165130125.4 | 6 <sup>1</sup> / <sub>2</sub>         | 165 | 51/8                                 | 130 | 49 | 1250 | 9     | 228.6  | 4            | 16592        | 7526     | 24887      | 11289    | 7.1  | 26.8 |
| HYCT165130125.6 | 61/2                                  | 165 | 5 <sup>1</sup> /8                    | 130 | 49 | 1250 | 9     | 228.6  | 6            | 11061        | 5017     | 16592      | 7526     | 7.1  | 26.8 |
| HYCT165130250.4 | 61/2                                  | 165 | 51/8                                 | 130 | 98 | 2500 | 9     | 228.6  | 4            | 16592        | 7526     | 24887      | 11289    | 14.1 | 53.5 |
| HYCT165130250.6 | 6 <sup>1</sup> /2                     | 165 | 51/8                                 | 130 | 98 | 2500 | 9     | 228.6  | 6            | 11061        | 5017     | 16592      | 7526     | 14.1 | 53.5 |
| HYCT190145125.4 | 71/2                                  | 190 | 53/4                                 | 145 | 49 | 1250 | 10    | 254.0  | 4            | 22089        | 10020    | 33134      | 15029    | 9.4  | 35.6 |
| HYCT190145125.6 | 71/2                                  | 190 | 53/4                                 | 145 | 49 | 1250 | 10    | 254.0  | 6            | 14726        | 6680     | 22089      | 10020    | 9.4  | 35.6 |
| HYCT190145250.4 | 71/2                                  | 190 | 53/4                                 | 145 | 98 | 2500 | 10    | 254.0  | 4            | 22089        | 10020    | 33134      | 15029    | 18.8 | 71.3 |
| HYCT190145250.6 | 71/2                                  | 190 | 53/4                                 | 145 | 98 | 2500 | 10    | 254.0  | 6            | 14726        | 6680     | 22089      | 10020    | 18.8 | 71.3 |

\*Sheet system friction not calculated

# **Hydraulic Accessories**

Harken offers a complete range of high-quality kits and components for the professional installation, service, and maintenance of your hydraulic system.

# **Filters**

Filtration is essential to the health and longevity of your hydraulic system. Harken recommends the 40-micron suction/return filter between the reservoir and the pump as well as an extremely fine 3-micron filter between the pump and the valves. The 40-micron filter has an anodized aluminum body with a removable, cleanable, and replaceable sintered bronze element. The high pressure 3-micron filter is made from electropolished 17-4PH stainless. It has a replaceable paper element and can handle pressures up to 10,000 psi. -4SAE ports allow the high pressure filter to accept any combination of fittings and adapters.

# **Pressure Transducers**

Pressure transducers use the onboard computer to convert hydraulic pressures of up to 10,000 psi into tons or other load units. Standard lightweight versions and super lightweight Grand Prix versions are available.

# **Pressure Gauges**

Pressure gauges, offered as an alternative to electronic transducers, can be mounted into the valve panel or plumbed remotely into a pressure line. Stainless steel 1.5 in (40 mm) cases are filled with glycerin to dampen needle movement.

## Plumbing

Harken has a complete line of high pressure and low pressure plumbing for manual hydraulic systems. All high pressure fittings and adapters are machined from stainless steel. Hoses can be sent to you assembled and preflushed.

# **Blanking Kits**

Use a blanking kit to maintain the functionality of your hydraulic system when a valve is removed. Kits include O-rings and bolts.

# Seal Kits

Seal kits are available for all valves, cylinders, and pumps. Kits include all normal wear items such as O-rings, seals, and nylon tip set screws.

## **Repair Kits**

Repair kits are available for all valves, cylinders, and pumps. They include everything in the seal kit with the addition of select machined components that may require occasional replacement.

# **HAWE Tool**

The HAWE tool is used for removing and reinstalling the check valves included in valve and pump repair kits.



# Men's and Women's Softshell Jacket

The thermal-regulating properties of Harken Softshell make this jacket an all-around favorite. This water-resistant midweight layer is windproof, breathable, and extremely tough. Wear it relaxing on a cool summer evening or during a fierce, wet-and-windy battle on the course.

Men's Size Range: S, M, L, XL, XXL Women's Size Range: XS, S, M, L, XL

Available Colors (Men's and Women's): Carbon/Ice

2070



a

2071



Stowable squall hood. Taped seams and water-shedding DWR treatment. 2-way stretch fabric for mobility. Flattering women's cut.

NEW

# **Ballistic Eco Shorts**

These are the extremely tough, comfortable shorts people are talking about. Made from a Harken-exclusive custom fabric, they feature 4-way-stretch fabric and a gusseted crotch so you'll never feel restricted. Naturally wicking materials and a comfortable brushed interior make these shorts perfect on land or on the water. These eco-friendly shorts are made from renewable, sustainable fabrics such as quick-drying bamboo and odor-fighting carbon.

Men's Shorts Size Range: 28, 30, 32, 34, 36, 38, 40, 42





Semi-elastic waist band and YKK<sup>®</sup> zippers. Highly abrasion-resistant ballistic nylon on rear. Soft, brushed interior. Removable hiking inserts behind the back pockets.





# **Mariner Sunglasses**

Harken sunglasses provide the highest level of protection against sun damage. Polarization blocks 100% of ultraviolet light and 99.9% of reflected glare. Tapered lenses eliminate distortion, reduce eye fatigue, and boost detail and depth perception so you can spot marks or just enjoy that perfect view. The durable frames provide a close wrap-around fit to protect against wind, water, and debris. Now in olive green.



Polarized Film **Distortion-Free Lens** Anti-Scratch Coating Hydrophobic Coating Flash MIrror Coating

ens



class-legal mainsheet blocks. Made with resilient Carbo composite, their low-friction ball bearing technology lets you ease the sheet instantly during light air maneuvers and mark roundings. Even better, a tough joint connecting the upper and lower traveler blocks means you'll never tape your blocks again.

# 15:1 VANG & CUNNINGHAM SYSTEM

# Powerful 15:1 Laser Vang is a must have

- Compact, high-load sheaves for smoother and faster mark roundings
- Cam arms pivot from a fixed height
- Easy to cleat and uncleat while hiking

# **CLEW SLEEVE & HOOK**

## Effortlessly adjust your outhaul

- Low-friction sleeve slides along boom without binding
- Fast and simple rigging
- Hook securely locks clew flush with boom

# **TILLER EXTENSION**

Hike harder and move your weight forward

- Non-slip foam rubber grip does not absorb water, providing an excellent grip
- Stiff aluminum body transmits feedback for better boathandling
- Grip is larger at the end to keep hand from slipping off



0

## AVAILABLE AT YOUR LOCAL LASER DEALER

To find the nearest dealer, go to www.laserperformance.com



Scott Norman

Email: scottn@harken.com



# Harken East (Trade Only)

19 John Clarke Rd. Middletown, RI 02842 Telephone: (401) 849-8278 Fax: (401) 841-5070 Email: harkeneast@harken.com

Argentina King Harken Arias 1489 Arias 1489 San Fernando CP1646 Buenos Aires, Argentina Telephone: (54) 11-4744-1600 Fax: (54) 11-4744-7700 Email: info@harken.com.ar Web: www.king-harken.com.ar

Austria Peter Frisch GmbH Isar-Ring 11, D-80805 München, Germany Telephone: (49) 89-365075 Fax: (49) 89-365078 Email: info@frisch.de Web: www.frisch.de

#### Bermuda

Triangle Rigging Ltd. 19 Bakery Lane Pembroke, HM07 Bermuda Telephone: 1-441-297-2155 Email: rigging@northrock.bm Web: www.rigging.bm

#### Brazil

Regatta Sport Ltd. Rua Alvarenga, 2121 CEP: 05509-005 Butanta Sao Paulo, Brazil Telephone: (55) 11 3030 3416 Fax: (55) 11 3814 7015 Email: telemarketing@regatta.com.br Web: www.regatta.com.br

#### Canada

Western Marine Company 1494 Powell Street Vancouver, BC, Canada V5L 5B5 Telephone: (604) 253-7721 Telephone: (800) 663-0600 Fax: (604) 253-2656 Email: sales@westernmarine.com Web: www.westernmarine.com

Transat Marine Division of Western Marine 70 Ellis Drive, Unit #1 Barrie, ON L4N 3Z8 Canada Telephone; (706) 721, 0142 Telephone: (705) 721-0143 Fax: (705) 721-0747 Email: info@transatmarine.com Web: www.transatmarine.com

Caribbean Budget Marine Antigua Ltd. Jolly Harbor Marina Bolans, Antigua Telephone: (268) 462-8753 Fax: (268) 462-7727 Email: antigua@budgetmarine.com Web: www.budgetmarine.com

Budget Marine Bonaire Kaya Carlos A. Nicolaas 4 Kralendiik Bonaire, Netherlands Antilles Telephone: 599-717-3523 Fax: 599-717-3710

Email: bonaire@budgetmarine.com Web: www.budgetmarine.com

Budget Marine Grenada Spice Island Marine Boatyard \_\_\_\_True Blue Bay True Blue, Grenada Telephone: 473-439-1983 Fax: 473-439-2037 Email: grenada@budgetmarine.com Web: www.budgetmarine.com

Budget Marine N.V. 25 B Waterfront Road Cole Bay Sint Maarten, Netherlands Antilles Telephone: 599-544-3134 Fax: 599-544-4409 Email: StMaarten@budgetmarine.com Web: www.budgetmarine.com

Budget Marine Trinidad, LTD. P.O. Box 3189 Western Main Road Chaguaramas, Trinidad West Indies Telephone: (868) 634-4382 Fax: (868) 634-4382 Email: trinidad@budgetmarine.com Web: www.budgetmarine.com

Budget Marine Curacao Caracasbaaiweg 202 Curacao, Netherlands Antilles Phone: 599-462-7733 Fax: 599-462-7755 Email: curacao@budgetmarine.com Web: www.budgetmarine.com

Island Rigging & Hydraulics 8186 Subbase Road, Suite 4 St. Thomas US Virgin Islands 00802 Telephone: (340) 774-6833 Fax: (340) 774-5024

Richardson's Rigging Services Box 97, Waterfront Drive Tortola, British Virgin Islands Telephone: (284) 494-2739 Fax: (284) 494-5436 Email: info@richardsonsrigging.com

> Peake Trading Ltd. 177 Western Main Road P.O. Box 301 Port of Spain, Trinidad, West Indies Telephone: (868) 622-8816 Fax: (868) 622-7288 Email: peakehdw@tstt.net.tt

### Chile

Windmade SpA. Alonso de Córdova 4294, Loc 5 Vitacura, Santiago, Chili Telephone: (56) 2-7102730 Fax: (56) 2-7102730 Email: ventas@windmade.cl Web: www.windmade.cl

Croatia Harken Adriatik d.o.o. Obala 107 6320 Portoroz Slovenia Telephone/Fax: (386) 5-6774122 Email: info@harken.si Web: www.barken.si Web: www.harken.si

Cyprus Ocean Marine Equipment Ltd. 245B St. Andrews Str. P.O. Box 1370 Limassol, Cyprus Telephone: (357) 25369731 Fax: (357) 25352976 Email: oceanm@spidernet.com.cy Harken®, Inc. corporate headquarters, Pewaukee, WI

# **CORPORATE HEADQUARTERS**

1251 East Wisconsin Avenue, Pewaukee, Wisconsin 53072-3755 USA • Telephone: (262) 691-3320 • Fax: (262) 691-3008 • Web: www.harken.com • Email: harken@harken.com

> USA Sales Offices Harken Southeast (Trade Only) Fax: (727) 518-0296 Don Whelan: Southern California Telephone: (619) 425-0463 Fax: (619) 425-0573 Neil Harvey Telephone: (727) 460-4274 Email: neilh@harken.com Email: donw@harken.com Telephone: (727) 692-4366

### Denmark

Columbus Marine A/S Svejsegangen 3 DK-2690 Karlslunde, Denmark Telephone: (45) 46 19 1166 Fax: (45) 46 19 1353 Email: columbus@columbus-marine.dk

Estonia/St. Petersburg Estonia/St. Petersuury Sail Tech Oy Veneentekijäntie 10, FIN-00210 Helsinki, Finland Telephone: (358) 9 682 4950 Fax: (358) 9 692 2506 Email: info@sailtech.fi Wok: waaw esiltech.fi Web: www.sailtech.fi

### Finland

Sail Tech Oy Veneentekijäntie 10, FIN-00210 Helsinki, Finland Telephone: (358) 9 682 4950 Fax: (358) 9 692 2506 Email: info@sailtech.fi Web: www.sailtech.fi

### Germany

Peter Frisch GmbH Isar-Ring 11, D-80805 München, Germany Telephone: (49) 89-365075 Fax: (49) 89-365078 Email: info@frisch.de Web: www.frisch.de

### Gibraltar

M. Sheppard & Co. Ltd. Waterport, Gibraltar Telephone: 350-75148 Fax: 350-42535 Email: info@sheppard.gi

#### Greece

Tecrep Marine S.A. 38, Akti Moutsopoulou 185 36 Piraeus, Greece Telephone: 30 210 4521647 Fax: 30 210 4184280 Email: info@tecrepmarine.gr Web: www.tecrepmarine.gr



Harken Adriatik d.o.o. Obala 107 6320 Portoroz Slovenia Telephone/Fax: (386) 5-6774122 Email: info@harken.si Web: www.harken.si



Harken New Zealand, Ltd. 30-36 Fanshawe Street P.O. Box 1951 Auckland 1001, New Zealand Telephone: (64) 9-303-3744 Fax: (64) 9-307-7987 Email: harken@harken.co.nz Web: www.harken.co.nz

Holland/Belgium On-Deck b.v. Leimuiderdijk 478a 2156 MX Weteringbrug The Netherlands Telephone: 31 71 331 3366 Fax: 31 71 331 3387 Fax: 31 71 331 3387 Email: allhands@on-deck.nl Web: www.on-deck.nl

Hong Kong Hong Kong UK-Halsey Sailmakers (HK) Ltd. Block A, 21/F., Western Plaza 3 San On Street Tuen Mun, N.T., Hong Kong Telephone: (852) 2775 7711 Fax: (852) 2775 7722 Email: hongkong@ukhalsey.com Web: www.ukhalsey.com

Hungary Peter Frisch GmbH Isar-Ring 11, D-80805 München, Germany Telephone: (49) 89-365075 Fax: (49) 89-365078 Email: info@frisch.de Web: www.frisch.de

### Israel

DISTRIBUTORS

Yamit Y.S.B. Inc. Marina Tel-Aviv, P.O.B. 6158 Tel-Aviv 61061, Israel Telephone: (972) 3-527 1777 Fax: (972) 3-527 1031 Email: office@yamitysb.co.il Web: www.yamitysb.co.il

Japan

Harken Japan Ltd. 2-42 Nishinomiya Hama Nishinomiya City Hyogo Pref., Japan 662-0933 Telephone: (81) 798-22-2520 Fax: (81) 798-22-2521 Email: info@harken.jp INNOVATION



Harken Australia Pty, Ltd. 1B Green Street Brookvale, N.S.W. 2100 Australia Phone: (61) 2-8978-8666 Fax: (61) 2-8978-8667 Email: info@harken.com.au Web: www.harken.com.au



Harken Polska Sp z.o.o Harken Polska Sp 2.0.0 UI Lisa Kuli 4 Lok 1 01-512 Warsaw Poland Telephone: +48 22 561 93 93 Fax: +48 22 839 22 75 Email: polska@harken.pl

Latvia **Regate Takats SIA** 4 Maskavas Str. LV1050, Riga, Latvia Telelephone: 371 67871933 Fax: 371 67871707 Email: regate@regate.lv Web: www.harken.lv

Malta D'Agata Marine Ltd. 152 Ta'Xbiex Wharf Gzira, Malta Telephone: (356) 21 341533 Fax: (356) 21 340594 Email: info@dagatamarine.com Web: www.dagatamarine.com

Norway Harken Sweden/Hovdan Poly A/S Stubberudveien 10 N-0668 Oslo, Norway Telephone: (47) 2314 1260 Fax: (47) 2314 1261 Email: hovdan.poly@online.no

Portugal Maritima Mariuma Avenida de Brasília, loja nº4, Doca de Belém 1300-038 Lisboa, Portugal Tel: 351 21 3649815 Fax: 351 21 3649812

Singapore Marintech Marketing (S) Pte. Ltd. 101 Kitchener Road #02-14 Jalan Besar Plaza Singapore 208511 Telephone: (65) 62988171 Fax: (65) 62923869 Email: marintech@pacific.net.sg

### South Africa

Harken South Africa 48 Marine Drive Paarden Island, 7405 Cape Town, South Africa Telephone: (27) (0) 21 5113244 Fax: (27) (0) 21 5113249 Email: harken@mweb.co.za Web: www.harken.co.za



Harken France ZA Port des Minimes, BP 3064 17032 La Rochelle Cedex 1 France Telephone: (33) 05.46.44.51.20 Fax: (33) 05.46.44.25.70 Email: info@harken.fr Web: www.harken.fr



Harken Sweden AB Mjölkekilsgatan 6 Box 64 S-440 30 Marstrand, Sweden Telephone: (46) 303-618 75 Fax: (46) 303-618 76 Email: harken@harken.se Web: www.harken.se

Spain Equip Yacht s.l. Paseo Juan De Borbon, 92 08039 Barcelona, Spain Telephone: (34) 93-221-92-19 Fax: (34) 93-221-95-78 Email: equipyacht@equipyacht.com Web: www.equipyacht.com

Switzerland Harken Swiss Peter Frisch GmbH lsar-Ring 11, D-80805 München, Germany Telephone: (49) 89-365075 Fax: (49) 89-365078 Email: info@frisch.de Web: www.frisch.de

Taiwan Mercury Marine Supply Co. Ltd. No. 15, Chongshan. Street Kaohsiung, 812, Taiwan, R.O.C. Telephone: (886) 7-8133233 Fax: (886) 7-8133236 Email: mms46654@ms16.hinet.net

### Thailand

Rolly Tasker Sails (Thailand) Co., Ltd. 84/2 Moo 2, Chaofa Road T. Vichit, A. Muang Phuket 83000 Thailand Telephone: (66) (0) 76 521 591 Fax: (66) (0) 76 521 590 Email: rolly@phuket.ksc.co.th Web: www.rollytasker.com

### Turkey

DENPAR Makina Nakliyat Turizm Ithalat Ihracat San. ve Tic. Ltd. Sti. Nazmi Akbaci Is Merkezi No: 212 Maslak-Istanbul, Turkey 80670 Telephone: (90) 212-285-0335 Fax: (90) 212-285-0311 Email: denpar@superonline.com



Harken Italy S.p.A. Via Marco Biagi, 14 22070 Limido Comasco (CO) Italy Telephone: (39) 031.3523511 Fax: (39) 031.3520031 Email: info@harken.it Web: www.harken.it



Harken UK, Ltd. Bearing House, Ampress Lane Lymington, Hampshire SO41 8LW England Tel: (44) 01590-689122 Fax: (44) 01590-610274 Email: enquiries@harken.co.uk Web: www.harken.co.uk

Ukraine Harken Polska Sp z.o.o UI Lisa Kuli 4 Lok 1 01-512 Warsaw Poland Telephone: +48 22 561 93 93 Fax: +48 22 839 22 75 Email: polska@harken.pl

Venezuela Venezuelan Marine Services, C.A. (VEMASCA) Avenida Raúl Leoni, Al Lado Edif. Kokomar Porlamar, Nueva Esparta Venezuela Telephones: (58) 295 264-1646 (58) 414 815-9787 Fax: (58) 295 264-2529 Email: salés@vemasca.com Web: www.vemasca.com

Venezuelan Marine Services, C.A. (VEMASCA) (VEMASCA) Av. Prolongacion paseo Colon Sector El Parasio, Centro Comercial Puerto La Ensenada, Locales 7, 8 y 9 Puerto La Cruz, Anzoategui Venezuela Telephones: (58) 281 267-8232 (58) 414 815-9787 Fax: (58) 281 267-8175 E-mail: ventas@vemasca.com Web: www.vemasca.com Web: www.vemasca.com

### REFERENCE



### SMALL BOAT BLOCKS Carbo

Classic Midrange

# **BIG BOAT BLOCKS**

Black Magic<sup>®</sup> Stainless Steel ESP Cruising



COMPLEMENTARY HARDWARE Cam Cleats

Deck Organizers Shackles & Eyestraps



TRAVELERS & GENOA LEADS CB Captive Ball Cars CRX Captive Roller Cars

MAINSAIL HANDLING SYSTEMS AA, A, B, C Battcar Systems Switch T-Track Battcar Systems Single Line Reefing & Lazy Jacks

HEADSAIL HANDLING SYSTEMS MKIV Cruising Hydraulic



# HARKEN SPORT

WINCHES Radial Classic Powered



Jackets Shorts Sunglasses

# HYDRAULICS

Cylinders Valves & Manifolds Power Units

## **NEW PRODUCTS**



Web: www.harken.com Online catalog: www.harkenstore.com Email: harken@harken.com

ENGLISH